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Abstract. In 1967, Brown constructed small k-regular graphs of girth six as induced
subgraphs of the incidence graph of a projective plane of order q, q ≥ k. Examining the
construction method, we prove that starting from PG(2, q), q = ph, p prime, there are
no other constructions using this idea resulting in a (q + 1− t)-regular graph of girth six
than the known ones, if t is not too large (t ≤ p and roughly t < q1/6/8). Both algebraic
and combinatorial tools are used.

1. Introduction

A (k, g)-graph is a simple k-regular graph of girth g. We denote by c(k, g) the smallest
number of vertices a (k, g)-graph may have. Determining c(k, g) is very difficult for most
values of k and g and has been studied by several authors. A (k, g)-graph with c(k, g)
vertices is called a (k, g)-cage. An easy combinatorial lower bound for c(k, g) is given by
the Moore bound, and graphs attaining equality in this bound are called Moore graphs.
Since the present paper is about the g = 6 case, we only formulate the bound for this:
c(k, 6) ≥ 2((k − 1)2 + (k − 1) + 1). It was shown by Kárteszi [13] that a Moore graph
for the g = 6 case is the incidence graph of a projective plane of order k − 1. Hence
a Moore graph exists for g = 6 if and only if there exists a projective plane of order
k − 1. This is true in a more general setting: when g ≥ 6 is even, then a Moore graph
is the incidence graph of a so-called generalized g/2-gon of order k − 1. These exist for
g = 6, 8, 12 whenever k − 1 is a prime power. We refer to the survey of Wong [17], to
the dynamic survey of Exoo and Jajcay [9] and the web page of Royle [14] for further
introduction and results on (k, g)-graphs, cages and Moore graphs.

Considering the cases g = 6, 8, 12, many papers have focused on constructing small (k, g)-
graphs as induced regular subgraphs of the incidence graphs of generalized polygons. Some
authors use 0/1 matrices to construct the adjacency matrix of the (k, g)-graphs, but in
many cases these turn out to give rise to subgraphs of generalized polygons ([1], [2], [3],
[8], [11]). When g = 6, the generalized polygon is a projective plane. For these, essentially
two constructions are known, which we will describe in the next section. Our main result
(to be stated in Section 2) is that under certain conditions, no other constructions can be
obtained from this technique. However, it should be mentioned already at this point, that
we only consider induced subgraphs of the incidence graph. We will make some comments
on this in the last section.
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The paper is organized as follows. In Section 2 we describe the construction method, list
the known constructions by this method and state the result. The proof will be given in
Section 3. The proof uses deep and technical results on (weighted) t-fold blocking sets.
Referring to these can be avoided in a special case to be discussed in Section 4. Finally,
in Section 5 we make some comments and discuss some open problems.

We end this introduction with some facts about projective planes. For proofs and more
information, we refer to [12].

A projective plane is an incidence structure (P ,L, I) consisting of a point-set P , a line-set
L and an incidence relation I between points and lines satisfying that any two lines have
a unique point in common and any two points are incident with a unique line. One can
prove that besides two degenerate examples, any finite projective plane has an order q
with the property that any line is incident with q + 1 points, any point is incident with
q + 1 lines and both the number of points and the number of lines are q2 + q + 1. The
two degenerate projective planes are the following.

π1: there is an incident point-line pair (P, l) such that all points are incident with l and
all lines are incident with P ;

π2: there is a non-incident point-line pair (P, l) such that every point except P is incident
with l and every line except l is incident with P .

A subplane of a projective plane (P ,L, I) is a subset P ′ of points and L′ of lines of the
original plane such that (P ′,L′, I ′) is a projective plane on its own right, where I ′ is the
restriction of I on the pair (P ′,L′). The subplane is degenerate, if it is π1 or π2 (that is,
it is degenerate as a projective plane). The order of a non-degenerate subplane is always
at most the square root of the order of the big plane.

It is easy to see that any non-degenerate projective plane has degenerate subplanes of
both types. A degenerate subplane of type π1 is an incident point-line pair (P, l) together
with some other points on l and some other lines through P . A degenerate subplane of
type π2 is a non-incident point-line pair (P, l) together with some more points on l and
the lines joining P to these points. In a finite projective plane the numbers of points and
lines are equal unless the plane is degenerate of type π1.

We denote by PG(2, q) and AG(2, q) the desarguesian projective and affine plane of order
q, respectively, i.e., the projective or affine plane over the Galois field of q elements, GF(q),
where q is a power of the prime p. It is well known that all non-degenerate subplanes of
PG(2, ph) have order pl where l divides h. Thus PG(2, p), p prime, does not have non-
degenerate subplanes. On the other hand, for any square prime power q, PG(2, q) contains
non-degenerate subplanes of order

√
q, which are called Baer subplanes. Moreover, one

can partition the point-set of PG(2, q) into the point-sets of q − √
q + 1 disjoint Baer

subplanes. A non-degenerate subplane in PG(2, q), q = ph has at least p2 + p + 1 points.
Two distinct Baer subplanes in a finite projective plane of order q may have at most√

q + 2 points in common [7].

If we consider AG(2, q) embedded into PG(2, q), then we call the line in PG(2, q) outside
AG(2, q) the line at infinity, and we call its points ideal points. The common (ideal) point
of vertical lines or lines of slope m will be denoted by (∞) and (m), respectively. Note
that the axioms of a projective plane are symmetric, so there is a duality between points
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and lines; the dual of the plane (P ,L, I) is simply (L,P , I). The dual of PG(2, q) is
isomorphic to PG(2, q).

