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ABSTRACT: A finite difference solution is presented in this paper for the 2-D, unsteady incompressible 
Navier-Stokes equations for laminar flow about fixed and oscillating cylinders. Boundary-fitted co-
ordinates are used and the governing equations are transformed to a non-inertial system fixed to the 
accelerating cylinder. Convective terms are handled by a third order modified upwind difference, other 
space derivatives are by fourth order central differences and time derivatives by forward differences. The 
computed Strouhal numbers and time-mean drag coefficients for fixed cylinders compare well with 
experimental results. Amplitude bounds of locked-in vortex shedding due to forced transverse oscillation 
are determined for a fixed Re number. Computations were carried out for a cylinder in orbital motion 
placed in a uniform flow. 
 
 
1. INTRODUCTION 
 
The vibration of structures in a fluid flow has 
received much experimental and numerical study 
due to its practical importance. Flow-induced 
vibrations have often led to the damage of the 
structure. Examples of this are the collapse of the 
Tacoma-Narrows Bridge in the USA in 1940, 
which was triggered by periodic vortex shedding, 
and the damage to a thermometer case leading to 
the shut down of Monju fast breeder nuclear power 
plant in Japan in 1996. Numerical studies of vortex 
shedding have dealt with the flow of a uniform 
stream normal to a fixed cylinder (e.g., 
Karniadakis & Triantafyllou, 1989). If the cylinder 
is vibrating, either in forced or natural motion, a 
non-linear interaction occurs as the cylinder 
frequency approaches that of vortex shedding. In 
this case vortex shedding occurs at the cylinder 
vibration frequency over a range of flow velocities. 
This phenomenon is called lock-in. The numerical 
simulation of lock-in has been the subject of 
several papers (e.g. Hulbrut et al., 1982; Menighini 
& Bearman, 1995; Baranyi & Shirakashi, 1999). 

The present study transforms the Navier-Stokes 
equations to a non-inertial reference frame fixed to 
the oscillating cylinder. The transformed equations 
are solved by the finite difference method. 
Computational results for flow about fixed 
cylinders are compared with those of experiments. 
Amplitude bounds of locked-in vortex shedding 
due to forced transverse oscillation of a circular 

cylinder are determined for Re=180. Initial 
remarks on the flow around a circular cylinder in 
orbital motion are included. 

 
2. PROBLEM FORMULATION 

 
Incompressible laminar flow past a circular 
cylinder undergoing in-line and transverse 
harmonic oscillation is considered. Primitive 
variable formulation is used for the solution of the 
problem. The two components of the non-
dimensional Navier-Stokes equations in a non-
inertial system fixed to the cylinder can be written 
as follows: 
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(2.1) 
where 2∇  is the 2-D Laplacian operator. The 
equation of continuity has the form 
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The body force due to gravity is included in the 
pressure p. In these equations Re is Reynolds 
number based on cylinder diameter d; x, y are 
Cartesian co-ordinates; u, v and x0a , y0a  are the x, 
y components of velocity and cylinder acceleration 



  
in the non-inertial or relative system, respectively; 
Θ  is dilation; t is time. 

It has been suggested (Roache, 1982) that 
instead of solving equations (2.1) and (2.2) for 
unknowns u, v and p, it is advisable to use a 
separate equation for pressure p, obtainable by 
taking the divergence of the Navier-Stokes 
equations and neglecting all but one term of 
dilation Θ , giving the Poisson equation 
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Strictly the dilation Θ =0 by equation (2.2), but 
the finite difference scheme does not always 
conserve mass due to truncation errors. The reason 
that one term containing Θ  is kept in equation 
(2.3) is to give dilation correction and to avoid 
instability. 

Equations (2.1) - (2.3) naturally remain valid for 
flows when the cylinder is fixed ( == y0x0 aa 0). 
 
2.1. Boundary conditions and mapping 

 
The physical domain is shown on the left-hand side 
of Figure 1.  
Let us investigate the boundary conditions now. 

On the surface of the cylinder (R1) (see Figure 
1): 
Velocity: no-slip condition       u =v = 0 . 
Pressure: 
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where n refers to components in the direction of 
the outer normal. 

Far from the cylinder (R2): 
Velocity: uniform flow in the inertial system 

0pot uuu −= ;    0pot vvv −=  

where 0u , 0v  are the x, y components of cylinder 
velocity, and subscript 'pot' refers to potential flow. 

Pressure: 
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It should be noted that the assumption of 
uniform flow along R2 is reasonable except for the 
narrow wake since the outer boundary of the 
physical domain is very far from the cylinder. 

The physical domain and governing equations 
are transformed into a computational plane (see 
Figure 1). Since a boundary-fitted co-ordinate 
system is used, boundary conditions (BCs) can be 

imposed accurately. In this way interpolation 
leading to inaccurate solutions can be avoided. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Physical and computational planes 
 

A unique, single-valued relationship between 
the co-ordinates on the computational domain 
( )τηξ  , ,  and the physical co-ordinates ( )t ,y ,x  can 
be written as 
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where τ is time on the computational plane, and 
the dimensionless radius is 
 

( ) ( )[ ].  f exp R R 1 ηη =         (2.1.2) 

The structure of the mapping assures that the 
grid is orthogonal on the physical plane for the 
arbitrary functions ( )ηf  and ( )ξg . By choosing 
these functions properly a very fine grid can be 
obtained in the vicinity of the cylinder and a coarse 
grid far from the body. Transformations (2.1.1) and 
(2.1.2) are unique and single-valued only for a 
non-vanishing Jacobian. 

