CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

JENÖ SZIGETI On limits and colimits in the Kleisli category

Cahiers de topologie et géométrie différentielle catégoriques, tome 24, n° 4 (1983), p. 381-391.

http://www.numdam.org/item?id=CTGDC_1983_24_4_381_0

© Andrée C. Ehresmann et les auteurs, 1983, tous droits réservés.

L'accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON LIMITS AND COLIMITS IN THE KLEISLI CATEGORY

by Jenö SZIGETI

1. INTRODUCTION.

Given a triple (monad) $\mathbf{R} = (R, \alpha, \beta)$ on the category $\mathfrak{A}^{\mathbf{R}}$ and the Kleisli ard constructions of the Eilenberg-Moore category $\mathfrak{A}^{\mathbf{R}}$ and the Kleisli category $\mathfrak{A}_{\mathbf{R}}$ are well known. The computation of $\mathfrak{A}^{\mathbf{R}}$ -limits easily can be derived from the computation of the corresponding \mathfrak{A} -limits. On the other hand the case of $\mathfrak{A}^{\mathbf{R}}$ -colimits proved to be far more complicated. The various $\mathfrak{A}^{\mathbf{R}}$ -colimits (and $\mathfrak{A}(R)$ -colimits of *R*-algebras) were thoroughly investigated in a lot of papers (e.g. in [1-3, 5, 9, 10]). In this way the raising of the similar questions for the Kleisli category $\mathfrak{A}_{\mathbf{R}}$ is quite natural. This paper makes an attempt to get closer to the problem of the completeness and the cocompleteness of $\mathfrak{A}_{\mathbf{R}}$. The canonical functor $S: \mathfrak{A}_{\mathbf{R}} \to \mathfrak{A}^{\mathbf{R}}$ will play a central role in our development. It will be proved in 2 that -|S| is equivalent to the cocompleteness of $\mathfrak{A}_{\mathbf{R}}$ under certain circumstances. In 3 we shall use the assumption S -| in order to prove completeness for $\mathfrak{A}_{\mathbf{R}}$. Mention must be made that these results are powerless in concrete instances. One can regard them as an alternative approach to the problem.

Part 4 deals with the existence of a left adjoint to R, where R is the base functor of some R. The main result of 4 states that if \mathfrak{A} has coequalizers of all pairs then the relative adjointness $\frac{1}{R}$ R is equivalent to -|R.

2. COCOMPLETENESS.

Given a triple $\mathbf{R} = (R, \alpha, \beta)$ on the category \mathfrak{A} an adjoint pair $F \rightarrow U$ consisting of functors $F: \mathfrak{A} \rightarrow \mathfrak{B}, U: \mathfrak{B} \rightarrow \mathfrak{A}$ with unit $\epsilon: I_{\mathfrak{A}} \rightarrow U \circ F$ and counit $\delta: F \circ U \rightarrow I_{\mathfrak{R}}$ is said to be an R-adjunction on \mathfrak{A} if

$$R = U \circ F$$
, $\alpha = \epsilon$ and $\beta = U \delta F$.

J. SZIGETI 2

The Kleisli category \mathfrak{A}_R of R is defined in the following manner (cf. [8, 11, 12]). Objects are the same as in \mathfrak{A} , namely $|\mathfrak{A}_R| = |\mathfrak{A}|$. A morphism $r: a \to a'$ in \mathfrak{A}_R (the notation \to for \mathfrak{A}_R -arrows will be used throughout this paper) is given by an \mathfrak{A} -morphism $r: a \to Ra'$. The $a \to a$ unit in \mathfrak{A}_R is $\alpha_a: a \to Ra$ and the \mathfrak{A}_R -composition ∇ for

 $a \xrightarrow{r} a' \xrightarrow{r'} a''$

is given by $r' \nabla r = \beta_{a''} \circ (Rr') \circ r$. The functors of the Kleisli R-adjunction

$$F_{\mathbf{R}}: \mathbf{C} \to \mathbf{C}_{\mathbf{R}}$$
 and $U_{\mathbf{R}}: \mathbf{C}_{\mathbf{R}} \to \mathbf{C}$

