ON RINGS SATISFYING CERTAIN POLYNOMIAL IDENTITIES

I. Gy. Maurer

Mathematical Institute of the Hungarian Academy of Sciences, H-1053 Budapest, Reáltanoda u. 13-15, Hungary.

J. Szigeti

Mathematical Institute, University of Miskolc, H-3515 Miskolc-Egyetemváros, Hungary.

Received August 1989

AMS Subject Classification: 16 A 38, 16 A 70

Keywords: Jacobson's identity of rings, (m,n)-Boolean ring, free ring

Abstract: Let $m > n \ge 1$ be natural numbers such that m - n is odd; we prove that the identity $x^m = x^n$ implies $x^{m-n+1} = x$ in rings with unity. Moreover we describe the free ring corresponding to $x^n = x$, where $n = 2^t$.

1. Preliminaries

During the last forty years the investigation of rings with polynomial identitities became a very important branch of ring theory. The

Research (partially) supported by Hungarian National Foundation for Scientific Research grant no. 1813.

pioneering papers are due to Jacobson ([3], [4]). He proved that a ring satisfying $x^n = x$ ($n \ge 2$) is commutative (in fact he proved a stronger version of this result). In the present note we introduce the notion of (m,n)-Boolean rings by generalizing Jacobson's above identity. The structure of (m,n)-Boolean rings heavily depends on the parity of the difference m-n. Our main result is a reduction theorem for the odd case. Another reduction theorem for the $x^n = x$ ($n \ge 2$) case will be also stated. Finally, in the $n = 2^t$ case we describe the free ring statisfying $x^n = x$.

2. Reduction theorems for (m,n)-Boolean rings

Given two natural numbers $m > n \ge 1$, a ring R is said to be (m,n)-Boblean if $x^m = x^n$ for all $x \in R$.

Theorem 2.1. Let R be an (m,n)-Boolean ring with unity, where m-n is odd. Then R is (m-n+1,1)-Boolean (and by Jacobson's well-known theorem we also get the commutativy of R).

Proof. On applying $x^m = x^n$ to $x = -1_R$ we obtain $1_R + 1_R = 0$, i.e. that 2x = 0 for all $x \in R$. Now we prove that R has no nilpotent element. Let $k \geq 2$ be an integer and suppose that $x^k = 0$ and $x^{k-1} \neq 0$ for a nilpotent $x \in R$. Using the binomial theorem, $(1_R + x^{k-1})^m = (1_R + x^{k-1})^n$ gives that $1_R + mx^{k-1} = 1_R + nx^{k-1}$, whence we get $(m-n)x^{k-1} = 0$. The odd parity of m-n gives that $x^{k-1} = (m-n)x^{k-1} = 0$, a contradiction. The absence of nilpotent elements enables us to use a theorem of Andrunakievich and Rjabuhin (see [1]). According to this theorem R is a subdirect product of domains (i.e. not necessarily commutative rings without zero divisors) R_i ($i \in I$). Since R_i is a factor of R, the identity $x^m = x^n$ remains true in R_i . But it can easily be seen that in a domain $x^m = x^n$ implies $x^{m-n+1} = x$. Hence any subdirect product of the rings R_i ($i \in I$) will also satisfy $x^{m-n+1} = x$. \diamondsuit

Remark. In the case of even m-n we cannot expect such a reduction theorem. For instance \mathbb{Z}_{12} and the ring of 2×2 upper triangular matrices over a Boolean ring are examples of (4,2)-Boolean rings, the former has

a nilpotent element and the latter is non-commutative.

Theorem 2.2. An (n,1)-Boolean ring R is $(n^*,1)$ -Boolean, where $n^*-1=l.c.m.\{p^k-1|p \text{ is prime, } p^k-1 \text{ is a divisor of } n-1\}.$

Remark. The authors believe that this result is not essentially new, however we were not able to find a reference. Related investigations can be found in [2], [6] and [7].

Proof. We can proceed similarly to the proof of Th. 2.1. A domain satisfies $x^n = x$ if and only if it is a finite field of the form $GF(p^k)$, where $p^k - 1$ is a divisor of n - 1. This result is explicit in [6] and in [5]. Since each subdirect factor R_i of R satisfies $x^{n^*} = x$, we get that their subdirect product R will also satisfy the same identity. \diamondsuit

Remark. An immediate application of Th. 2.1. and Th. 2.2. can give the following reduction result. Let R be a (16,11)-Boolean ring with unity, then Th. 2.1. gives (16,11) \Rightarrow (6,1), and Th. 2.2. gives (6,1) \Rightarrow (2,1), where $2 = 6^*$. Thus we get that R is a Boolean ring in the classical sense.

3. The free (2t,1)-Boolean ring

Theorem 3.1. Let $n = 2^t$, then the free (n, 1)-Boolean ring generated by a non-void set X can be obtained as the semigroup ring $\mathbb{Z}_2(S_x)$, where S_x is the free semigroup on X with defining relations $x^n = x$ and xy = yx.

Proof. Using the polynomial theorem and the well known fact that polynomial coefficients of the form $\frac{n!}{i_1!i_2!\dots i_k!}$ (where $n=2^t=i_1+i_2+\dots+i_k$ and $1\leq i_{\nu}\leq n-1$ for some ν) are even integers, we obtain that $\mathbb{Z}_2(S_x)$ satisfies $x^n=x$.

In order to prove universality let $f: X \to R$ be a set mapping with R an (n,1)-Boolean ring. Since the multiplicative semigroup R^* of R satisfies $x^n = x$ and xy = yx (by Jacobson's theorem) there is unique semigroup-homomorphic extension φ of f making the diagram (3.1) commute

Now it is easy to see that the definiton $\bar{\varphi}(\sum_{\sigma \in S_x} \bar{n}_{\sigma}\sigma) = \sum_{\sigma \in S_x} n_{\sigma}\varphi(\sigma)$ with $\bar{n}_{\sigma} = n_{\sigma} + (2) \in \mathbb{Z}_2$ is correct and gives a $\mathbb{Z}_2(S_x) \to R$ ringhomomorphism making (3.2) commute (we need 2R = 0!)

Since the subset $\bar{s}(X) \subseteq \mathbb{Z}_2(S_x)$ generates $\mathbb{Z}_2(S_x)$ as a ring, the unicity of $\bar{\varphi}$ is clear. \diamondsuit

References

- ANDRUNAKIEVICH, V. and RJABUHIN, J.M.: Rings without nilpotent elements, and completely prime ideals, Doklady Akad. Nauk USSR 180 (1968), 9-11.
- [2] AYOUB, R. and AYOUB, C.: On the commutativity of rings, Amer. Math. Monthly 71 (1964), 267 - 271.
- [3] JACOBSON, N.: Structure theory for algebraic algebras of bounded degree, Ann. of Math. 46 (1945), 695 - 707.
- [4] JACOBSON, N.: Structure of rings, Amer. Math. Soc. Colloq. Publ. 37, Providence, 1964.

- [5] VAN LEEUWEN, L.C.A.: A note on primitive classes of arithmetic rings, Publs. Math. (Debrecen) 23 (1976), 41 - 43.
- [6] LUH, J.: On the structure of J-rings, Amer. Math. Monthly 74 (1976), 163 166.
- [7] MICHLER, G. and WILLE, R.: Die primitiven Klasse arithmetischer Ringe, Math. Z. 113 (1979), 369 - 372.