Furthermore we will use results on (weighted) multiple blocking sets of PG(2, q). A t-fold
blocking set in a projective plane is a set of points that intersects every line in at least t
points. A t-fold weighted blocking set is a set of points with positive integer weights (i.e.,
multiplicities) such that the sum of the weights of the points on an arbitrary line is at
least t. If B is a weighted set with weight w we write |B| =

∑

b∈B w(b). One-fold blocking
sets are called blocking sets. The dual of a t-fold blocking set is a set of lines covering
every point at least t times, i.e., a t-fold covering set. Thus if we have a result on t-fold
(weighted) blocking sets in PG(2, q), then we have the dual result for t-fold covering sets
as well.

2. t-good structures and the main theorem

For a non-degenerate projective plane of order q, the incidence graph (between lines and
points) is easily seen to be a (q + 1, 6) graph. As was mentioned in the introduction, this
is the smallest possible construction for a (q + 1, 6) graph. When there is no projective
plane of order k − 1, one possibility to construct a (k, 6) graph is to take the first q ≥ k
for which a projective plane of order q exists, consider the incidence graph of the plane
and try to delete vertices of this graph to make it k-regular. It is easy to see that for this
we need the following structure within the plane.

Definition 2.1. Let T = (P0,L0) be a pair of a point-set P0 and a line-set L0 such that

• ∀P /∈ P0 there are exactly t lines in L0 through P ,
• ∀l /∈ L0 there are exactly t points in P0 on l.

Then T is called a t-good structure.

Notation. If T is a fixed t-good structure, a line l ∈ L0 (a point P ∈ P0) will be called
also a T -line (a T -point).

It is straightforward to check that to get a (q + 1 − t)-regular induced subgraph of the
incidence graph, we have to delete vertices corresponding to points and lines of a t-
good structure. The larger the point- and line-set of a t-good structure is, the smaller
(q + 1 − t, 6)-graph we get (which is the goal usually). When deleting a t-good structure
T = (P0,L0) from the incidence graph of the projective plane, we start from and result
in a regular bipartite graph, whence |P0| = |L0| follows. The size of T is defined as
|T | = |P0| = |L0|.
To review the known constructions of t-good structures, we need a definition first.

Definition 2.2. A point P (or a line l) is T -complete if P and all the lines through P
(l and all the points on l) are in T . We may also say that P (l) is completely in T .

A remark on the usage of expressions. In this paper a line is usually distinguished from
the set of points it is incident with. Thus the phrase “l is in T ” does not mean that the
points of l are in P0. To indicate the latter phenomenon, we will say “put the line l into
T completely”.

Essentially two types of t-good structures are known when t <
√

q (see also [11]).
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• Construction 1: complete subplanes. Take a (possibly degenerate) subplane
which has t points and t lines, and put all its points and lines into T completely.

• Construction 2: disjoint Baer subplanes. Let P0 and L0 be the union of the
points or the lines of t disjoint Baer subplanes, respectively.

Considering Construction 1, lines that intersect the point-set of the subplane in at least
two points are T -complete, hence through a point P /∈ P0 there are precisely t lines
intersecting the point-set of the subplane, which are precisely the T -lines through P .
Dually, the same can be said from the viewpoint of the lines, thus Construction 1 gives
a t-good structure. Construction 2 can be seen to be t-good using the fact that a line
may intersect only one of two disjoint Baer subplanes in more than one points. We
refer to the graphs obtained by deleting a t-good structure according to Construction
1 or 2 as a completely deleted subplane (CDS) (also as a completely deleted degenerate
subplane (CDDS) if the underlying subplane is degenerate) or deleted Baer subplanes
(DBS), respectively.

Historically, Brown [8] (1967) constructed (k, 6)-graphs as a CDDS with an underlying
subplane of type π1. Abreu, Funk, Labbate and Napolitano [1] (2006) used the Cayley
tables of GF(q) to construct the adjacency matrices of (k, 6)-graphs. They gave two
infinite families that can be rephrased as CDDSs of type π1 and π2 starting from PG(2, q).
Moreover, for q = 4, 9, 16 they used the partition of PG(2, q) into Baer subplanes to
construct graphs of the same size as a DBS. The notion of t-good structures was introduced
in [11] (2008), where the translation of matrix techniques into geometry is also illustrated.
Construction 2 was also given there for general square prime power q.

A little calculation shows that the size of the t-good structure we get from Construction
1 using a degenerate subplane of type π1 or π2, or a non-degenerate subplane of order t1,
where t = t21 + t1 +1, is tq+1, tq− t+3 and tq−(t1−1)t, respectively. From Construction
2 we get |T | = t(q +

√
q + 1).

Hence the second construction is much better than any type of the first one, but needs
the existence of Baer subplanes in the projective plane of order q. By the remarks at
the end of the introduction, whenever q is square, we can use PG(2, q), where the second
construction is possible.

When q is not a square, we have to use the first construction, which is always better with
a degenerate subplane than with a non-degenerate one, and for t = 1 the better one is to
start from a subplane of type π2; for t ≥ 3 the better one is to start from a subplane of
type π1; finally, for t = 2 the two types are the same.