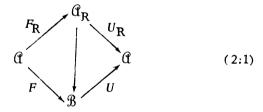
are defined by

$$a \xrightarrow{f} a' \xrightarrow{F_{R}} a \xrightarrow{\alpha_{a'} \circ f} a' \text{ and } a \xrightarrow{r} a' \xrightarrow{U_{R}} R a \xrightarrow{\beta_{a'} \circ R r} R a'$$

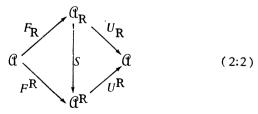
 $U_{\mathbf{R}}$ is faithful since $U_{\mathbf{R}}r$ uniquely determines r by

 $(U_{\mathbf{R}} r) \circ \alpha_{a} = \beta_{a} \circ (\mathbf{R} r) \circ \alpha_{a} = \beta_{a'} \circ \alpha_{\mathbf{R} a} \circ r = l_{\mathbf{R} a} \circ r = r.$

The well known initiality of the Kleisli R-adjunction means that any Radjunction $F \rightarrow U$ involves a unique $\mathfrak{A}_{\mathbb{R}} \rightarrow \mathfrak{B}$ functor making (2:1) commute.



Take $F \dashv U$ to be the Eilenberg-Moore R-adjunction with $F^{R}: \mathfrak{A} \to \mathfrak{A}^{R}$, and $U^{R}: \mathfrak{A}^{R} \to \mathfrak{A}$, then there is a unique $S: \mathfrak{A}_{R} \to \mathfrak{A}^{R}$ such that (2:2) commutes:



The existence and the uniqueness of such a functor S also follow from the terminal property of the Eilenberg-Moore R-adjunction. A more explicit

definition for S is the following

 $a \xrightarrow{r} a' \xrightarrow{S} \langle R a, \beta_a \rangle \xrightarrow{\beta_a, \circ R r} \langle R a', \beta_a, \rangle$

 $U^{\mathbf{R}} \circ S = U_{\mathbf{R}}$ implies that S is faithful just as $U_{\mathbf{R}}$.

2.1. PROPOSITION. Let $\mathfrak{A}_{\mathbf{R}}$ have coequalizers of all pairs (with a common coretraction) then S has a left adjoint.

PROOF. Since $F_{\mathbf{R}} + U_{\mathbf{R}} = U^{\mathbf{R}} \circ S$ an application of Johnstone's adjoint lifting theorem can give + S ($\mathfrak{A}_{\mathbf{R}}$ can be regarded as $\mathfrak{A}_{\mathbf{R}}^{1}$, where 1 is the trivial triple on $\mathfrak{A}_{\mathbf{R}}$). //

The question of \mathfrak{A}_R -coproducts doesn't cause difficulties.

2.2. PROPOSITION. Let \mathfrak{A} have coproducts then $\mathfrak{A}_{\mathbf{R}}$ has coproducts.

PROOF. For the objects $a_i \in |\mathbb{C}_R|$ $(i \in I)$ let $p_i : a_i \to x$ $(i \in I)$ be an \mathbb{C} -coproduct, then $a_x \circ p_i : a_i \longrightarrow x$ $(i \in I)$ will be the required \mathbb{C}_R -coproduct. //

In (2.3) a certain converse of Proposition (2.1) will be established.

2.3. THEOREM. Let \mathfrak{A} be cocomplete (with an initial object), \mathfrak{A}^{R} have coequalizers of all pairs (with a common coretraction) and suppose that each partial R-algebra admits a free completion in $\mathfrak{A}(R)$ (consequently $\mathfrak{A}(R)$ has free algebras). If S has a left adjoint then \mathfrak{A}_{R} is cocomplete.

To prove the above theorem we need the following lemma.

