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Summary

In this paper we touch upon three phenomena observed in real life as well as in simulations; in one case, we state mathematical
results about the appearance of the phenomenon on arbitrary graphs (networks) under rather general conditions. We discuss
a phenomenon of critical fluctuations, demonstrating that an epidemic can behave very differently even if it runs on the same
network, with the same transmission probabilities and started from the same initial seeds. We explore a connection between
the geographic distribution and intensity of the spreading epidemic. We argue that the speed of the spread of an epidemic
depends not only on the number of current infections, but also on their geographic distribution over a country. Through the
observations of these phenomena we suggest a dependence of the final epidemic size on the geometric position of initial seeds
of an epidemic process.
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A 2020. marcius és 2021. februar kozoeti hazai COVID-19 j;irv;inyﬁgyi adatokat felhasznalva a ja’rva’nyok geogra’ﬁai terjedeset
kutatjuk. Alapvets modelliink az, hogy a jarvany azon emberek kozote terjed, akik mobilitasi mintaik alapjan egy varos-
ban tartozkodnak, igy van escly arra, hogy talalkozhatnak egymassal. Ezt a halozatot dgy kozelitjiik, hogy tekintjik az 1000
f6 feletti telepiilések hdldzarat (grészit), ahol a telepiilések kozorei élek sﬁiya a kozoreiik beesiile forgalombol, elsésorban in-
gazasbol nyerhets. Az egyes telepiiléseken beliil feleéeelezziik, hogy minden ember ugyanakkora valoszindséggel taldlkozhat.
A telepiiléseken beliil és kozote atlagolassal (meanfield) kapjuk a terjedés paramétereit. Hirom kérdést tanulm:inyozunk a
cikkben. Az elsé kettsben tobbé-kevésbé a varakozasnak megfelelsek az eredmények, a harmadik azonban meglepetéssel
szolgile. Mennyire jelezhets el6re a jarvany lefutasa? Szimuldcidink alapjin az Ry = 1 éreck kozelében a helyzet némi-
leg a meteorologiai elérejelzésekhez hasonld, azonos halézaton, azonos kezdeti fert6zeésbsl, azonos parameterekkel is nagyon
eleers jarvanygdrbék keletkezhetnek. Mennyire befolyasolja a napi fertdzésszamot a jarvany elterjedesége, vagyis az, hogy
mennyire oszlik meg a fertézésszam a 1akosséggal arényosan az egyes teiepii]éseken (jirzisokbzm, megyékben)? Szimulacioink
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cgycreelmien mutatjak, hogy a fert6zdteek azonos szama mellett, minel egyenletesebb a fertézoteck eloszlasa az orszagban,
annal nagyobb a napi 4j fert6zesek szama. Egy jarvany elsd, korai esetei (pl. kiilfoldrsl behozott fertézes) hogyan befolya-

. ! . I3 I3 . ! . i . 14 ! ! i . 11
soljak a terjedés vegkimenetelet, a teljes lefutas alatti megbetegedések szamat? A kutatas egyik fontos celja az, hogy meg-
taldlja a kezdeti fertézoteek azon konfigurdciojat, amely a legnagyobb jarvinyhoz vezet. Ezzel kapcsolathan egy 4j jelenséget
figyeltiink meg. Az dlcalanosan elfogadott kép szerint, ha a vizsgale betegség egy elszigetelt, alacsony népstirségi ¢és nem

/ o . . I P W1/ . . o e . ! .