We remark that for t < (q + 1)/2, a t-good structure constructed by putting t points and
t lines completely into it (and nothing else) is always a complete subplane. To see this,
consider such a t-good structure T , and let P∗ = {P1, . . . , Pt} and L∗ = {l1, . . . , lt} be
the set of points and lines that are to be put into T completely. Take a line connecting
two (or more) of the Pis, and suppose that there is a point P on it that is not in P0.
Then P is not incident with any ℓ ∈ L∗, hence there are less than t T -lines through P ,
a contradiction. Hence lines connecting two points of P∗ must be T -complete. A line
l /∈ L∗ may intersect P∗ in at most t points and may contain t further T -points on the
lis, hence 2t < q + 1 implies that the set of T -complete lines is L∗. Together with the
dual of this argument, we get that (P∗,L∗) is a subplane.
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In [11] the following was proved.

Theorem 2.3 ([11]). Let T = (P0,L0) be a t-good structure in a projective plane of order
q.

(i) If t ≤ 2
√

q, then |P0| = |L0| ≤ t(q +
√

q + 1), and in case of equality P0 meets
every line in either t or

√
q + t points. Moreover, if the plane is PG(2, q) and

t < 4
√

q/2, then equality holds only for Construction 2;
(ii) If t = 1, then every 1-good structure is one of the constructions above;
(iii) If t = 2, the plane is PG(2, q), and q > 256, then every 2-good structure is one of

the constructions above;
(iv) If t <

√
q, then P0 is a blocking set.

By the above result, one cannot get larger t-good structures than Construction 2 if t is not
too large. The purpose of this paper is to describe all t-good structures in PG(2, q) (i.e.,
the (q + 1 − t)-regular induced subgraphs of the incidence graph of PG(2, q)), provided
that t is not too large. The following theorem will be proved.

Theorem 2.4. Let p be a prime and let T = (P0,L0) be a t-good structure in PG(2, q),
q = ph; furthermore,

• for h = 1 and h = 2, let t < p1/2/2;
• for h ≥ 3, let t < min

{

p + 1, cpq
1/6 − 1, q1/4/2

}

, where c2 = c3 = 1/8 and cp = 1
for p > 3.

Then T is a complete (degenerate) subplane or the union of t disjoint Baer subplanes.

One may ask whether the bounds of the above theorem are tight. As the authors of the
present paper do not know of t-good structures for t <

√
q other than the listed ones, we

can not give a definite answer to this question. Further comments are made in Section 5.

3. Proof of Theorem 2.4

Throughout this section T = (P0,L0) will denote a t-good structure in PG(2, q). We will
suppose t ≥ 2 (as Theorem 2.3 (ii) proves the t = 1 case).

Definition 3.1. We call a line bad if it does not intersect P0 in t mod p points. Dually,
we call a point bad if it does not have t mod p lines from L0 through it. A point (line)
is good if it is not bad.

Clearly, every line not in L0 is good (as it intersects P0 in exactly t points); in other
words, the bad lines are in L0. However, lines of L0 are not necessarily bad (see Figure
1). The dual observations stand for points as well.

Note that if we supposed that q = p prime, then in the above definition t mod p and
exactly t would be the same (assuming 2 ≤ t < p).

Definition 3.2. Let the index of a point P be the number of bad lines going through it.
Dually, the index of a line l is the number of bad points on it. We denote the index of
a point P or a line l by ind(P ) and ind(l), respectively. For the sake of simplicity, the
index of the ideal point (m) will be denoted by ind(m) instead of ind((m)).
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Figure 1. We see the schematic pictures of two t-good structures, a complete

degenerate subplane of type π1 and π2, respectively. Every depicted object is in

T . Good lines are thin, bad lines are thick; good points are round, bad points are

square, T -complete points are crossed. The numbers next to the points are their

indices. Note that in case of the left construction, being bad and being in T are

not equivalent; moreover, not every T -complete point has large index.

Next our aim is to show that the indices of the points are either quite small (at most t),
or relatively large (at least q + 1 − t). First we will introduce a polynomial that encodes
the intersection multiplicity of P0 with lines.

Let ℓ∞ denote the line at infinity in an affine coordinate system. Let {(av, bv)}v be the
set of affine points of T (in this coordinate system), and let {(yi)}i be the set of points
of T on ℓ∞. Consider the following polynomial in GF(q)[X,Y ]:

g(X,Y ) =

|P0\ℓ∞|
∑

v=1

(

1 − (X + avY − bv)
q−1

)

+
∑

yi∈P0∩ℓ∞

(

1 − (Y − yi)
q−1

)

−t =

q−1
∑

i=0

ri(Y )Xq−1−i.

Let m, b ∈ GF(q) and let l be the line defined by Y = mX + b. Then g(b,m) = |l∩P0|− t
(mod p), as a term of the first or the second sum equals one iff the corresponding affine
point (av, bv) or the ideal point (yi) is on l, respectively. Note that deg ri ≤ i∀0 ≤ i ≤ q−1.

Lemma 3.3. Assume that ℓ∞ (the line at infinity) is good. Then for any point (y) ∈ ℓ∞,
ind(y) = q − deg gcd (g(X, y), Xq − X).

Proof. Since x is a root of g(X, y) iff the line Y = yX +x intersects P0 in t mod p points,
then the number of affine good lines is the degree of the greatest common divisor. ¤

To be able to say something about the possible indices, we will need the following algebraic
result, for more details see [16] or [15].

