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July 30, 2014

Abstract

In this paper we prove a conjecture of Metsch about the maximum
number of lines intersecting a pointset in PG(2, q), presented at the
conference ”Combinatorics 2002”. As a consequence, we give a short
proof of the famous Jamison, Brouwer-Schrijver bound on the size of
the smallest affine blocking set in AG(2, q).

1 Introduction

At the conference “Combinatorics 2002”, Klaus Metsch presented the follow-
ing conjecture.

Conjecture 1.1. Let B be a point set in PG(2, q). Pick a point P not from
B and assume that through P there pass exactly r lines meeting B (that is
containing at least 1 point of B). Then the total number of lines meeting B

is at most 1 + rq + (|B| − r)(q + 1 − r).

In this paper, we prove the above conjecture to be true, see Theorem
4.1. Klaus Metsch used this theorem to give lower bound on the number
of s-spaces missing a given point set in PG(n, q), see [9]. Later, this latter
theorem was used to determine the chromatic number of the q-Kneser graphs,
see [3].

A blocking set in a projective or affine plane is a set of points intersecting
each line of the plane. An m-fold blocking set is a blocking set intersecting
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each line in at least m points. In Section 4, we will show that Theorem 4.1
is stronger than the famous Jamison, Brouwer and Schrijver result on the
size of the smallest affine blocking set in AG(2, q). As a consequence, the
theorem also yields Bruen’s lower bound on the minimal number of points of
an m-fold blocking set.

2 A bound on the degree of the greatest com-

mon divisor

In this section, we recall results from [10] and [11], where a condition is given
which guarantees that the greatest common divisor of two given polynomials
has a prescribed degree. Then we refine these results by introducing a variable
for the degree of the second polynomial.

Result 2.1. Let u(X) = u0X
n + u1X

n−1 + ... (u0 6= 0) be a polynomial of
degree n and v(X) = v0X

n−1 +v1X
n−2 + ... be a polynomial of degree at most

n − 1. Denote by Rk the following 2k × 2k matrix:

Rk =


























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

u0 0 0 ... 0 0 0 ... 0
u1 u0 0 ... 0 v0 0 ... 0
u2 u1 u0 ... 0 v1 v0 ... 0

.

.

.

.

.

.

uk−1 uk−2 uk−3 ... u0 vk−2 vk−3 ... v0 0
uk uk−1 uk−2 ... u1 vk−1 vk−2 ... v0

.

.

.

.

.

.

.

.

.
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.

.

u2k−1 ... ... uk v2k−2 v2k−3 ... vk−1































where uj, j > n or j < 0 and vi, i > n − 1 or i < 0 are defined to be zero.
If the degree of the greatest common divisor of u and v is n − k, then

the determinant of Rk is non-zero. When the degree of the greatest common
divisor is greater than n − k, then det Rk = 0.

Note that detRk plays a very similar role to the resultant. Actually,
deleting the first row and the first column of Rk we get back a submatrix
of the resultant; for n = k it is just the resultant of the two polynomials.
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The advantage now is that when the greatest common divisor of the two
polynomials has large degree, then the matrix Rk is small.

Result 2.2. Suppose that the polynomials u(X,Y ) =
∑n

i=0 ui(Y )Xn−i and
v(X,Y ) =

∑n−1
i=0 vi(Y )Xn−1−i, satisfy deg ui(Y ) ≤ i and deg vi(Y ) ≤ i, and

u0 6= 0. Then the following holds.

(1) The determinant of Rk(Y ) in Result 2.1 has Y -degree at most k(k−1).

(2) For Y = y′, let n− (k−h) be the degree of the greatest common divisor
of u(X, y′) and v(X, y′). Assume that h is non-negative and construct
the matrix Rk(Y ) of Result 2.1. Then (Y − y′)h divides det Rk(Y ).

In [11], Result 2.2 (2) was proved for three variable polynomials where
the coefficients vi and ui were homogeneous polynomials. A similar argument
yields that the above result holds for two variable inhomogeneous polynomi-
als.

2.1 A new parameter

In this section we will assume that the polynomial v has degree at most n−m,
m ≥ 1, and we will see how we can refine the above results by using this new
parameter. Hence we assume that v(X,Y ) = v′

0(Y )Xn−m + v′
1(Y )Xn−m−1 +

· · · , where degv′
i(Y ) ≤ i. Of course, the polynomial v can still be written in

the form of the previous section, that is v = 0Xn +0Xn−1 + · · ·+0Xn−m+1 +
v′

0(Y )Xn−m+· · · . With this in mind, Result 2.1 and Result 2.2 will obviously
still hold. The main difference now, is that we have stronger conditions on
the degrees of the vi-s. More precisely, instead of degvi ≤ i, we have that
vi = v′

i−(m−1), when i ≥ m − 1 and so degvi ≤ i − (m − 1), when i ≥ m − 1;

otherwise vi = 0. Note that in each term of the determinant Rk(Y ), there
are k vi-s, and since now the bound on the degree of each vi dropped by
(m − 1) (or vi is zero), the degree of each term in the determinant will drop
by k(m − 1). Hence the bound in Result 2.2 will be k(m − 1) less.