tdl strd tomegkozlekedesi kapesolattal rendelkezs teleptilésen jelenik meg elészér, akkor gyorsan kipuszeulhat anélkiil, hogy
nagyobb jarvanyt okozna. Egészen mis Ichet a dinamika, ha a betegség egy jol dsszekapesolt, sdrin lakott telepiilésral in-
dul, ahol kénnyebben tdlélhet ¢s terjedhet szét a lakossdg t5bbi részére. A kutatds sordn ezt a feltevést megkérdsjeleztiik, és
demonstraljuk, hogy az a jarvany, ami a varosok halozatdnak legszorosabban dsszekapesolt rész¢bsl indul, hosszt tavon nem
mindig vezet tobb fert6zotthdz. Ha a betegségnek nagy a fertszsképessege, akkor egy jarvany, ami véletlenszerden kivalasz-
tott varosokbol indul, akar nagyobb populdciot is megfertézhet. Eredményeinket magyar mobilitdsi és jarvanyiigyi adatok,
szimulaciok, illetve matemacikai bizonyitisok is aiétzimasztjzik. A tudominyos megzi]iapit:isaikon tulmengen eredményeink
ho77é'éruihatnak "irV'iny—ei(’ire'ebe’sek ¢s az intervencios etr'itégiék jobb megterve7é<éhe7 egy adott orﬂm'gban egy éppen 7'1'16
v1]ag]arvany idején. Arra vilagitanak ra, hogy egy jarvany korai szakaszdban nem csak a terjeds betegség fercézési e@etemek
szamat fontos koverni, hanem a fertézésck geogr afiai eloszlasa is fontos informacior hordoz. A most kidolgozott modell ilyen
korai megfigyelesekbs! kiindulva, egy orszag populaciojanak fsldrajzi szerkezeter, valamint a mobilitasi halozatdnak hatasait
. L . , , . . L
is figyelembe veszi ¢s mar a jarvany kezdeti szakaszaban segithet hosszabb tavii kivetkeztetések levonasaban.

Kulesszavak: jarvanymodellezés, geometriai haldzatok, korai jarvany helyzete, perkolacid, devaled jelenségek

Il’ltI‘OdllCtiOl’l can be useful in predicting the intensity of the epi-

demic.
Several aspects of a society can be represented as a net-

work (Newman 2018; Vega-Redondo 2007). Best examples are
social networks, where single individuals can be identified

e Seeding and epidemic size. Related to the previous
topic, but a more complicated phenomenon can be

2. . observed if we consider the dependence of the final
as nodes connected by social interactions (Wasserman—Faust o of demic (ch ber of e infected
) size of an epidemic (the number of people infecte
1994), or commuting networks, where nodes are piaces or L P . P P .
. a1 . during its whole duration) from the location where it
populations (towns) connected by mobility links like local 0L (Od L 2000). C e
. . started from (Odor et a omparing epidemic
transportation or commuting (Barthelemy 2011). Although df L | paring fp
. . . ? rocesses started from the central region of a coun-
these network representations describe a social system in P A df & hery lead
~ J J
rather different aggregation levels, they both serve as the try to simi arcases starte I:Oﬂ'lltS periphery leads to
o0, . the observation of a new switchover phenomenon. It
structure underpinning the emergence of various global phe- )
. . . . has been found that the spreading started from cen-
nomena. In the case of epidemics, the transmission of a dis- i . )
. S, . . tral populations are worse if the reproduction rate
case is usually assumed via direct social interactions, and the . ; R . )
.. - . . . is small, but epidemic initiated from the periphery
mixing of people between different populations is driven by L dividuals if ch ducti
. can reach more individuals if the reproduction rate
local and global mobility. These are two aspects where the < diohc] | P
. is slightly over 1.
network approach has been shown to be useful (Barrat et al. ety

2008). The COVID-19 epidemic has given new motivation

to such studies as it highlighted several, earlier unseen or less To formaiiy study these aspects of epldemlc spreadmg we

understood phenomena challenging the actual mathematical need to m({del two things: The network itself, and the lo-
description and modeling A few exampies are: cal rules of epidemic transition and recovery. Mathemati-
cal models of infection propagation is a well established area

of research, taking into account the role of networks in epi-

e Stochastic fluctuations. An epidemic process can . . g1 .
) ‘P p demic spreading (Barrat et al. 2008). Building on this ground,
behave very differently even if it runs on the same . . . .
) o o we study epidemic spreading on two levels of network ag-
network, with the same transmission probabilities . . . .
o ) gregation (Pastor-Satorras et al. 2015): on one hand, identify-

for contacts, and from the same initial seed (Neri—

Gammaitoni 2021). This holds in particular when the
reproduction rate is close to 1, thus the spreading

ing nodes as individuals, who are connected via social inter-
actions, possibly transmitting the discase directly between
nodes; and on the other hand, identifying nodes as popu-

brocess is in its critical regime (Aguiar et al. 2021). . N 1 .
F 5 (Ag ) lations of individuals connected by mobility routes, possi-