Notation. For u ∈ R, let u+ = max{0, u}.

Result 3.4 (Szőnyi-Weiner). Suppose that the polynomials u(X,Y ) =
∑n

i=0 ui(Y )Xn−i

and v(X,Y ) =
∑n−m

i=0 vi(Y )Xn−m−i, m > 0, satisfy deg ui(Y ) ≤ i for all 0 ≤ i ≤ n,
deg vi(Y ) ≤ i for all 0 ≤ i ≤ n − m, and u0 6= 0.
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For y ∈ GF(q), let ky = n − deg (gcd (u(X, y), v(X, y))). Then for any y ∈ GF(q),
∑

y′∈GF(q)

(ky − ky′)+ ≤ ky(ky − m).

¤

As a corollary of the above result and lemma, we can estimate the possible values of
indices.

Proposition 3.5. Let k be the index of a point or a line and let t ≤ √
q/2. Then either

k ≤ t or k ≥ q + 1 − t.

Proof. By duality it is enough to prove the statement for the index of points only. Let
δ denote the number of bad lines. Note that δ ≤ |L0| ≤ t(q +

√
q + 1) (Theorem 2.3

(i)). Pick an arbitrary point P . If there is no good line through P , then ind(P ) = q + 1
and there is nothing to prove. Otherwise choose our coordinate system so that ℓ∞ is
a good line through P and that P = (y0) is an ideal point different from (∞). Then
δ ≥ ∑

y∈GF(q) ind(y), as on the right-hand side we do not count the bad lines through

(∞). Let u(X,Y ) = Xq − X, v(X,Y ) = g(X,Y ). Then Lemma 3.3 shows that ind(y) =
deg u − deg gcd (u(X, y), v(X, y)), hence by Result 3.4 we get

q · ind (y0) − δ ≤
∑

y∈GF(q)

(ind (y0) − ind (y)) ≤
∑

y∈GF(q)

(ind (y0) − ind (y))+ ≤ ind (y0) (ind (y0) − 1) .

This implies that

(3.1) ind(P ) (q + 1 − ind(P )) ≤ δ.

As δ ≤ t(q +
√

q + 1), one can deduce that ind(P ) ≤ t or ind(P ) ≥ q + 1 − t (using
2 ≤ t ≤ √

q/2 and t ∈ N). ¤

Now we see that the points (and the lines) can be split into two groups: ones with small
and others with large index.

Definition 3.6. The index of a point or a line is large ( small) if it is at least q + 1 − t
(at most t).

We shall examine points and lines with large index now.

Proposition 3.7. If t ≤ √
q/2, then points and lines with large index are T -complete.

Proof. By duality it is enough to prove the proposition for points. Suppose to the contrary
that there is a point P with large index and a line l /∈ L0 passing through P . Thus
|l ∩ P0| = t. We count the number of T -lines through the points of l. On each of the
q + 1 − t points of l \ P0 we see exactly t T -lines and at least q + 1 − t more through P
(since the bad lines are in L0). Thus |L0| ≥ (q + 1 − t)t + q + 1 − t, but this contradicts
the upper bound in Theorem 2.3 (i) if t ≤ √

q/2. ¤
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Proposition 3.8. Suppose t ≤ √
q/2. Then the number of T -complete points is at most

t. Dually, the number of T -complete lines is at most t.

Proof. By duality it is enough to prove the proposition for points. Suppose to the contrary
that there exist t + 1 T -complete points. Then the number of T -lines through these is at
least (t + 1)(q + 1)−

(

t+1
2

)

, thus by Theorem 2.3 (i) (t + 1)(q + 1)−
(

t+1
2

)

≤ t(q +
√

q + 1).
This gives 2(q + 1) ≤ t(t + 2

√
q + 1), which contradicts t ≤ √

q/2. ¤

Proposition 3.9. Suppose t <
√

q. Then the points with large index block the bad lines
(that is, every bad line is incident with at least one point with large index). Dually, lines
with large index cover the bad points.

Proof. Suppose to the contrary that there exists a bad line l on which every point has
index at most c, where c ≤ t, and suppose that there exists a point P on l with ind(P ) = c.
Then the total number δ of bad lines is at most (c− 1)(q + 1) + 1. Then using inequality
(3.1) we get

0 ≤ c2 − c(q + 1) + (c − 1)(q + 1) + 1 = c2 − q,

a contradiction since c ≤ t <
√

q. ¤

Note that if t 6≡ 1 (mod p) then the existence of a point with large index is equivalent
to the existence of a line with large index (if t is small enough to use the propositions).
For instance a point P with large index is T -complete (Proposition 3.7), that is, all lines
through it are in T , hence the number of T -lines through it is 1 mod p, thus P is bad.
On this bad point there should exist a line with large index (Proposition 3.9).

Proposition 3.10. Suppose that t ≤ √
q/2 and also t ≤ p. Then the line joining two

T -complete points has large index. Dually, the intersection point of two T -complete lines
has large index.

