
TWO REMARKS ON THE ADJOINT POLYNOMIAL

PÉTER CSIKVÁRI

Abstract. One can define the adjoint polynomial of the graph G as
follows. Let ak(G) denote the number of ways one can cover all vertices
of the graph G by exactly k disjoint cliques of G. Then the adjoint
polynomial of G is

h(G, x) =
n

∑

k=1

(−1)n−kak(G)xk,

where n denotes the number of vertices of the graph G. In this paper we
show that the largest real root γ(G) of h(G, x) has the largest absolute
value among the roots. We also prove that

γ(G) ≤ 4(∆ − 1),

where ∆ denotes the largest degree of the graph G. This bound is sharp.

1. Introduction

Throughout this paper we consider graphs without loops and multiple
edges. We follow the usual notations. We denote the vertex set and edge set
of the graph G by V (G) and E(G), respectively. Let NG(u) denote the set
of neighbors of the vertex u. The largest degree of the graph G is ∆. Let
G − e denote the graph obtained from G by deleting the edge e.

The adjoint polynomial of a graph G was introduced by R. Liu [10] and it
is defined as follows. Let ak(G) denote the number of ways one can cover all
vertices of the graph G by exactly k disjoint cliques of G. Clearly, an(G) = 1,
an−1(G) = e(G) is the number of edges. Then the adjoint polynomial of G

is

h(G, x) =
n

∑

k=1

(−1)n−kak(G)xk,

where n denotes the number of vertices of the graph G. We mention that in
general the adjoint polynomial is defined without the alternating signs, but
since the connection between the two forms is very trivial, it will not cause
any confusion to work with this definition. On the other hand, it will turn
out that it is much more convenient to work with this form.

Let γ(G) denote the largest real root of the polynomial h(G, x), which is
known that it exists. This parameter is studied in a few papers; H. Zhao et
al. determined the graphs with γ(G) ∈ [0, 4] ([17]) and γ(G) ∈ [4, 2 +

√
5]

2000 Mathematics Subject Classification. Primary: 05C31.
Key words and phrases. adjoint polynomial, matching polynomial.
The research was partially supported by the Hungarian National Foundation for Sci-

entific Research (OTKA), Grant no. K 81310 and K 67676.
1



2 PÉTER CSIKVÁRI

([15]). (Note that in their papers β(G) = −γ(G) with our notations since
we have changed the signs of the coefficients to alternating signs.)

Clearly, the importance of the adjoint polynomial lies in the fact that it
is strongly related to the chromatic polynomial [12]. More precisely, the
chromatic polynomial of the complement of the graph G is

ch(G, x) =
n

∑

k=1

ak(G)x(x − 1) . . . (x − k + 1).

On the other hand, it turns out that the roots of the adjoint polynomial
behave much better than that of the chromatic polynomial. By checking the
adjoint polynomial of small graphs, one may have the conjecture that they
are all real. Unfortunately, it is not true, the first counterexamples were
given by F. Brenti, G. F. Royle and D. G. Wagner [3]. They also proposed
the problem that if the edge density of the graph is large enough then the
adjoint polynomial has only real roots; this was again disproved by H. Zhao
et al. [16]. On the other hand, it is known that the adjoint polynomials of
triangle-free and comparability graphs [2, 3] have only real roots.

The adjoint polynomial just like the chromatic polynomial satisfies a cer-
tain multiplicativity property, namely

h(G1 ∪ G2, x) = h(G1, x)h(G2, x),

where G1, G2 are graphs on distinct vertex set.
To obtain a recursive formula for the adjoint polynomial we need the

following definition.

Definition 1.1. Let e = (u, v) ∈ E(G) be an edge of the graph G. We
define the graph G ∗ e as follows. We delete the vertices u and v from the
graph G and replace them by a vertex w which we connect with the vertices
NG(u) ∩ NG(v), where NG(u) and NG(v) denote the set of neighbors of the
vertex u and v, respectively.

Now we are ready to give the recursive formula for the adjoint polynomial.

Proposition 1.2. [11] Let e = (u, v) ∈ E(G) be an edge of the graph G.

Then

h(G, x) = h(G − e, x) − h(G ∗ e, x).

