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Abstract: Let m>n> 1 be natural numbers such that m-n is odd; we prove
that the identity 2™ = z" implies z™ ™!

Moreover we describe the free ring corresponding to 2™ = z, where n=2°.

= T in rings with unity.

1. Preliminaries

During the last forty years the investigation of rings with polyno-
mial identitities became a very important branch of ring theory. The
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pioneering papers are due to Jacobson ([3], (4]). He proved that a ring
satisfying z™ = z (n > 2) is commutative (in fact he proved a stronger
version of this result). In the present note we introduce the notion of
(m,n)-Boolean rings by generalizing Jacobson’s above identity. The
structure of (m,n)-Boolean rings heavily depends on the parity of the
difference m — n. Our main result is a reduction theorem for the odd
case. Another reduction theorem for the z” = z (n > 2) case will
be also stated. Finally, in the n = 2*' case we describe the free ring
statisfying 2™ = 2.

2. Reduction theorems for (m,n)-Boolean rings

Given two natural numbers m > n > 1, a ring R is said to be
(m,n)-Bodlean if ™ = 2™ for all z € R.

Theorem 2.1. Let R be an (m,n)-Boolean ring with unity, where m—n
is odd. Then R is (m—n+1,1)-Boolean (and by Jacobson’s well-known
theorem we also get the commutativy of R).

Proof. On applying z™ = z" to z = —1g we obtain 1g + 1g = 0,
i.e. that 2z = 0 for all z € R. Now we prove that R has no nilpotent
element. Let k > 2 be'an integer and suppose that 28 =0andz* ' #0
for a nilpotent z ¢ R. Using the binomial theorem, (1g+z*7')™ =
=(1r+ z"_l)" gives that 1g + mz*~! = 1p +nz*!, whence we get
(m —n)z*¥~! = 0. The odd parity of m —n gives that zk-1 =
= (m—n)z*~! =0, a contradiction. The absence of nilpotent elements
enables us to use a theorem of Andrunakievich and Rjabuhin (see [1]).
According to this theorem R is a subdirect product of domains (i.e. not
necessarily commutative rings without zero divisors) R; (i € I). Since
R; is a factor of R, the identity z™ = z™ remains true in R;. But it
can easily be seen that in a domain z™ = z" implies 2™ ™! = z.
Hence any subdirect product of the rings R; (i € I) will also satisfy
am~vl =g, O

Remark. In the case of even m —n we cannot expect such a reduction
theorem. Forinstance Z;; and the ring of 2x2 upper triangular matrices
over a Boolean ring are examples of (4,2)-Boolean rings, the former has
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a nilpotent element and the latter is non-commutative.

Theorem 2.2. An (n,1)-Boolean ring R is (n*,1)-Boolean, where
n* — 1= Lem{p* — 1|p is prime, p* — 1 is a divisor of n — 1}.

Remark. The authors believe that this result is not essentially new,
however we were not able to find a reference. Related investigations
can be found in (2], [6] and [7].

Proof. We can proceed similarly to the proof of Th. 2.1. A domain
satisfies z" — 2 if and only if it is a finite field of the form GF(p*),
where p* — 1 is a divisor of n — 1. This result is exphc1t in [6] and in
[5]. Since each subdirect factor R; of R satisfies 2" = z, we get that
their subdirect product R will also satisfy the same 1dcnt1ty ¢

Remark. An immediate application of Th. 2.1. and Th. 2.2. can give
the following reduction result. Let R be a (16,11)-Boolean ring with
unity, then Th. 2.1. gives (16,11) = (6,1), and Th. 2.2. gives (6,1)
= (2,1), where 2 = 6*. Thus we get that R is a Boolean ring in the
classical sense.

3. The free (2¢,1)-Boolean ring

Theorem 3.1. Let n = 2¢, then the free (n,1)-Boolean ring generated
by a non-void set X can be obtained as the semigroup ring Z5(S.),
where S, is the free semigroup on X with defining relations z" = z and
zy = yz.

Proof. Using the polynomial theorem and the well known fact that
polynomial coefficients of the form 75— (where n = 2t =1 +1i3+
+...4+1gand 1 <i, <n—1 for some v) are even integers, we obtain
tha.t Z,(S;) satisfies z" = z.

In order to prove universality let f : X — R be a set mapping with
R an (n,1)-Boolean ring. Since the multiplicative semigroup R* of R
satisfies ™ = z and zy = yz (by Jacobson’s theorem) there is unique
semigroup-homomorphic extension ¢ of f making the diagram (3.1)
commute
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1) L

Now it is easy to see that the definiton @( Y, 7.,0) = Y n.¢(o)
oES, cES:

with fi;, = n, + (2) € Z; is correct and gives a Z3(S:) — R ring-
homomorphism making (3.2) commute (we need 2R = 0!)

22(52]

Since the subset 3(X) C Z,(S.) generates Z3(S.) as a ring, the unicity
of @ is clear. ¢
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