Proof. Let P1 and P2 be two T -complete points and denote by l the line joining them.
As 2 ≤ t ≤ p, P1 and P2 are bad. Suppose to the contrary that the index of l is at most
t. Then there are at least q + 1 − t good points on l, each having t mod p, thus at least
t T -lines through them (here we use t ≤ p and l being a T -line). Since l is a common
T -line on each of these points, we can deduce that |L0| ≥ (q + 1− t)(t− 1) + 2q + 1, but
this contradicts the upper bound |L0| ≤ t(q +

√
q + 1) (Theorem 2.3 (i)) if t ≤ √

q/2. ¤

Corollary 3.11. Suppose that t ≤ √
q/2 and also t ≤ p. Let P ′ be either the set of T -

complete points or the set of points with large index. Let L′ be either the set of T -complete
lines or the set of lines with large index. Then (P ′,L′) is a (possibly degenerate) subplane.

Proof. We only need to check whether the intersection of two lines of L′ is in P ′, and if the
line joining two points of P ′ is in L′. As points and lines with large index are T -complete
(Proposition 3.7), this follows from Proposition 3.10 in all the four cases. ¤

In Construction 1, the subplane formed by the T -complete points and lines has t points
and t lines, while in Construction 2 it is empty. In the proof of the main theorem, we will
verify this property with the help of weighted t-fold blocking sets.
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Proposition 3.12. Suppose that (P0,L0) is a t-good structure in PG(2, q), t ≤ √
q/2,

and t ≤ p. Giving weight t to points with large index and weight one to the other points
of P0, we obtain a weighted t-fold blocking set.

Proof. By Proposition 3.9, there is at least one point with large index (thus with weight
t) on each bad line. On the other hand, every good line is a t (mod p) secant to P0, thus
by t ≤ p and P0 being a blocking set (Theorem 2.3 (iv)), a good line intersects P0 in a
positive number of, hence in at least t points. ¤

Remark 3.13. If there are no points (and thus lines) with large index, then the above
proposition yields that P0 is a t-fold blocking set (without weights).

Weighted blocking sets were studied, e.g., in [10] and [5]. In our notion, the sum of some
point-sets is a weighted set in which the weight of a point P is the number of sets in the
sum in which P is contained. We will need the following results.

Result 3.14. ([10], Theorems 2.5, 2.13 and Proposition 2.15) Let B be a weighted k-fold
blocking set in PG(2, p), p prime, with |B| = kp + k + r, k + r < (p + 2)/2. Then B
contains the sum of k (not necessarily different) lines (considered as point-sets).

Result 3.15. ([5], Theorem 3.10) Let B be a weighted k-fold blocking set in PG(2, q),
q = ph, p prime, h > 1. Let c2 = c3 = 2−1/3 and cp = 1 for p > 3. Assume that
|B| = kq + k + c − (k − 1)(k − 2)/2, where

(1) c < cpq
2/3 and k < min{cpq

1/6, q1/4/2};
(2) q = p2, k < q1/4/2 and c < q3/4/2.

If the number of simple points (i.e., points with weight one) is at least (k − 2)(q +
√

q +

1) + 16
√

q + 8q1/4 in (1) and at least (k − 2)(q +
√

q + 1) + 16
√

q + 16q1/6 in (2), then B
contains the sum of the point-sets of k (not necessarily different) Baer subplanes and/or
lines (considered as point-sets).

We will need one more simple observation.

Proposition 3.16. Let 1 ≤ t ≤ q/2, T = (P0,L0) and T ′ = (P ′
0,L′

0) be two t-good
structures. Then P0 ⊂ P ′

0 and L0 ⊂ L′
0 implies T = T ′.

Proof. Suppose to the contrary that T 6= T ′. By duality we may assume that L0 is a
proper subset of L′

0. Take a line l ∈ L′
0 \ L0. Then l contains exactly q + 1 − t points,

P1, . . . , Pq+1−t, that are not in P0. Thus these are covered exactly t times by the lines of
L0, that is, there are q + 1 − t lines /∈ L0 through each of the Pis (i = 1, . . . , q + 1 − t)
intersecting P0 in exactly t points. The set S of these lines has (q+1−t)2 pairwise distinct
elements, and S ∩L0 = ∅. As l ∈ L′

0 and L0 ⊂ L′
0, the Pis are covered at least t+1 times

by L′
0, hence they are in P ′

0. Thus the lines of S intersect P ′
0 in at least t+1 points, hence

S ⊂ L′
0, therefore the Pis (1 ≤ i ≤ q + 1 − t) are completely in T ′. Thus any point P /∈ l

is covered at least (q + 1 − t)-times by L′
0, which is more than t as t < (q + 1)/2. This

means that every point of the plane is in P ′
0, a contradiction. ¤

Proof of Theorem 2.4
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Recall that the assumptions on (2 ≤)t ∈ N are the following: if q = ph, then assume t <
p1/2/2 for h = 1, 2, and t < min

{

p + 1, cpq
1/6 − 1, q1/4/2

}

for h ≥ 3, where c2 = c3 = 1/8
and cp = 1 for p > 3. At this point we have to assume a somewhat stronger bound on t in
case of h = 1, say, t <

√
q/3, mainly to satisfy the conditions of Result 3.14. In Section

4, we will refine the proof so that the original bound will be enough.

Step 1: T contains k T -complete points and lines and t − k Baer subplanes for some k
(0 ≤ k ≤ t), which will be seen to be well defined in Step 2.