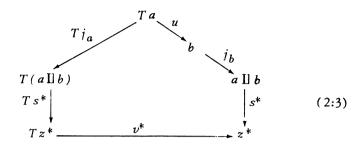
2.4. LEMMA. Let \mathfrak{A} have finite coproducts and suppose that each partial *T*-algebra admits a free completion in $\mathfrak{A}(T)$ (apart from this $T: \mathfrak{A} \to \mathfrak{A}$ is arbitrary). Then the canonical embedding functor $B^T: \mathfrak{A}(T) \to (T \downarrow l_{\mathfrak{A}})$ has a left adjoint.

PROOF. For an object $u: T a \rightarrow b$ in $(T \nmid 1_{\mathcal{A}})$ consider the following partial T-algebra

$$T(a \amalg b) \stackrel{T_{j_a}}{\longleftarrow} Ta \stackrel{u}{\longrightarrow} b \stackrel{j_b}{\longrightarrow} a \amalg b,$$

where i_a and i_b are coproduct injections. The free completion (2:3) of this partial *T*-algebra in $\mathfrak{A}(T)$ immediately yields an initial object in the

comma category $(T a \xrightarrow{u} b \not B^T)$. //



PROOF OF (2.3). Since \mathfrak{A}_R has coproducts by (2.2) we have to deal only with coequalizers. Consider a set $r_i: a \rightarrow a'$ ($i \in I$) of parallel \mathfrak{A}_R -morphisms. Form the coequalizer

$$a \xrightarrow{r_i} R a' \xrightarrow{e} x$$

in \mathfrak{A} and let (2:4) represent an initial object in

$$(Ra' \xrightarrow{e} x \downarrow B^R \circ E^R \circ S),$$

where

$$\mathcal{C}^{\mathbf{R}} \xrightarrow{E^{\mathbf{R}}} \mathcal{C}(\mathbf{R}) \text{ and } \mathcal{C}(\mathbf{R}) \xrightarrow{B^{\mathbf{R}}} (\mathbf{R} \downarrow \mathbf{1}_{\mathcal{C}})$$

are canonical embeddings

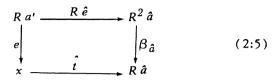
$$\begin{array}{c|c} R & a' & \underline{R e^{*}} & R^{2} a^{*} \\ e & & & & & & \\ x & \underline{t^{*}} & & & & & \\ \end{array}$$

The existence of this initial object is clear since $\dashv B^R$ by (2.4) and $\dashv E^R$ by the assumptions that \mathfrak{A}^R has coequalizers of all pairs (with a common coretraction) and that $\mathfrak{A}(R)$ has free algebras (Johnstone's adjoint lifting Theorem works again because of the free *R*-algebra adjunction is always monadic). We claim that $e^*: a' \longrightarrow a^*$ is the \mathfrak{A}_R -coequalizer of the morphisms r_i ($i \in I$). (2.4) proves that

$$e^* \nabla r_i = t^* \circ e \circ r_i = t^* \circ e \circ r_m = e^* \nabla r_m$$

for all *i*, $m \in I$. Suppose that $\hat{e} \nabla r_i = \hat{e} \nabla r_m$ (*i*, $m \in I$) for an \mathcal{C}_R -morphism $\hat{e}: a' \longrightarrow \hat{a}$. The \mathcal{C} -coequalizer property of *e* gives a unique $\hat{t}: x \to R \hat{a}$

making (2:5) commute



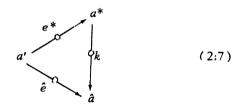
Now

$$\langle \hat{e}, \hat{t} \rangle : \langle a', e, x \rangle \rightarrow B^R E^R S \hat{a}$$

is in $(R \downarrow 1_{\hat{\mathcal{A}}})$, so there exists a unique $k: a^* \to \hat{a}$ in $\hat{\mathcal{A}}_{\mathbf{R}}$ such that (2:6) commutes.