° Geographic distribution and intensity. The spread—
ing speed of an epidemic depends not only on the
number of current infections, but also quite strongly
on their geographic distribution in a given popula-
tion (a country). Estimating how clustered or homo-
geneously distributed infected cases are in a country

2021 | 410

bly transmitting infected individuals berween popuiations.
Deeming them real, both of these structures can be consid-
cred to be embedded in geometric space. In turn, spatial and
geometric constraints piay important roles in the emergence
of their structure leading to locally clustered, globally con-
nected hierarchical network patterns (Barthelemy 2011).
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this paper we summarize some results on epidemic models
on geometric networks to highlight spreading phenomena
where we found the geometric nature of the network struc-
ture to be relevant.

As follows, first in Section 1 we formally define the epi-
demic model to study and the underlying network structures
built on data of the commuting network of Hungary. Sub-
sequently, in Section 2 we elaborate on some observations
about the fluctuations of simulated epidemic processes on
simple geometric structures. In Section 3 we discuss our ob-
servations on how epidemic cases were geographically clus-
tered during the course of the first two waves of the COVID-
19 pandemic in Hungary. Finaily, in Section 4, we summarize
our results (earlier reported in Odor et al. (2021)) on the obser-
vation and mathematical understanding of a new switchover
phenomenon, suggesting that if an epidemic is more virulent,
it may infect less people on the long run when seeded from
large and well connected populations, as compared to cases
when it strikes from randomly selected nodes of a network.
We close our paper with a short summary and discussion of
our results.

1 Models of epidemic spreading on
metapopulation networks

1.1 The model of epidemic spreading

We use for simulation and mathematical anaiysis one of the
most basic models of an epidemic spreading (Barrat et al.
2008), an SIR process. In this model, each individual can
be in one of three mutually exclusive states (S-susceptible,
I-infected or R-recovered). At the start of a modeled epi-
demic everybody is susceptibie, except for a small “seed” S of
infected people. At every step, every infected person infects
every susceptible neighbor in the network with probability
B, and recovers with probability p. So the expected dura-
tion of an infection is 1 /4. This simple SIR dynamic is often

Seeding effects on epidemics

characterized by the basic reproduction number, as defined as
the average number of people infected by one ill person in
a fully susceptible population (Ry = Jﬂ/,u), where people
have d contacts on average.

In our studies we consider pt = 1, so every illness lasts for
1 time unit. The phenomena we are reporting aiready occur
in this simplest model.

1.2 Metapopulation network of Hungary

For a more realistic modeling of epidemic phenomena, the
network structure can represent the mobility patterns of in-
dividuals at various spatia] scale (local transportation, com-
muting, international travels). The concept of metapopula-
tion networks (Colizza et al. 2007) provides a broadly accepted
framework to this approach. A metatpopulation network
consists of 7 nodes, which represent populations of individ-
uals (which we also call towns or settlements from now on),
connected by weighted and/or directed edges7 encoding the
number of people traveling between these populations.