Result 2.3. Suppose that the polynomials u(X,Y ) =
∑n

i=0 ui(Y )Xn−i and
v(X,Y ) =

∑n−m

i=0 v′
i(Y )Xn−m−i, m > 0, satisfy deg ui(Y ) ≤ i and deg v′

i(Y ) ≤
i, and u0 6= 0. Then the determinant of Rk(Y ) in Result 2.1 has Y -degree at
most k(k − m), when k ≥ m and it is zero otherwise.
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As in [10] and [11], Result 2.2 and Result 2.3 have a very important
corollary, which will be crucial in the remaining part of this paper.

Corollary 2.4. Using the notation of Result 2.3, assume that there ex-
ists a value y, so that the degree of the greatest common divisor of u(X, y)
and v(X, y) is n − k. Denote by nh, the number of values y′ for which
deg(gcd(u(X, y′), v(X, y′))) = n − (k − h), h > 0.

Then
k−1
∑

h=1

hnh ≤ deg(detRk(Y )) ≤ k(k − m).

3 The Rédei polynomial

Let ℓ∞ be the line at infinity in PG(2, q) and let U = {(ai, bi) : i = 1, ..., n}
be a set of points in PG(2, q) \ ℓ∞. Then the Rédei polynomial of U is the
following polynomial in two variables:

H(X,Y ) =
n

∏

i=1

(X + aiY − bi) =
n

∑

j=0

hj(Y )Xn−j.

Note that hj(Y ) is a polynomial of degree at most j. It is not difficult to see
that this polynomial encodes the intersection numbers of U and the affine
lines.

Lemma 3.1. For a fixed y ∈ GF(q), the element x ∈ GF(q) is an r-fold root
of H(X, y) if and only if the line with equation Y = yX + x intersects U in
exactly r points. Similarly, for a fixed x ∈ GF(q), the element y ∈ GF(q) is
an r-fold root of H(x, Y ) if and only if the line with equation Y = yX + x

intersects U in exactly r points.

4 How many lines can meet a point set?

Now we prove a conjecture of Metsch presented at the conference “Combi-
natorics 2002”, see [8]. The proof is an immediate consequence of Corollary
2.4. It can also be found in [12].

Theorem 4.1. Let B be a point set in PG(2, q). Pick a point P not from
B and assume that through P there pass exactly r lines meeting B (that is
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containing at least 1 point of B). Then the total number of lines meeting B

is at most 1 + rq + (|B| − r)(q + 1 − r).

Before the proof, observe that there are point sets for which the given
bound is sharp. Assume that r − 1 is the order of a subplane π in PG(2, q)
and let B be the proper subset of π containing r collinear points. Since B

blocks all the lines of π, the number of lines meeting B is ((r−1)2 +(r−1)+
1)+|B|(q+1−r). The first part is the number of lines in π, the second counts
the lines through the points of B which does not contain a line of π. Choose
P to be in π \B, hence the number of lines through P meeting B is r and so
the bound in the Theorem 4.1 is sharp. Note that the following well-known
result of Jamison [7] and Brouwer and Schrijver [4] is a consequence of the
statement of Theorem 4.1.

Result 4.2. (Jamison, Brouwer and Schrijver) A blocking set in AG(2, q)
contains at least 2q − 1 points.

Proof. Assume to the contrary that there is a blocking set B in AG(2, q),
of size |B| ≤ 2q − 2. Embed AG(2, q) into PG(2, q) and let P be an ideal
point. Now the value r in Theorem 4.1 is q and so the total number of lines
meeting B is at most 1 + q2 + (|B| − q)(q + 1 − q) ≤ q2 + q − 1; which is a
contradiction, since B blocks all the q2 + q affine lines.

There are blocking sets of size less than 2q−1 in certain non-Desarguesian
affine planes of order q, see [6]. This shows that Theorem 4.1 cannot be true
for arbitrary projective planes.

For the proof of Theorem 4.1 the following lemma is crucial.

Lemma 4.3. Let ℓ∞ be the line at infinity in PG(2, q) and let S be a point
set in PG(2, q) \ ℓ∞. Assume that |S| 6= q and suppose that through the ideal
point (y) there pass t affine lines meeting S. Denote by nt+h the number of
ideal points, not including (∞), through that there pass exactly t + h affine
lines meeting S. Then

∑q−t

h=1 hnt+h ≤ (|S| − t)(q − t).