$$< a', e, x> < \hat{e}, \hat{t} > B^{R} E^{R} S a^{*} B^{R} E^{R} S k \quad (2:6) B^{R} E^{R} S \hat{a}$$

Using the facts that S is faithful and e is epimorphic in $\hat{\mathbb{C}}$ one can easily obtain that (2:6) and (2:7) are equivalent for a $k : a^* \longrightarrow \hat{a}$. //



3. COMPLETENESS.

3.1. THEOREM. Let \mathfrak{A} be complete and suppose that S has a right adjoint, then $\mathfrak{A}_{\mathbf{R}}$ is complete.

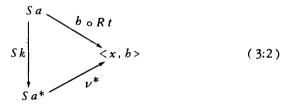
PROOF. Given a functor $D: \mathfrak{D} \to \mathfrak{A}_{\mathbb{R}}$ observe that an $\mathfrak{A}_{\mathbb{R}}$ -cone $\xi: a \longrightarrow D$ is the same thing as an \mathfrak{A} -cone $\xi: a \to U_{\mathbb{R}} \circ D$ and vice versa.

If $q: x \to U_{\mathbb{R}} \circ D$ is a limit cone in \mathfrak{A} then there is a unique $h: \mathbb{R}x \to x$, making the diagram (3:1) commute.

The adjointness $S \rightarrow \forall$ yields a terminal object $\nu^* : Sa^* \rightarrow \langle x, b \rangle$, in $(S \not\mid \langle x, b \rangle)$. We claim that

$$\xi^*: a^* \xrightarrow{\alpha_a^*} R a^* \xrightarrow{\nu^*} x \xrightarrow{q} U_{\mathbf{R}} \circ D$$

is an $\mathfrak{A}_{\mathbb{R}}$ -limit cone for D. Let $\xi: a \longrightarrow D$ be a cone, then there is a unique $t: a \rightarrow x$ with $q \circ t = \xi$. Easily it can be seen that $b \circ R t: S a \rightarrow \langle x, b \rangle$ is a morphism in $\mathfrak{A}^{\mathbb{R}}$, so there exists a unique $k: a \longrightarrow a^*$ making (3:2) commute.

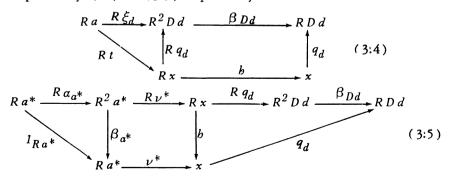


(3:1) makes q to be $a < x, b > \rightarrow S \circ D$ limit cone in $\mathbb{C}^{\mathbb{R}}$, consequently for a morphism $k: a \longrightarrow a^*$ (3:2) is equivalent to (3:3).

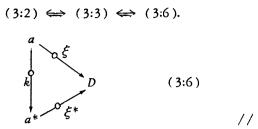
$$Sa \qquad b \circ Rt \\ Sk \qquad \langle x, b \rangle \xrightarrow{q} S \circ D , \qquad (3:3)$$

 $a \xrightarrow{\xi_d} Dd \xrightarrow{S} Sa \xrightarrow{q_d \circ b \circ Rt} SDd \text{ and } a^* \xrightarrow{\xi_d^*} Dd \xrightarrow{S} Sa^* \xrightarrow{q_d \circ \nu^*} SDd$

are proved by (3:4) and (3:5) respectively.



Since S is faithful we obtained that for a $k: a \longrightarrow a^*$:



3.2. THEOREM. Let \mathfrak{A}_R have coequalizers of all sets of parallel morphisms and suppose that $U_R : \mathfrak{A}_R \to \mathfrak{A}$ preserves these coequalizers, then S has a right adjoint.