To construct a metapopulation network for Hungary, we
use the microcensus collected and released by the Hungarian
Statistical Office in 2016 (Hungarian Microcensus 2016). We re-
lied on two important information from this dataset: (a) the
population size of cach 3, 186 settlement in Hungary (a sam-
ple of them visualized in Figure 1(a); and (b) the number of
people commuting to work or school on a daily basis between
these settlements, with the districes of the capital consid-
cred as separate towns. In our analysis we concentrated only
on settlements with populations larger than 1,000 inhabi-
tants and kept commuting links with at least 25 daily com-
muters. From this data we constructed an undirected meta-
population commuting network with 1,398 settlements as
nodes (of which 97 were from the capital and its suburbs) and
8, 322 commuting edges with weights computed as the aver-
age number of commuters between pairs of towns. The total

population size of the network contained 95% (9, 285, 286

Figure 1

Hungarian census darta. (a) Population size of Hungarian settlements, indicated by blue circles

with size proportional to the logarithm of the number of inhabitants. (b) Commuting network

ofHungary, WhCTC two settiements are connected ii‘there are at ieast 25 persons between them

fOI' SChOOi or WOT]( purposes. The COiOTS ofedges indicate the number ofcommuters.

Source: authors
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individuals) of the Hungarian population. Despite the spar-
sity of the network (0.85% of the possible edges are present),
19% of individuals commute between settlements on a daily
basis. We visualize this Weighted spatiai commuting network
of Hungary in Figure 1b.

To model epidemic spreading (using an SIR or other
processes) on a metapopulation network, we can employ a
reaction-diffusion process. In this case the metapopulation
network epidemic model evolves in two phases in each it-
cration. During the reaction phase, individuals inside each
population mix homogeneously, and in case they are infected,
they pass the infection to susceptible contacts with probabil-
ity 8. Meanwhile, an infected individual may recover spon-
taneousiy with probability (1t after which, in an SIR scenario,
it would never get infected again. Subsequentiy, during the
diffusion phase, individuals (possibly infected) are selected
with probability py, to move to neighboring nodes in the
metapopulation network, this way migrating the epidemic
to other popuiations.

Specifically in our model implementation, we assign to
cach agent a home population ¢ where they were located
in the beginning of the simulation. Each agent is assigned
exactly one hometown, and the home assignments do not
ci’)ange for the rest of the simulation. We initialize the epi-
demic spreading by infecting some selected individuals at
t=20 according to some seed selection scenarios (discussed
later) and proceed with the simulation for ¢ iteration steps.
In the reaction phase, each susceptible agent in town ¢ be-
comes infected with probability 1 — (1 — B/NZ)IZ where I;
is the number of infected agents in town ¢ at iteration step ¢
and (3 is the infection rate. In the final recovery step, each in-
fected agent recovers with rate 1. In the diffusion phase, each
agent who is at its hometown 7 is selected to move to another
town with probability py,. The selected agents then chose a
target town J with probabiiity Wi, and move there. We set
P = 0.001 in all simulations, which means that 0.1% of
the total population moves in cach iteration. Agents that are
not at their hometown simply move back to their home set-
tlement. For the exact implementation see (Code). Note that
in the reported study we concentrate on the conventional
SIR model, however, our observations hold for more realistic
models too, including the SEIR model with an addition com-
partment of exposed (E) state, better describing the reaction
scheme of the SARS-Cov-2 disease.

2 Fluctuations of modeled epidemics

The intensity curve of an epidemic can be very different, even
if it runs on the same network, starts from the same initial
seed, and has the same transmission probability 8. Figure 2
shows a few runs of simulation of an SIR process on two dif-
ferent networks. The first is a simple square grid; this shows
that the phenomenon occurs even if the network is totally ho-
mogeneous. The second is a very simpie geometric random

2021

graph, and its inhomogeneity further increases the fluctua-
tions.

These fluctuations can be observed when the infection
lor pg =

E|p). This may look like a serious restriction on the

rate is close to the critical value Ry =
V1/(2

occurrence of fluctuations, but in reality it is a common goal

to keep the infection rate near the critical value (if Ry > 1,
restrictions are imposed, it Ry drops below 1, these restric-
tions are eased or lifted).

These exampies indicate that epidemic predictions are
at least as difficult as weather predictions. In fact, unpre-
dictable circumstances (government intervention, new vari-
ants, poorly understood mass psychology) may make it even
worse.