From Proposition 1.2 one can deduce the following theorem. This theorem
will follow from our argument as well.

Theorem 1.3. [14] The parameter γ(G) exists. Moreover, if H is a proper

subgraph of G then γ(H) ≤ γ(G).

Let Sn denote the star on n vertices. Then

h(Sn, x) = xn − (n − 1)xn−1

and so γ(Sn) = n− 1. Since S∆+1 is a subgraph of G we immediately obtain
from Theorem 1.3 that

Corollary 1.4.

γ(G) ≥ ∆.
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In this paper we prove the following two results.

Theorem 1.5. Let G be a graph and let ρ be an arbitrary root of the ad-

joint polynomial h(G, x). Let γ(G) denote the largest real root of the adjoint

polynomial. Then |ρ| ≤ γ(G).

Theorem 1.6. Let G be a graph with largest degree ∆. Let γ(G) denote the

largest real root of the adjoint polynomial of the graph G. Then

γ(G) ≤ 4(∆ − 1).

This bound is sharp.

This paper is organized as follows. In the next section we prove Theo-
rem 1.5. In the third section we prove Theorem 1.6.

2. Proof of Theorem 1.5

In this section we prove Theorem 1.5. Our strategy will be the following.
Let

h∗(G, x) = xnh(G,
1

x
)

and let us consider the power series

1

h∗(G, x)
=

∞
∑

k=0

sk(G)xk.

We will prove that for all k ≥ 1 we have sk(G) ≥ 0. The importance of this
observation lies in the fact that we can use a powerful theorem from complex
function theory, namely Pringsheim’s theorem.

Lemma 2.1 (Pringsheim’s theorem). [5] If f(z) is representable at the ori-

gin by a series expansion that has non-negative coefficients and radius of

convergence R, then the point z = R is a singularity of f(z).

By Pringsheim’s theorem the observation sk(G) ≥ 0 implies that the root
of h∗(G, x) with smallest modulus is real. This would imply that the root
of h(G, x) with largest absolute value is real. In fact, we would also obtain
that

γ(G) = lim sup
k→∞

sk(G)1/k.

To prove that sk(G) ≥ 0 we prove the following stronger theorem.

Theorem 2.2. Let H be a subgraph of the graph G. Let

h∗(H, x)

h∗(G, x)
=

∞
∑

k=0

sk(H,G)xk.

Then sk(H,G) ≥ 0. In particular, sk(K1, G) = sk(G) ≥ 0.
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Proof. We prove the statement by induction on the number of edges of G. It
is enough to prove the claim for H = G − e, since for an arbitrary spanning
subgraph H ′ = G − {e1, e2, . . . , er} we can use the identity

h∗(H ′, x)

h∗(G, x)
=

h∗(G − e1, x)

h∗(G, x)

h∗(G − {e1, e2}, x)

h∗(G − e1, x)
. . .

h∗(G − {e1, . . . er}, x)

h∗(G − {e1, . . . , er−1}, x)
.

By induction all terms except the first one have power series with non-

negative coefficients. If we prove the statement for h∗(G−e1,x)
h∗(G,x)

then the claim

is true for all spanning subgraphs.
From this we obtain the statement for arbitrary subgraph H ′ since deleting

some isolated vertices does not change h∗(H ′, x). (So first, we delete the
edges of E(G)\E(H) one by one and then delete the isolated vertices V (G)\
V (H), where H is a subgraph of G.) Hence it is enough to prove that
sk(G − e,G) ≥ 0 for all k ≥ 0.

Note that we can rewrite the statement of Proposition 1.2 as

h∗(G, x) = h∗(G − e, x) − xh∗(G ∗ e, x).

Hence
h∗(G − e, x)

h∗(G, x)
=

h∗(G − e, x)

h∗(G − e, x) − xh∗(G ∗ e, x)
=

=
1

1 − xh∗(G∗e,x)
h∗(G−e,x)

= 1 +
xh∗(G ∗ e, x)

h∗(G − e, x)
+

(

xh∗(G ∗ e, x)

h∗(G − e, x)

)2

+ . . .