PROOF. At first we prove that $h: Sx \to \langle x, h \rangle$ is a weak terminal object in $(S \not\mid \langle x, h \rangle)$. For an object $\nu: Sa \to \langle x, h \rangle$ in $(S \not\mid \langle x, h \rangle)$ define the morphism $k: a \longrightarrow x$ in $\mathcal{C}_{\mathbf{R}}$ as

$$a \xrightarrow{\alpha_u} R a \xrightarrow{\nu} x \xrightarrow{\alpha_x} R x.$$

Clearly (3:7) commutes since $b \circ R \nu = \nu \circ \beta_a$.

$$\begin{array}{c}
 Sa \\
 Sk \\
 Sx \\
 b
 \end{array} (3:7)$$

Let $e^*: x \longrightarrow a^*$ be the $G_{\mathbb{R}}$ -coequalizer of those morphisms $r: x \longrightarrow x$ for which $b \circ (Sr) = b$. Now

$$U_{\mathbf{R}} x \xrightarrow{U_{\mathbf{R}} r} U_{\mathbf{R}} x \xrightarrow{U_{\mathbf{R}} e^*} U_{\mathbf{R}} a^*$$

is a coequalizer diagram in \mathfrak{A} by the preservation property of $U_{\mathbf{R}}$. $RU_{\mathbf{R}}e^*$ is also a coequalizer since $R = U_{\mathbf{R}} \circ F_{\mathbf{R}}$ and $F_{\mathbf{R}}$ preserves coequalizers by $F_{\mathbf{R}} \neq U_{\mathbf{R}}$. Thus $RU_{\mathbf{R}}e^*$ is proved to be an epimorphism. Accordingly, (3:8) is a coequalizer diagram in $\mathfrak{A}^{\mathbf{R}}$, i.e. S preserves the above mentioned (and any other) coequalizer.

Since $b \circ (Sr) = b$ for all the considered «r»'s there exists a unique ν^* : $Sa^* \rightarrow \langle x, b \rangle$ in $\mathbb{C}^{\mathbb{R}}$ with $\nu^* \circ (Se^*) = b$. A standard terminal object

J. SZIGETI 8

$$\begin{array}{c|c} U_{\mathbf{R}} x & \xrightarrow{U_{\mathbf{R}} r} & U_{\mathbf{R}} x & \xrightarrow{U_{\mathbf{R}} e^{*}} & U_{\mathbf{R}} a^{*} \\ & \vdots & & & & & \\ \beta_{x} & & \vdots & & & & \\ R U_{\mathbf{R}} x & \xrightarrow{\vdots} & R U_{\mathbf{R}} r & R U_{\mathbf{R}} x & \xrightarrow{R U_{\mathbf{R}} e^{*}} R U_{\mathbf{R}} a^{*} \end{array}$$
(3:8)

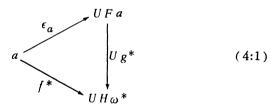
argument can prove that ν^* : $Sa^* \rightarrow \langle x, b \rangle$ is terminal in $(S \not\mid \langle x, b \rangle)$. //

3.3. COROLLARY. Let \mathfrak{A} be complete, \mathfrak{A}_R have coequalizers of all sets of parallel morphisms and suppose that U_R preserves these coequalizers, then \mathfrak{A}_R is complete. //

4. LEFT ADJOINTS BY DENSITY.

We start this part with two simple but extremely powerful lemmas. 4.1. LEMMA. Let $H: \mathcal{H} \to \mathcal{B}$ be a functor and $F: \mathcal{A} \to \mathcal{B}$, $U: \mathcal{B} \to \mathcal{A}$ be the functors of an adjoint pair $F \to U$ with unit $\epsilon: 1_{\mathcal{A}} \to U \circ F$. Suppose that $(a \downarrow U \circ H)$ has an initial object, then there exists an initial object in $(F a \downarrow H)$.

PROOF. If $f^*: a \to UH\omega^*$ is initial in $(a \nmid U \circ H)$, then $\langle H\omega^*, f^* \rangle$ is in $(a \nmid U)$. The initial property of $\epsilon_a: a \to UFa$ gives a unique morphism $g^*: Fa \to H\omega^*$ in \mathcal{B} making (4:1) commute.