[t is an interesting open problem to determine, or at least
estimate, this instability of an epidemic on a given network,
given starting infected set, and given transmission rate. How
large is the variance of the epidemic size? How large is the
variance of the number of new infections at a given day? The
answer will depend on the structure of the underlying net-
work, but perhaps those properties of the network that in-
fluence the instability can be identified.

3 Geographic distribution and intensity

During the unfolding of an epidemic in a country the in-
fected individuals may not aiways be homogeneousiy located
across the whole popuiation. First infected cases are com-
monly reported from larger citics, where case importation
from abroad is more likely due to international mobility. In
addition, an early phase epidemic survives casier in a densely
populated area. In case of an outbreak, the epidemic reaches
individuals in smaller settlements and spreads out more ho-
mogencously in the whole population. This was the scenario
actually during the first two waves of the COVID-19 pan-
demic in Hungary. The first wave started in March 2020,
and as in many countries, the disease arrived via interna-
tional travels, landing the epidemic first in larger cities (Fau-
ver et al. 2020; Kang et al. 2020; Karsai et al. 2020; Rost et al.
2020). These initial seeds resulted in outbreaks clumped
around highly populated areas (Odor et al. 2021). This is ev-
ident from Figure 3a, where we measure how a Pearson’s
ciii—squared test (Greenwood—Nikulin 1996), measured on the
distribution of newly infected cases between different set-
tlements, changes over time. It shows that in the beginning
and during the first wave of the pandemic the daily new in-
fected cases are not distributed homogencously according to
the popuiation size of settlements. By iooking at the per-
capita infection probability at the beginning of the first wave
(week 1 in Figure 3b), it indicates that infection cases were
concentrated in cities with the largest populations.

In contrast, the second wave in Hungary arrived after the
summer scason from a significantly different initial condi-
tion. It was iikeiy to be induced by peopie coming back from
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Figure 2 Left: Different behavior of the same epidemics on a 30 x 30 grid, a very simple and regular
network. The same transmission probabilities, and the same initial seed are used. Right: In-
stabi]ity is even more prominent on a more realistic network, where 900 random points in the
unit square represent the towns, and two nodes are connected by an edge if their distance is
less than .066.

Source: authors
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Figure 3 Geographic distribution of COVID-19 infection cases in Hungary as the function of time. (a)
The time evolution of Pearson’s chi-squared test (blue line) computed for the distribution of
actual newly infected cases in different settlements, shown together with the number of actual
newly infected cases (red line). (b) The probability of infections in cities of different size at
the first (W1) , sixth (W6), twenty-fifth (W25), and thirty-sixth (W36) of the pandemic.
Source: authors
holidays, thus bringing back the virus to their local commu- August 2020) new infected cases were distributed more ho-

nities. Indeed, at the beginning of the second wave (end of | mogeneously all around the country. On the one hand, this is
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evident from Figure 3a, where the corresponding chi-squared
values (week 25) are lower, as compared to week 1. On the
other hand, the same conclusion can be drawn from Figure
3b (week 25), where infected cases appear to be more homo-
geneously distributed among settlements of different popula-
tion sizes, although the infection numbers are comparable to
the peak of the first wave (week 6). This homogenization of
infected cases continued during the unfbiding of the second
wave leading to a Fu”y uniform distribution, corresponding
to population densities, at the peak of the second wave (week
38 in Figure 3a and b). Surprisingly, the first wave that started
from the most tightly connected, central, and largest popu-
lations led to significantly smaller number of infections as
compared to the second wave, that reached an order of mag-
nitude more people, even though it was initiated from more
uniformly distributed populations of the network.

4 The switchover phenomenon

From the results above it is evident that central and densely
populated settlements of the country played a distinct role
in the beginning of the pandemic. To identify them in the
spatial commuting network of Hungary, we define a central
node set C, containing Budapest and all its districts and the
towns in the suburb of the capital, which all together repre-
sent about 30% of the total population of the country ("Cen-
tral Hungary”, 2020). Note that we could find more general
definitions for C, that are based solely on the network struc-
ture. This could be a prescribed number of nodes with the
highest degrees, or the core of the network, which is obtained
by repeatedly deleting all nodes with the lowest degrees as
long as only nodes with prescribed degrees remain.