Proof. For the points of S write {(ai, bi)} and consider the Rédei polynomial

of S, that is H(X,Y ) =
∏|S|

i=1(X+aiY −bi) =
∑|S|

j=0 hj(Y )X |S|−j. Recall that
deg hj ≤ j. It follows from Lemma 3.1, that degX gcd(H(X, y), (Xq −X)) =
t.

For the polynomials H and Xq − X and for the value k =
max(degX H, q) − t, construct the matrix Rk(Y ) introduced in Result 2.1.
The result now follows from Corollary 2.4.
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Proof of Theorem 4.1: For the line at infinity ℓ∞ choose an m-secant of B

passing through P , where m > 0. Note that now the line at infinity meets B,
hence through P there pass (r−1) affine lines containing at least 1 point from
B. Let (∞) ∈ B and again denote by n(r−1)+h the number of ideal points, not
including (∞), through which there pass exactly (r−1)+h affine lines meeting
B. Let us sum up the number of affine lines meeting B through the ideal
points, in total we get at most qm+[(q+1−m)(r−1)+

∑q−(r−1)
h=1 hn(r−1)+h];

where the first part corresponds to the points of ℓ∞ ∩ B, the second to the
points of ℓ∞ \ B. When |B \ ℓ∞| 6= q, then the result follows from Lemma
4.3 immediately.

Now assume that for each line ℓ through P , for which ℓ contains at least
1 point of B, |B \ ℓ| = q holds. This means that each line through P, which
intersects B, contains the same number of points from B. Then either each
line through P contains exactly 1 point of B, hence r = q + 1 and so the
bound in Theorem 4.1 gives 1 + q + q2 (which is just the total number of
lines of PG(2, q)), or it follows that |B| ≥ 2r. Note that in the latter case
r < q + 1, hence there is a line ℓ′ through P so that it is skew to B. Since
now |B| ≥ 2r, choosing ℓ′ to be the line at infinity, Lemma 4.3 gives that
the total number of lines meeting B is at most (q + 1)r + (|B| − r)(q − r),
which (since now |B| ≥ 2r ) is a stronger bound than what we have in the
theorem.

4.1 Another immediate corollary

An m-fold blocking set in AG(2, q) is a set of points intersecting each line
in at least m points. For m = 1, we have already seen the surprising result
by Jamison, Brouwer and Schrijver, see Result 4.2. Bruen [5] proved the
following lower bound on the size of an m-fold blocking set.

Result 4.4. (Bruen) The size of an m-fold blocking set in AG(2, q) is at
least (m + 1)q − m.

Blokhuis ([2]) improved on the above result by showing that an m-fold
blocking set S in AG(2, q), where (m, q) = 1, has at least (m+1)q−1 points.
Later Ball ([1]) extended this result to arbitrary m; he showed that if e(m)
is the maximal exponent such that pe(m)|m, then |S| ≥ (m + 1)q − pe(m).

In this subsection we show that Corollary 2.4 immediately implies Result
4.4.
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Proof of Result 4.4. Assume to the contrary that there exists an affine m-fold
(not necessarily minimal) blocking set B of size (m+1)q−m−1. Let ℓ be an
(m+k)-secant, k ≥ 0, where |B|−(m+k) 6= qm. Such a line ℓ can be chosen,
since counting the points of B on the lines through a point of B and on the
lines through an affine point not in B shows that the intersection numbers of
B with lines take at least two different values. Change the coordinate system,
so that ℓ is the line at infinity and (∞) ∈ B. Now B contains at least m points
from each line, except from the ‘old’ line at infinity that is skew to B. Denote
this line by ℓ′ and by (yℓ′) the ideal point of it in this new coordinate system.
Let U = B \ ℓ = {(ai, bi)}i and consider the Rédei polynomial of U , that

is H(X,Y ) =
∏|B|−(m+k)

i=1 (X + aiY − bi) =
∑|B|−(m+k)

j=0 hj(Y )X |B|−(m+k)−j.
By Lemma 3.1, degX gcd(H(X, yℓ′), (X

q − X)m) = m(q − 1) and for any
(y′) ∈ ℓ\(B∪(yℓ′)), degX gcd(H(X, y′), (Xq−X)m) = mq. For the polynomial
H and (Xq−X)m and for the value s = max(degXH, qm)−m(q−1), construct
the matrix Rs introduced in Section 2. By Result 2.1, the determinant of this
matrix is not zero. Furthermore, similarly as in the proof of Lemma 4.3, one
can show that deg(detRs) ≤ m(q − m − k − 1). To obtain a contradiction,
we apply Corollary 2.4. For the y value in the corollary, we choose yℓ′ ,
for the polynomial u we choose the polynomial H, and for v the polynomial
(Xq−X)m. Above we saw, that for every value y′ not in B, h in the corollary
will be m and there are (q−m−k) of such values. So Corollary 2.4 says that
m(q−m−k) ≤ deg(det Rs), which contradicts our previous upper bound on
deg(det Rs).
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