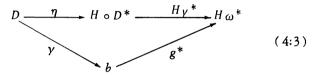
Clearly $\langle \omega^*, g^* \rangle$ is initial in $(Fa \mid H)$. //

4.2. LEMMA. Let *H* be as in (4.1), $D: \mathfrak{D} \to \mathfrak{B}$ be a functor with a colimit cocone $y: D \to b$ and suppose that $(Dd \nmid H)$ has an initial object for all $d \in |\mathfrak{D}|$. If \mathfrak{H} is \mathfrak{D} -cocomplete, then there exists an initial object in $(b \downarrow H)$. PROOF. For $d \in |\mathfrak{D}|$ let $\langle \omega(d), \eta_d \rangle$ be an initial object in $(Dd \nmid H)$ and define the functor $D^*: \mathfrak{D} \to \mathfrak{H}$ by

$$d \rightarrow d' \xrightarrow{D^*} \omega(d) \rightarrow \omega(d'),$$

where $\omega(d) \rightarrow \omega(d')$ is the unique morphism making (4:2) commute.

Thus η becomes a $D \to H \circ D^*$ natural transformation. If $\gamma^* : D^* \to \omega^*$ is a colimit cocone then there is a unique $g^* : b \to H\omega^*$ making (4:3) commute.



The purely technical details of the verification that $<\omega^*, g^*>$ is initial in $(b\downarrow H)$ are omitted. //

Now we can prove the main result of Section 4.

4.3. THEOREM. Let \mathfrak{A} have coequalizers of all pairs and $R: \mathfrak{A} \to \mathfrak{A}$ be the base functor of some triple $R = (R, \alpha, \beta)$. Suppose that R has a left adjoint relative to R, i. e. $(Ra \downarrow R)$ has an initial object for all $a \in |\mathfrak{A}|$. Then there is a left adjoint to R, namely -|R|.

PROOF. Since $R = U_R \circ F_R$ with the functors of the Kleisli R-adjunction $F_R \dashv U_R$ one can apply (4.1) in order to obtain an initial object in $(F_R R a \not\models F_R)$. $F_R R a = R a$ and

$$R a \xrightarrow{\frac{a_{Ra}}{Ra_{a}}} R a \xrightarrow{\frac{1_{Ra}}{Ra_{a}}} a$$

is a coequalizer diagram in \mathcal{C}_R , so (4.2) gives an initial object in $(a \nmid F_R)$. Thus $\dashv F_R$ and $\dashv U_R$ implies $\dashv R$. //

4.4. COROLLARY. Let \mathfrak{A} have coequalizers of all pairs and $R: \mathfrak{A} \to \mathfrak{A}$ be the base functor of some triple $\mathbf{R} = (R, \alpha, \beta)$. Suppose that for each object $a_{\epsilon} | \mathfrak{A} |$ there is an integer $n \ge 1$ such that $(R^n a | R)$ has an initial object. Then there is a left adjoint to R, namely | R. //

J. SZIGETI 10

To illustrate the force of Lemmas 4.1 and 4.2 we give a very simple proof for an important theorem due to \mathbb{V} . Tholen (see in [15]).

4.5. THEOREM. Let H, F, U be as in (4.1) with counit δ : $F \circ U \rightarrow 1$ g. If (i) or (j) holds, then - H is equivalent to - U \circ H.

(i) H has coequalizers of all pairs and each δ_b ($b \in |B|$) is a regular epimorphism;

(j) H has coequalizers of all pairs with a common coretraction and each δ_b ($b \in |B|$) is a regular epimorphism with a kernel pair.