Using the selected C, we define two initial conditions to
seed the SIR process in the metapopu]ation network, start-
ing the spreading from the same number of towns and indi-
viduals in both cases. In one experiment, we select s (being
< |C] < n) number of towns chosen randomly from C. In
the other, we choose s towns uniformly at random from the
whole set of nodes in the network. When starting the spread-
ing, we initially infect a small fraction 49 of the total popula-
tion selected uniformly at random from the chosen s towns,
irrespective of their size. This way, for both seeding strate-
gies (centralized or uniform), seeded towns were infected on
average with the same number of agents, as the ig/s frac-
tion of the total population. To quantify the relative effects
of the two seeding scenarios, we introduced the experimental
pandemic size ratio f(Ry, s), given by the ratio of the aver-
age final infection sizes of epidemic processes seeded from
central or uniformly randomly selected nodes. Interestingly,
as shown in Figure 4, we observe that fg(Rp,s) > 1 for
small Rp ~ 1, indicating that the epidemic started from
the C central set leads to larger outbreaks. However, as we
increase Ry, the fraction fg(Ro, s) falls under 1, suggest-
ing that in this case epidemic seeded from uniformly ran-
dom selected towns over the whole country induces a larger

2021
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outbreak. This switchover phenomenon appears in the regime
slightly above critical point of the SIR process, where Ry is
not too large, and where the epidemic never reaches the to-
tal population. Instead, due to network effects, it stays clus-
tered around the seeded rowns until it dies out. The two seed-
ing scenarios lead to different infected cluster sizes, inducing
the observed switchover phenomenon in this regime. On the
other hand, when R grows larger, the difference between the
the two different seedings vanishes as the epidemic reaches
essentially the whole population in each case. This observed
switchover phenomenon challenges the commonly accepted
intuition that the size of the epidemic is always the largest
if seeded from the best connected sub-graph, or from the
largest degree nodes of a network. It provides a good example
on cases of real epidemics, which start from seemingly similar
conditions but appear with significantly different outcomes.

4.1  Epidemic and percolation

Ona (simple, not metapopulation) network G| the distribu-
tion of the epidemic (in particular, the final number of re-
covered individuals) of a SIR model with deterministic, unit
recovery time has an elegant and useful connection with the
commonly used simple mathematical framework of bond per-
colation. In this model, every edge of the network G has a
chance to transmit the disease at most once, when one end-
point is infected but the other is still susceptible. Therefore
one may decide about every edge in advance, independently
with probability 8, whether it will transmit the disease (if
it gets a chance for this mischief at all). We can think about
this as deleting those edges from the graph which are deemed
non-transmitting, and so retaining any edge with probabil-
ity 8. The retained edges form a random subgraph GP of G-
this procedure is familiar from random graph theory, where
it is called a percolation of G. It a set S of nodes is selected as
infection seeds in the network, then the epidemic will spread
exactly over the connected components (also called clusters)
of G that contain at least one node of S.

For metapopulation models, the connection with graph
percolation is more complicated, but a fundamental result of
Barthélemy et al. (2010) and Colizza—Vespignani (2008) extends
this connection in an approximate form. These authors ar-
gue that once a large outbreak occurs in a town A, the pro-
portion of infected people within the town is concentrated
around some value 7o, € (0,1) (called the “local outbreak
ratio”). Infected people during the local pandemic carry the
infection to a neighboring town B and cause a large outbreak
there with a certain computable probabilityz

NApmwABroo (]- - RLO)
41) Byg=1—exp | — .
1

where Ny is the size of population A. (The dependence on
A and B can be ignored if we work on an unweighted net-
work.) Herd immunity is reached in each town A after the
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Figure 4 The switchover phenomenon. The pandemic size ratio fg shown as the function of the basic
reproduction number. When fi >1, it indicates that infection started from the central set

C of the Hungarian commuting network would infect more people, while when fo < 1, the

epidemic seeded from random populations would be more dangerous.