Counting the T -lines through the points of a non T -line we get that |P0| = |L0| ≥ t(q +
1− t) = tq + t− t2. The number of T -complete points is at most t (Proposition 3.8), thus
giving weight t to the points with large index (which are T -complete by Proposition 3.7)
we obtain a weighted t-fold blocking set Pw

0 (Proposition 3.12) with |Pw
0 | ≤ |P0|+t(t−1) ≤

tq+t+t(
√

q+t−1) (Theorem 2.3 (i)), in which at least |P0|−t ≥ tq−t2 points are simple.
Dually, giving weights analogously to the lines of L0 we obtain a weighted t-fold covering
set Lw

0 . The assumptions on t and q yield that we may use Result 3.14 and 3.15 together
with their duals to see that Pw

0 contains the sum of the point-sets of k lines l1, . . . , lk,
and t − k Baer subplanes BP

1 , . . . , BP
t−k, while Lw

0 contains the sum of the line-sets of k′

points P1, . . . , Pk′ (by the line-set of a point P we mean the set of lines incident with P )
and t − k′ Baer subplanes BL

1 , . . . , BL
t−k′ . (Here a subplane is considered as a pair of a

point-set and a line-set.)

Note that by the definitions of Pw
0 and Lw

0 , the only points and lines in Pw
0 and Lw

0 with
weight more than one are those with large index.

Let P∗ = {P1, . . . , Pk′}, B∗
L = {BL

1 , . . . , BL
t−k′}, L∗ = {l1, . . . , lk}, and B∗

P = {BP
1 , . . . , BP

t−k}.
Note that the elements of P∗ and L∗ are T -complete. Moreover, as the line-set of a Baer
subplane B ∈ B∗

L is in L0 and it covers all the points of B
√

q + 1 > t times, the point-set
of B is contained in P0 (and dually as well). However, in principle it could happen that
B /∈ B∗

P . Next we show that this is not the case.

Step 2: There are no other T -complete points, T -complete lines, or Baer subplanes con-
tained in T than the above found ones.

Let S be a line or a Baer subplane whose point-set is contained in P0. We show that S ∈ L∗

or S ∈ B∗
P . Suppose to the contrary. Then the union of the point-sets of the elements

of L∗ and B∗
P contains at least t(q + 1) − t(t − 1) points (in P0, without multiplicities),

as any one of them has at least q + 1 points, and at most t points may be in more than
one of them (as Pw

0 contains their sum, and there are at most t points with weight more
than one in Pw

0 ). Recall that the intersection of two lines, a line and a Baer subplane, or
two Baer subplanes contains at most 1,

√
q + 1, or

√
q + 2 points, respectively (for the

last fact see [7]). Thus, as |S| ≥ q + 1, S adds at least (q + 1) − t(
√

q + 2) new points
to the union, whence |P0| ≥ (t + 1)(q + 1) − t(t − 1) − t(

√
q + 2). Compared with the

upper bound |P0| ≤ t(q +
√

q + 1) (Theorem 2.3 (iv)) and considering the assumed upper
bounds on t, we get a contradiction. Together with the dual of this argument, we obtain
the stated result, which yields B∗

L = B∗
P and k = k′.

Step 3: k = 0 or k = t.

Suppose to the contrary that there is a T -complete line l and a Baer subplane B as well
in T . As (the point-set of) a Baer subplane is a blocking set, there exists a point P in
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l ∩ B. As l ∈ L∗ and B ∈ B∗
P , P has weight at least two in Pw

0 . Thus P has large index,
hence it is T -complete (Proposition 3.7), consequently P ∈ P∗. Therefore, as B ∈ B∗

L

also holds, Lw
0 contains the sum of the line-sets of P and B, thus the

√
q + 1 > t lines

through P belonging to B have weight at least two in Lw
0 , hence they are T -complete.

However, the number of T -complete lines is at most t (Proposition 3.8), a contradiction.

Step 4: T is a complete subplane or the union of t disjoint Baer subplanes.

Recall that T -complete points and lines form a subplane (Corollary 3.11). As k = 0 or
k = t, then T either contains the union of t disjoint Baer subplanes (as Pw

0 contains the
sum of the Baer subplanes, a point in the intersection would have weight at least two,
hence it would be T -complete) or a T -complete subplane (P∗,L∗) on t points and lines,
which is degenerate as t ≤ p. Both of these are t-good structures, thus T contains a
t-good structure T ′. By Proposition 3.16 this may happen only if T = T ′. ¤

4. The case q = p

If q = p prime, then we can avoid referring to the cited results on weighted t-fold blocking
sets. Supposing q = p prime and t ≥ 2, every good line (a t mod p secant) must intersect
P0 in exactly t points, which is quite a strong property, yet we will need a lemma that is
interesting in itself as well.

Lemma 4.1. Let L be a set of non-vertical lines of AG(2, q), q a power of the prime p,
which cover every point of AG(2, q) exactly k times (k ≥ 1) except possibly the points of ν
fixed vertical lines, where ν(k + 1) ≤ p. Then L consists of the union of k parallel classes
or L consists of the kq non-vertical lines passing through k fixed points on a fixed vertical
line.

Proof. Counting the lines of L through the points of a non-exceptional vertical line we
see that |L| = kq. Suppose ν = 0. Fix an arbitrary line l ∈ L, and consider AG(2, q)
embedded into PG(2, q) (and also extend the lines by their ideal points). As the affine
points of l are covered exactly k times by L, there are kq−q(k−1) = q lines of L incident
with the ideal point of l, whence the statement follows.

