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The adjacency matrix of a directed graph over the
Grassmann algebra

Péter Kortesi and Jend Szigeti

ABSTRACT. The main aim of this note is to give a concise and transparent
reformulation of Swan's graph theoretical theorem, equivalent to the classical
Amitsur-Levitzki theorem on the maximal PI of matrix algebras, Labeling the
edges of & directed graph I’ by the anticommutative generators of 8 Grassmann
algebra, we define its adjacency matrix in a usual way and prove that this
matrix is nilpotent of index 2n, where n denotes the number of vertices.

1. PRELIMINARIES

Given a directed graph I on the vertex set V = {1,2,...,n} (loops and multiple

edges are allowed), its adjacency matrix can be defined in a natural way, it is an
n X n matrix A € M,(Z) having the number a(i,j) of edges oriented from vertex
i to vertex j in the (7,7) slot. As is well known, the powers of this matrix can
be described in terms of directed sequences of edges in I. Sometimes the use of
indeterminates is more convenient in similar matrix constructions starting from
directed or undirected graphs; a typical example is the so-called skew symmetric
adjacency matrix in Tutte’s theorem on the existence of complete matchings (in
undirected graphs).
If the set E = {z;,2,,...,25} of oriented edges of [ is considered as a subset of the
indeterminates generating the commutative polynomial algebra Q[z;,zo, ...] over
the field of rational numbers, then it is also common to replace the a(t,7)’s in the
above definition of A by the sum of the z,’s starting from vertex i and terminating
at vertex j. The use of the standard n x n matrix units F;, 1 < 4,5 < n enables
us to write

N
(1) A(X) = zIrEa(r)r(r)

=1
for this new adjacency matrix, where o(r) € V and 7(r) € V denote the tail end
and the head end of the oriented edge z,, respectively. Clearly, the powers of
A(X) € Ma(Q[x1,22,...]) encode more information about the directed sequences of
edges in I than the powers of A. The structure of such sequences can be completely
read off the powers of A(X) if we don’t allow the z,'s to commute, i.e. if we
consider A(X) as an n X n matrix over the non-commutative polynomial algebra
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Q (z1,22,...). The main idea of this note is to consider A(X) as a matrix over the
Grassmann (exterior) algebra

G =Q(zy,22,... | T,zs + Ts2, =0forall 1 < r,s).

generated by the z,'s, We note that G is an associative algebra (infinite di-
mensional) over ) with the anticommutative defining relations z.z, = —2,7;
(including 22 = 0) on the generators. As a consequence of these relations, for
7 €Sym({1,2,..., N} we get that

(2) Tx(1)Zx(2)--Tn(N) = Sg'l'l(ﬁ')&'; L. TN in G.
Each element g € G can be uniquely written in the form

g=cy+ Z Coliy, 92, ey 1) iy Tiy oo T
1<i)<ig<...<ig

where ¢g, 6q(i1,12,...,4x) € Q. We also note that G is Lie nilpotent of index 2, i.e.
that [[f,g],h] = 0 for all f,g,h € G (hg # —gh in general).
Such a modification of the algebraic environment under A(X) will result in a dra-
matic change in the behavior of its powers. Before proceeding to the formulation
of our result, some further comments are in order.
The famous Amitsur-Levitzki theorem on the minimal PI's of matrix algebras was
published in 1950 ([1]); several essentially different proofs appeared in the literature
since then. Here we deal two of them: Swan’s proof ([5]) is of purely graph theo-
retical in nature, while —possibly the shortest- Rosset’s ([3]) uses the Grassmann
algebra. The idea of considering A(X) in M, (G) was inspired by the above works.
In fact, we take Rosset’s starting point and use one of his tools to get a particularly
transparent theorem on A(X). Swan’s theorem on the numbers of even and odd di-
rected Eulerian paths (which is an equivalent reformulation of the Amitsur-Levitzki
theorem) will appear as an easy consequence of this theorem.

2. THE NILPOTENCY OF A(X)

The identity A(X)N*? = 0in M,(G) immediately follows from (1) and the relations
satisfied by the generators of G. Our main result gives a lesser trivial bound for
the index of nilpotency of A(X).

Theorem. Let A(X) be the adjacency matriz of a directed graph I' = (V, E) over
the Grassmann algebra G. Then we have A(X)*® = 0 in M,(G), where n = |V|,
E={zy,25,....,2x} and G = Q(zy,%3,... | Trzs + ez, =0 for all 1 < r,s).

We shall make use of the following consequence of the Cayley-Hamilton theorem
and the Newton formulae (see in [3]).

Lemma. Let Q be a commutative algebra (with 1) over a field of characteristic zero
and B € Mn(Q) an n x n matriz over (0, then tr(B) =tr(B?) = ... =tr(B") =0
implies that B™ = 0.

Proof of the Theorem. The multiplication rule of the standard matrix units
ensures that the (i,j) entry of the power A(X)* is

(3) Z K, R
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where the sum is taken over all sequences =, , Z,, ..., oy, of distinct edges such that

i=o(r),7(r) = o(re), 7(r2) =0a(rs),...,7(re-1) = a(rx), 7{re) = 3.

These sequences are directed paths in I' from vertex ¢ to vertex j (summands
corresponding to directed sequences involving an edge more than once may appear,
but vanish as a consequence of the relations on the z,’s). Set B = A(X)?. Clearly,
B € M, (Gp) with Gy being the even part of the Grassmann algebra, generated by
the monomials in the z,’s of even length. Since Gy is a commutative Q-subalgebra
of G, the above Lemma can be applied to the matrix B. It is enough to show that
tr(B*) =tr(A(X)?) = 0 for all integers 1 < k < n. In view of (3), we have

(4) tr(A(X)Zk) = ZI‘”I Tryo-Trag

where the sum is taken over all sequences T, ,Ty;,..., Ty, of distinct edges such
that

7(m) = a(ra2), 7(r2) = a(r3), ... T(r2k—1) = o(rax), 7(rax) = o (ry).
If z,,z,,...%y,, is a summand in (4) then z.,..x,,, 2., also occurs in (4), moreover
Ly TryoiLrgy + TryonBrg Ty, = 0IM'G,

Thus each directed circuit in I' of length 2k gives rise to exactly k pairwise disjoint
pairs of summands of the form (4). In consequence, we obtain that tr(A(X)**) = 0.

Corollary. By (2), the (i,j) entry of the power A(X)V is

wa(nzx(z]---h(m == (ZSEB(W)) T2 IN ,
where the sum is over all directed Eulerian paths T (1y, Tx(2);---s Tx(n) of T from i
to j. If N > 2n then our Theorem gives that A(X)N =0, i.e. that 3 sgn(=) =0
for the above sum. This is essentially Swan's theorem.

Remark. The graph theoretic analogue of the classical Kostant-Rowen theorem
(12],14]) on the standard identity for skew symmetric matrices allows us to formu-
late the following statement: (A(X)— A(.?&')T)z’r‘_~2 =0 in Mn(G) for all directed
graphs on n vertices (here A(X)T denotes the transpose of A(X)).
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