Observe that G ∗ e is a subgraph of G − e and |E(G − e)| < |E(G)|, hence
by induction the power series

f =
xh∗(G ∗ e, x)

h∗(G − e, x)
=

∞
∑

k=0

sk(G ∗ e,G − e)xk+1

and so the power series fm (m ≥ 0) have only non-negative coefficients.
Hence the power series

h∗(G − e, x)

h∗(G, x)
=

∞
∑

k=0

sk(G − e,G)xk

has only non-negative coefficients. �

Corollary 2.3. Let H be a subgraph of G then sk(H) ≤ sk(G). In particular,

γ(H) ≤ γ(G).

Proof. Since

1

h∗(G, x)
=

h∗(H, x)

h∗(G, x)

1

h∗(H, x)

we immediately obtain that

sk(G) =
k

∑

j=0

sj(H,G)sk−j(H).
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Since s0(H,G) = 1 and all terms are non-negative we have sk(G) ≥ sk(H).
The second claim follows from the observation

γ(G) = lim sup
k→∞

sk(G)1/k ≥ lim sup
k→∞

sk(H)1/k = γ(H).

�

Remark 2.4. We note that we have used very little information about the
adjoint polynomial in the proof of Theorem 2.2. We only needed that we
have a recurrence relation where the subgraphs (G − e,G ∗ e) appearing in
the recursive formula are also subgraphs of each other. In a similar manner
one can prove an analogous result on the independence polynomial [4].

We also note that one can prove that the largest root of the adjoint poly-
nomial is unique: there is no other root with the same modulus as the largest
real root. We also mention that in case of a connected graph the multiplicity
of the largest root of the adjoint polynomial is one. All these statements can
be proved by following the argument of [4].

3. Proof of Theorem 1.6

In this section we prove Theorem 1.6. We remark that if we only want to
prove an inequality of type

γ(G) ≤ c∆

with an appropriate constant c, then this can be done by the method of Alan
Sokal [13] (it is also worth seeing [1]) since the argument applied to bound
the absolute values of the roots of the chromatic polynomial works for the
adjoint polynomial as well with a constant

c = inf
a

ea

log(1 + ae−a)
≈ 6.212.

We follow a bit different strategy which gives a sharp upper bound.
Our strategy will be the following. We will compare the adjoint polynomial

with a modified version of the matching polynomial [6, 7, 8, 9]. Since our
understanding of the matching polynomial is much deeper, this will enable
us to transfer information from the theory of the matching polynomial to
the theory of the adjoint polynomial.

We define the matching polynomial of the graph G as follows. Let mk(G)
denote the number of matchings of G of size k. Then the matching polyno-
mial of the graph G is

µ(G, x) =

⌊n/2⌋
∑

k=0

(−1)kmk(G)xn−2k.

It is known that all the roots of the matching polynomial are real and the
largest one is at most 2

√
∆ − 1 if ∆ ≥ 2 [6, 8]. We will use the following

modified matching polynomial:

M(G, x) =

⌊n/2⌋
∑

k=0

(−1)kmk(G)xn−k.
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Since xnµ(G, x) = M(G, x2) we can deduce that the roots of this polynomial
are non-negative real numbers, the largest one is at most 4(∆− 1). Let t(G)
denote the largest root of the modified matching polynomial M(G, x). Hence
t(G) ≤ 4(∆ − 1).

It is easy to see that for triangle-free graphs the adjoint polynomial and the
modified matching polynomial coincide. The modified matching polynomial
satisfies the following recursive formula.

Proposition 3.1. Let e = (u, v) ∈ E(G). Then

M(G, x) = M(G − e, x) − xM(G − {u, v}, x).

In what follows it will be more convenient to work with

M∗(G, x) = xnM(G,
1

x
) =

n
∑

k=0

(−1)kmk(G)xk.

The next theorem is the straightforward analogue of Theorem 2.2 for match-
ing polynomials.

Theorem 3.2. Let H be a subgraph of the graph G. Let

M∗(H, x)

M∗(G, x)
=

∞
∑

k=0

rk(H,G)xk.

Then rk(H,G) ≥ 0.

Remark 3.3. For convenience we give the proof of Theorem 3.2 which does
not differ from the proof of Theorem 2.2. We also mention that the combi-
natorial meaning of rk(G − u,G) (u ∈ V (G)) is known: it counts the closed
tree-like walks of length k in G which start at the vertex u [6].