Due to lack of space the transformed equations 
and BCs will not be included here. This non-
inertial system formulation, in which both the co-
ordinate system and the grid are fixed to the 
accelerating cylinder, has triple benefits: 
1) the computational grid has to be generated only 
once; 
2) there is no need for interpolation of the initial 
conditions at the beginning of each time step; 
3) the transformed equations have simpler forms 
than those in the inertial system. 

Since the mapping is given by elementary 
functions, the metric parameters and co-ordinate 
derivatives can be computed in closed forms. In 
this way the numerical error that arises from 
numerical differentiation of co-ordinates can be 
avoided. 

 



  
3. RESULTS AND DISCUSSION 

 
A computational code was developed for the 
solution of the problem. The transformed equations 
are solved by the finite difference method. The 
time derivatives are approximated by forward 
differences, fourth order central difference scheme 
is used for the diffusion terms and for pressure 
derivatives. The modified third order upwind 
scheme (Kawamura, 1984) proved to be successful 
in handling the convective terms in the Navier-
Stokes equations. The equations of motion are 
integrated explicitly giving the velocity 
distribution at each time step. After determining 
the velocity distribution at an arbitrary time step, 
the pressure is calculated from the transformed 
Poisson equation by using the successive over-
relaxation (SOR) method. At each time step, the 
dilation Θ  is chosen to be zero, and the pressure 
on the cylinder surface is calculated by a third 
order formula derived from the Taylor series. 

The computational grids used are 145x79 and 
241x131 O-meshes. The number of grid points was 
chosen to assure the conformal property of the 
transformation. The diameter of the outer boundary 
of computation was 30d. Dimensionless time steps 
used were 0.001 or 0.0005. 

Computations were carried out for the flow 
around a fixed circular cylinder for different 
Reynolds numbers. The computed Strouhal 
numbers S are shown in Figure 2 compared with 
experimental results (Roshko, 1954). Measured 
and computed time-mean drag coefficients can be 
seen in Figure 3 (Schlichting, 1965). From a glance 
at Figures 2 and 3, we can see that the agreement 
between experimental and computational results is 
very good up to about Re=200. This is in 
accordance with previously published results 
(Henderson & Barkley, 1996), in which it was 
found that the flow becomes unstable, and 3-D 
effects start to appear at about Re=190. 

Several other quantities were calculated, e.g., 
the instantaneous lift (CL) and drag (CD) 
coefficients; the distribution of velocity, vorticity, 
pressure and stream function; the location of front 
stagnation point, the lower and upper separation 
points changing with time. By applying the Fast 
Fourier Transform (FFT) to these oscillating 
signals their spectra can be obtained, and the 
frequency of vortex shedding can thus be 
determined. 

Computations were carried out for flows past 
cylinders which are vibrated mechanically either in 
transverse   or  in-line   directions.  The   amplitude 

 
Figure 2:  Strouhal number vs. Re number 

 

 

 

 

 

 

 

 
 
 

Figure 3: 
Time-mean drag coefficient vs. Re number 

 
threshold values A for locked-in vortex shedding 
due to forced transverse oscillation of a circular 
cylinder for Re=180 were also investigated, and 
are shown in Figure 4 as a function of the 
dimensionless frequency of cylinder oscillation Sc  / 
S. Here S is the Strouhal number for fixed cylinder 
at Re=180, Sc is the Strouhal number based on the 
frequency of cylinder oscillation. 

The author investigated the flow around a 
cylinder in orbital motion placed in an otherwise 
uniform viscous fluid flow. Identical frequencies 
were considered both in transverse and in-line 
directions. The amplitude of cylinder oscillation in 
x direction was kept constant while the amplitude 
was varied in y direction, making the path of the 
centre  of  the  cylinder an ellipse. The  variation of 



  

 
Figure 4:  Amplitude threshold values for 

transverse cylinder oscillation 
 

time-mean and root-mean-square (r.m.s.) values of 
lift and drag coefficients were investigated against 
the amplitude of vibration in y direction. The 
Reynolds number was kept constant at Re=180. It 
was found that, in the domain of 0.33 < Ay /Ax  < 1, 
while both the time-mean value of the drag 
coefficient and .s.m.LrC  increase with increasing 
oscillation amplitude in y direction, .s.m.DrC  
decreases. In addition, an abrupt change can be 
seen in all of the three curves in the vicinity of 
Ay/Ax =0.33. A more careful investigation of these 
phenomena is planned in the future. 

 
4. CONCLUSIONS 
 
The finite difference method has been applied for 
the numerical simulation of unsteady, laminar 
incompressible fluid flow about fixed and 
oscillating circular cylinders placed in otherwise 
uniform flows.  

By writing the governing equations in a non-
inertial system fixed to the accelerating cylinder 
and using boundary fitted co-ordinates, more 
accurate computational results can be obtained. 
The choice of a grid fixed to the moving cylinder 
eliminates the need for interpolation of the initial 
values at each time step. 

Good agreement was found between 
experimental and computational results for fixed 
cylinders in terms of Strouhal number and the 
time-mean drag coefficient up to Re=200. This 
indicates that extension of the method to oscillating 
cylinders is promising. 

The amplitude bounds of locked-in vortex 
shedding due to forced transverse oscillation of a 
circular cylinder for Re=180 were determined. 

Preliminary computational results for flow 
around a cylinder in orbital motion revealed an 
unexpectedly abrupt change in the root-mean 

square values of lift and drag coefficients. Further 
investigation is needed in this field. 
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