Suppose ν ≥ 1. Since the lines of L are non-vertical, they are given by the equations
Y + miX + bi = 0, where i ∈ {1, . . . , kq}. Consider the following polynomial (over
GF(q)):

f(X,Y ) =

kq
∏

i=1

(Y + miX + bi).

Then degX,Y f = kq. Let S ⊂ GF(q) be the subset of q − ν elements x for which on the
vertical line X = x every point is covered exactly k-times. Consider the polynomial

g(X) =
∏

x∈S

(X − x).

Then degX g = q−ν. The elements of S×GF(q) are zeros of the algebraic curve f(X,Y ) =
0 with multiplicity k, thus by the Combinatorial Nullstellensatz with multiplicities (see
[4]) we get

f(X,Y ) = (Y q − Y )k + . . . + fi(X,Y )(Y q − Y )k−ig(X)i + . . . + fk(X,Y )g(X)k,
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where degX,Y fi ≤ kq − q(k − i) − (q − ν)i = iν for all 1 ≤ i ≤ k . Fix some arbitrary
x /∈ S. Then g(x) 6= 0, and including the arising constants into the fis we get

f(x, Y ) = (Y q − Y )k + f1(x, Y )(Y q − Y )k−1 + . . . + fk(x, Y ).

Note that since the multiplicity of the root y is the number of lines of L passing through
(x, y) ∈ AG(2, q), no root of f(x, Y ) can have multiplicity larger than q.

Now let l be the largest integer for which fl(x, Y ) 6≡ 0 (0 ≤ l ≤ k). Thus

f(x, Y ) = (Y q − Y )k + f1(x, Y )(Y q − Y )k−1 + . . . + fl(x, Y )(Y q − Y )k−l.

Consider

f ∗(x, Y ) =
f(x, Y )

(Y q − Y )k−l
= (Y q − Y )l + (Y q − Y )l−1f1(x, Y ) + . . . + fl(x, Y ).

Let R denote the set of distinct roots of f ∗(x, Y ). Then r(y) =
∏

y∈R(Y − y) divides

Y q − Y , and hence fl(x, Y ) as well. Thus |R| ≤ deg fl(x, Y ) ≤ lν. Let ′ denote the
derivation in the variable Y . As every root of f ∗(x, Y ) is root of f ∗′(x, Y ) with one less
multiplicity, degY f ∗′(x, Y ) ≥ degY f ∗(x, Y ) − |R| ≥ lq − lν ≥ lq − kν holds except if
f ∗′(x, Y ) ≡ 0. On the other hand,

f ∗′(x, Y ) = −l(Y q − Y )l−1 + f ′
1(x, Y )(Y q − Y )l−1 − (l − 1)f1(x, Y )(Y q − Y )l−2 + . . .

. . . − fl−1(x, Y ) + f ′
l (x, Y ),

and since deg f ′
i < iν, then deg f ∗′ < max{iν + (l − i)q : 0 ≤ i ≤ l} ≤ (l − 1)q + ν. As

ν(k + 1) ≤ q, lq − kν < (l − 1)q + ν can not hold. Thus f ∗′ ≡ 0, which means that
f ∗(x, Y ) ∈ GF(q)[Y p]. As kν < p, we see that the terms of f ∗(x, Y ) are of form Y qi+j

where 0 ≤ i ≤ k − l and 0 ≤ j < p, thus only j = 0 occurs. This means that

f ∗(x, Y ) = Y lq + a1Y
(l−1)q + . . . + al

with proper ai ∈ GF(q) (i.e., f ∗(x, Y ) ∈ GF(q)[Y q] and it has degree l). Since yq = y for
every y ∈ GF(q), then f ∗(x, Y ) may have only l different zeros. Nevertheless, f ∗(x, Y ) has
lq zeros altogether (summing up the multiplicities), but each distinct zero has multiplicity
at most q − k + l. Therefore lq ≤ l(q − k + l). This can only happen if l = 0 or l = k. In
the first case f(x, Y ) = (Y q − Y )k, thus every point on the line X = x is covered exactly
k-times, while in the latter case f(x, Y ) = f ∗(x, Y ) and we find k points on the vertical
line X = x that are covered q-times. Thus the lemma is proven. ¤

Remark 4.2. Note that the two possibilities on the structure of the set of lines in the
above lemma are essentially the same: if we view AG(2, q) inside PG(2, q), then we see
that our line-set consists of the lines intersecting a fixed line l in one of k fixed points.
This line l may be the line at infinity or an affine line as well.

Remark 4.3. A similar result can be obtained using the results on weighted multiple
blocking sets. E.g., in PG(2, p) one can do the following: give weight k to the ν exceptional
vertical lines and the line at infinity. Then our line-set is a weighted k-fold covering set,
hence we may apply Result 3.14 to its dual in PG(2, p) to deduce the same result, provided
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that (ν + 1)k < (p + 2)/2. Note that in the actual application of Lemma 4.1 this bound is
also satisfied.

Proof of Theorem 2.4 in case of q = p.

We assume 2 ≤ t <
√

p/2. Recall that the points and lines with large index (which are
T -complete) form a subplane, which must be degenerate as we are in PG(2, p), and that
the number of T -complete points (and lines) is at most t; moreover, bad lines are blocked
by points with large index (see Propositions 3.7, 3.8, 3.9, 3.11).