Proof. We prove the statement by induction on the number of edges of G. It
is enough to prove the claim for H = G − e, since for an arbitrary spanning
subgraph H ′ = G − {e1, e2, . . . , er} we can use the identity

M∗(H ′, x)

M∗(G, x)
=

M∗(G − e1, x)

M∗(G, x)

M∗(G − {e1, e2}, x)

M∗(G − e1, x)
. . .

M∗(G − {e1, . . . er}, x)

M∗(G − {e1, . . . , er−1}, x)
.

By induction all terms except the first one have power series with non-

negative coefficients. If we prove the statement for M∗(G−e1,x)
M∗(G,x)

then the claim

is true for all spanning subgraphs.
From this we obtain the statement for arbitrary subgraph H ′ since deleting

some isolated vertices does not change M∗(H ′, x). Hence it is enough to prove
that rk(G − e,G) ≥ 0 for all k ≥ 0.

Note that we can rewrite the statement of Proposition 3.1 as

M∗(G, x) = M∗(G − e, x) − xM∗(G − {u, v}, x).

Hence

M∗(G − e, x)

M∗(G, x)
=

M∗(G − e, x)

M∗(G − e, x) − xM∗(G − {u, v}, x)
=
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=
1

1 − xM∗(G−{u,v},x)
M∗(G−e,x)

= 1+
xM∗(G − {u, v}, x)

M∗(G − e, x)
+

(

xM∗(G − {u, v}, x)

M∗(G − e, x)

)2

+. . .

Observe that G − {u, v} is a subgraph of G − e and |E(G − e)| < |E(G)|,
hence by induction the power series

f =
xM∗(G − {u, v}, x)

M∗(G − e, x)
=

∞
∑

k=0

rk(G − {u, v}, G − e)xk+1

and so the power series fm (m ≥ 0) have only non-negative coefficients.
Hence the power series

M∗(G − e, x)

M∗(G, x)
=

∞
∑

k=0

rk(G − e,G)xk

has only non-negative coefficients. �

It will be convenient to introduce the following notation.

Definition 3.4. Let f =
∑∞

k=0 fkx
k and g =

∑∞
k=0 gkx

k be power series.
We say that f ≫ g if fk ≥ gk for all k ≥ 0.

In particular, f ≫ 1 means that f0 ≥ 1 and fk ≥ 0 for k ≥ 1. Note that
Theorem 2.2 and Theorem 3.2 can be restated as

h∗(H, x)

h∗(G, x)
≫ 1 and

M∗(H, x)

M∗(G, x)
≫ 1

if H is a subgraph of G.
The following proposition is trivial.

Proposition 3.5. Let f, g, h ≫ 0 be power series. Assume that f ≫ g.

Then fh ≫ gh. In particular, if f, g ≫ 1 and fg−1 ≫ 1 then f ≫ g.

The next theorem is the key lemma for proving Theorem 1.6.

Theorem 3.6. Let H be a subgraph of G, then

h∗(G, x)

M∗(G, x)

(

h∗(H, x)

M∗(H, x)

)−1

≫ 1.

In particular,
h∗(G, x)

M∗(G, x)
≫ 1.

In particular,

γ(G) ≤ t(G).

Proof. We prove the statement by induction on the number of edges of G.
It is enough to prove that for any edge e ∈ E(G) we have

h∗(G, x)

M∗(G, x)

(

h∗(G − e, x)

M∗(G − e, x)

)−1

≫ 1.

Indeed, if H is a proper subgraph of G then for some edge e, H is a subgraph
of G − e. By induction we have

h∗(G − e, x)

M∗(G − e, x)

(

h∗(H, x)

M∗(H, x)

)−1

≫ 1.
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and if we prove the statement for G and G − e then we have

h∗(G, x)

M∗(G, x)

(

h∗(G − e, x)

M∗(G − e, x)

)−1
h∗(G − e, x)

M∗(G − e, x)

(

h∗(H, x)

M∗(H, x)

)−1

≫ 1.

Hence

h∗(G, x)

M∗(G, x)

(

h∗(H, x)

M∗(H, x)

)−1

≫ 1.