PROOF. $\dashv H \Rightarrow \dashv U \circ H$ is trivial. Set $\dashv U \circ H$. If

$$\bar{b} \xrightarrow[\pi_1]{\eta_1} FUb \xrightarrow{\delta_b} b$$

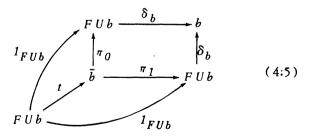
is a coequalizer in \mathscr{B} then so is (4:4) since $\delta_{\vec{h}}$ is epimorphic.

$$F U \bar{b} \xrightarrow{\pi_0 \circ \delta}_{\pi_1 \circ \delta_{\bar{b}}} F U b \xrightarrow{\delta_b} b \qquad (4:4)$$

By (4.1) there is an initial object in $(FU\bar{b}\downarrow H)$ and in $(FUb\downarrow H)$. Let $y: D \rightarrow b$ of (4.2) represent the coequalizer (4:4), then (4.2) gives an initial object in $(b\downarrow H)$. If in addition

$$\bar{b} \xrightarrow{\pi_0} FUb \xrightarrow{\delta_b} b$$

is a kernel pair, then $(FUt) \circ F \epsilon_{Ub}$ is a common coretraction of $\pi_0 \circ \delta_{\bar{b}}$ and $\pi_1 \circ \delta_{\bar{b}}$, where $t: FUb \to \bar{b}$ is the unique morphism making (4:5) commute.



Now $\gamma: D \rightarrow b$ (and consequently $\gamma^*: D^* \rightarrow \omega^*$) represents a coequalizer of a pair with a common coretraction. Essentially we proved that the full

subcategory of $\mathcal B$ consisting of all objects of the form Fa $(a \in |\mathfrak A|)$ is a dense subcategory. //

REFERENCES.

- 1. ADAMEK, J., Colimits of algebras revisited, Bull. Austr. Math. Soc. 15 (1976).
- 2. ADAMEK, J. & TRNKOVA, V., Varietors and machines, COINS Technical Report 78-6, Univ. of Mass. at Amherst (1978).
- 3. ADAMEK, J. & KOUBEK, V., Simple construction of colimits of algebras, to appear.
- ANDREKA, H., NEMETI, I. & SAIN, I., Cone injectivity and some Birkhofftype theorems in categories, Proc. Coll. Universal Algebra (Esztergom 1977), Coll. Soc. J. Bolyai, North Holland, to appear.
- 5. BARR, M., Coequalizers and free triples, Math. Z. 116 (1970).
- EILENBERG, S. & MOORE, J., Adjoint functors and triples, Ill. J. Math. 9 (1965).
- 7. JOHNSTONE, P. T., Adjoint lifting theorems for categories of algebras, Bull. London Math. Soc. 7 (1975).
- 8. KLEISLI, H., Every standard construction is induced by a pair of adjoint functors, *Proc. A. M. S.* 16(1965).
- 9. KOUBEK, V. & REITERMAN, J., Categorical constructions of free algebras, colimits and completions of partial algebras, J. Pure Appl. Algebra 14 (1979).
- LINTON, F.E. J., Coequalizers in categories of algebras, Lecture Notes in Math. 80, Springer (1969).
- 11. MACLANE, S., Categories for the working mathematician, Springer GTM 6 1971.
- 12. MANES, E.G., Algebraic Theories, Springer GTM 26, 1976.
- THOLEN, W., Adjungierte Dreiecke, Colimites und Kan-Erweiterungen, Math. Ann. 217 (1975).
- 14. THOLEN, W., On Wyler's taut lift theorem, Gen. Top. Appl. 8 (1978).
- THOLEN, W., WISCHNEWSKY, M. B. & WOLFF, H., Semi-topological functors III: Lifting of monads and adjoint functors, *Seminarberichte* 4, Fachbereich für Math., Fernuniversität Hagen (1978).
- 16. ULMER, F., Properties of dense and relative adjoint functors, J. Algebra 8 (1968).

Mathematical Institute Hungarian Academy of Sciences Reáltanoda u. 13- 15 H-1053 BUDAPEST. HONGRIE