Case 1: there are no points or lines with large index. Then every line is good, hence
intersects P0 in exactly t points. But then counting the points of P0 through the lines
incident with a point inside or outside P0 we get that |P0| = 1 + (t − 1)(q + 1) and
|P0| = (q + 1)t, a contradiction.

Case 2: the points and lines with large index form a subplane of type π1. Then there
exists an incident point-line pair (P, l), both having large index, such that every line with
large index goes through P and dually, every point with large index lies on l. Take a line
l through P with small index. Then every point Q on l except P is good (since the bad
ones are blocked by the lines with large index, each of which intersects l in P ), hence
there are exactly t T -lines through it. Thus there are t − 1 T -lines through Q different
from PQ. We may choose the coordinate system in such a way that the line at infinity
has large index and P is the common point of vertical lines. Then the non-vertical T -lines
cover all the points of the affine plane exactly t − 1 times, except possibly the points of
t − 1 vertical lines with large index.

Applying Lemma 4.1 for the above situation, we get that there is a unique line with large
index that contains t − 1 T -complete points (besides P ) and that every point out of this
line is good. Thus this line is the only line that has more than one bad point on it, i.e.,
this line is l. It follows from duality that P is the only point with large index and it
has t − 1 T -complete lines through it (besides l). It is straightforward to see that this
construction is what we get from Construction 1 starting with a degenerate subplane of
type π1.

Case 3: the points and lines with large index form a subplane of type π2. Denote the
points with large index by P1, . . . , Pk (k ≤ t) in such a way that P2, . . . , Pk all lie on a
line l, but P1 /∈ l. Here k 6= 2 may be assumed, as otherwise the degenerate subplane in
question is of type π1 as well.

Pick a point P on l with small index and denote by c the number of T -points on the
line PP1 besides P and P1. Counting the elements of P0 from P we get that |P0| =
q +1+(t−1)(q−1)+ c+1 (⋆), as there are q +1 T -points on l, t−1 further T -points on
the q−1 good lines through P not incident with P1 and c+1 more points on the line PP1

(note that by Proposition 3.9 the only possibly bad lines through P are l and PP1). This
implies that c must be independent from the choice of P . Counting the T -points via the
lines passing through P1 we get that |P0| = 1+(k−1)(q−1)+(q+1)+c(q+1−(k−1)) (⋆⋆).
Rearranging the equation obtained from (⋆) and (⋆⋆) we get c(k− 2) = (c+ k− t)(q− 1).

If k = 1, then −c = (c + 1 − t)(q − 1), hence by c ≤ q − 1 we get either c = 0 and t = 1,
or c = q − 1 and t = q + 1. The latter case is out of interest, the first case corresponds to
a 1-good complete subplane of type π2.
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If k ≥ 3, then by c ≤ q− 1, we need to have k− 2 ≥ c + k− t, hence c ≤ t− 2. Using this
and k ≤ t, we get that (c+k− t)(q− 1) = c(k− 2) ≤ (t− 2)2 < q− 1 by the assumptions.
Hence the only possibility is that c+ k− t = 0, whence c = 0 and k = t follows. It is easy
to see that this implies that the pair (P0,L0) is exactly the complete degenerate subplane
of type π2 spanned by the t points with large index. ¤

5. Concluding remarks

Theorem 2.4 describes all (q + 1 − t, 6)-graphs that can be obtained from PG(2, q) using
the method in question if t is small enough. It should be emphasized however that we were
looking for induced subgraphs of the incidence graph of the projective plane. Recently
Araujo-Pardo and Balbuena [3] considered non induced subgraphs as well (that is, one
is allowed to delete incidences from the plane, not only points and lines). They found a
structure of size tq + 3, that, if deleted, results in a construction that is better by 2 than
Construction 1. However, when q is square, still Construction 2 seems to be the best one.
Investigating the non induced case would be interesting.

Analyzing this method in generalized polygons is also of interest and seems to be difficult;
partial results for generalized quadrangles were obtained by Beukemann and Metsch in
[6].

Regarding the bounds on t in Theorem 2.4, we may consider the following two construc-
tions. A unital is a set U of q

√
q + 1 points such that every line intersects U in one or√

q + 1 points. Unitals exist in PG(2, q) for all square prime power q. Through every
point P /∈ U there are exactly

√
q+1 tangent lines to U . Thus the points and the tangent

lines of U form a (
√

q + 1)-good structure. An (n,
√

q)-arc is a set of n points such that

every line intersects it in at most
√

q points. For n =
√

q
(

q −√
q + 1

)

, (n,
√

q)-arcs exist
in PG(2, q) iff q is an even square prime power. Every line intersects such an arc K in
zero or

√
q points, and through every point P /∈ K there are exactly

√
q lines skew to K.

Hence the points and the skew lines of K form a
√

q-good structure.

The above two t-good structures are different from Constructions 1 and 2, which shows
that some upper bound on t in Theorem 2.4 is needed. Note that if q = p2, then the
above two structures are p + 1 and p-good, respectively, whereas the bound t ≤ √

p/2 is
violated. However, the latter case is not at all general, as it works only in PG(2, 4). It
might be true though, that the condition t ≤ p is necessary for larger powers of p.

Question: Does there exist a p + 1-good structure in PG(2, ph) for some prime p and
arbitrarily large h that is not a complete subplane nor the union of p + 1 disjoint Baer
subplanes?
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