Let us start to prove the statement for G and G − e.

h∗(G, x)

M∗(G, x)

(

h∗(G − e, x)

M∗(G − e, x)

)−1

=
h∗(G − e, x) − xh∗(G ∗ e, x)

M∗(G − e, x) − xM∗(G − {u, v}, x)

(

h∗(G − e, x)

M∗(G − e, x)

)−1

=

=
1 − x

h∗(G∗e,x)
h∗(G−e,x)

1 − x
M∗(G−{u,v},x)

M∗(G−e,x)

.

Let

g = x
h∗(G ∗ e, x)

h∗(G − e, x)
and f = x

M∗(G − {u, v}, x)

M∗(G − e, x)
.

Then

1 − g

1 − f
=

1 − f + f − g

1 − f
= 1 +

f − g

1 − f
= 1 + (f − g)

∞
∑

k=0

fk.

By Theorem 2.2 and Theorem 3.2 we have f, g ≫ 0. Thus
∑∞

k=0 fk ≫ 0. So
we only have to prove that f ≫ g. This is indeed true (we write here the
required inequalities and we explain it later):

M∗(G − {u, v}, x)

M∗(G − e, x)
=

M∗(G ∗ e, x)

M∗(G − e, x)

M∗(G − {u, v}, x)

M∗(G ∗ e, x)
≫ M∗(G ∗ e, x)

M∗(G − e, x)
≫ h∗(G ∗ e, x)

h∗(G − e, x)
.

Here the first inequality follows from Theorem 3.2: G∗e is subgraph of G−e

and G − {u, v} is a subgraph of G ∗ e. Thus we have

M∗(G ∗ e, x)

M∗(G − e, x)
≫ 1 ≫ 0 and

M∗(G − {u, v}, x)

M∗(G ∗ e, x)
≫ 1.

The inequality

M∗(G ∗ e, x)

M∗(G − e, x)
≫ h∗(G ∗ e, x)

h∗(G − e, x)

follows from the following inequalities:

h∗(G − e, x)

M∗(G − e, x)

(

h∗(G ∗ e, x)

M∗(G ∗ e, x)

)−1

≫ 1 and
h∗(G ∗ e, x)

h∗(G − e, x)
≫ 1.

Here the first inequality follows from the induction applied to the graphs
(G ∗ e,G − e), the second inequality follows from Theorem 2.2. Hence we
have proved that

h∗(G, x)

M∗(G, x)

(

h∗(H, x)

M∗(H, x)

)−1

≫ 1.



TWO REMARKS ON THE ADJOINT POLYNOMIAL 9

The second statement of the theorem follows from the first one applied to G

and H = K1. The third inequality follows from the observation that since

h∗(G, x)

M∗(G, x)
≫ 1

we have

h∗(G, x) ≥ M∗(G, x) > 0

on the interval [0, 1
t(G)

) so 1
γ(G)

≥ 1
t(G)

, i. e., γ(G) ≤ t(G). �

Remark 3.7. After checking the proof one can see that the new ingredient
in the proof of Theorem 3.6 compared to the proof of Theorem 2.2 was that
G−{u, v} is a subgraph of G∗e. This simple observation “induces an ordering
on the recurrence relations”.

Proof of Theorem 1.6. The upper bound simply follows from Theorem 3.6:

4(∆ − 1) ≥ t(G) ≥ γ(G).

Now we prove that one cannot improve on the bound 4(∆ − 1). Consider
the following sequence of trees {Tn}. Let Tn = Tn,∆−1 be the (∆ − 1)-ary
tree of depth n. This is the rooted tree which has a root of degree ∆ − 1,
all other non-leaf vertices have degree ∆ and every leaves have distance n

from the root. For trees the matching polynomial µ(T, x) coincides with the
characteristic polynomial of the adjacency matrix of the tree. Hence for a
tree T we have t(T ) = λ2(T ), where λ(T ) is the spectral radius of the tree
T . Note that the spectral radius of a d-ary tree of depth n is

λ(Tn,d) = 2
√

d cos
π

n + 2
.

On the other hand, we have h(Tn, x) = M(Tn, x) since Tn is triangle-free.
Thus

γ(Tn) = t(Tn) = 4(∆ − 1) cos2 π

n + 2
.

This implies that

lim
n→∞

γ(Tn) = 4(∆ − 1).

�
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