Source: authors

first large local epidemic outbreak of size oo IV 4, later infec-
tions to a town are no longer able to cause large-scale out-
breaks. Therefore, after rescaling the time, the towns them-
selves go through a progression S — I — R with unit re-
covery times and infection probability 8" computed by (4.1).
Consequently, the metapopulation model can be approxi-
mated by a simple SIR model on the network of towns, which
in turn can be described by a bond percolation process with
retention probability B' (in the rest of this paper, we drop
the prime from 8 and proceed simply with § for simplicity).

Once we mapped our prob]em to bond perco]atiom it is
important to note that for many graphs G' a critical value 5.
separates two phases: for 8 < [ all clusters of GP are small,
while for > B, a single giant cluster emerges that contains
a positive proportion of all nodes, while all other clusters are
small. If the central region is sufficiently more connected,
then this giant cluster will contain most of C, but a smaller
fraction of V'\ C. Both seeds sets S7 and Sy infect the giant
component, but if the giant component contains most of C,
then uniform seeding over the whole country may pick up
more of the small components.

To make this heuristic argument precise is nontrivial, and
we discuss this in two cases: on the conf‘lguration model and
on general graphs under suitable sparsity/density conditions.

4.2 Results about the configuration model

Our first mathematical result will be about the conﬁguration
model, a uniform distribution over networks with a given
power-law degree sequence. We define the central seeding set
CZo(s) as the set of s nodes with highest degrees. (Consider-
ing the core as would lead to similar results, since the two def-
initions are strong]y correlated in these Conﬁguration mod-
els; see Fernholz—Ramachandran (2003), Janson—Luczak (2007),
Luczak (1991).) For the uniform sceding, just as earlier, we

choose the seed set UZ((s) of s nodes sampled uniformly ac
random in the whole network.

Theorem 4.1. The sequence of random graphs sampled from the
configuration model with exponent T € (2,4) and n — 00 ex-
hibit the switchover phenomenon. Specifically, with infection prob-
abilicy 8 = . + 0, under the assumptions 1 < s < n and
n=IT3l/0-1) « 9 <« 1,

(1) if 6 < max((1/s)I7731 (n/s)

tral seeding is more dangerous,

(2) if 0> max((1/s)7731 (n/s)

form seeding is more dangerous,

N E]
1 ), then the cen-

_ T3]

71 ), then the uni-

with high probability as n — oc.

Theorem 4.1 formalizes the switchover phenomenon ob-
served in Figure 4 (in terms of R instead of #). See Figure 5(a)
for a phase diagram of Theorem 4.1.

4.3  Results about geneml networks

Theorem 4.1 was a probabi]istic statement about a speciﬁc
distribution of configuration model networks. In this sec-
tion we aim to generalize our results to all graphs that satisty
certain properties that are sufficient for the switchover phe-
nomenon to appear. It is not hard to see that when f is very
small, and the epidemic dies out quickly, then essential]y on]y
the degrees of the seeds affect the outcome of the epidemic,
and the central region is more dangerous. In the remainder
of the section we show that under the right conditions, for
larger values of 3, uniform seeding can be more dangerous
too.

Definition 4.2. We say that a graph G = (V, E) has edge-
expansion a > 0, if for every set X C V, |X| < n/2, the
number of edges between X and V'\ X is at least a| X|.
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Phase diagrams for the switchover phenomenon on the configuration model with 7 € (2, 3).

(a) With yellow we show the region where the central area is more dangerous by Theorem 4.1.1,

and Wlth green we ShOW tl’lC region thre tl’lC central area is more dangerous by Theorem 4.1.2.

(b) With green we show the region where the central area is more dangerous by Theorem 4.4.

Source: authors

Definition 4.3. Let G = (V, E) be a connected graph on n
nodes, andlet C C V,|C| = ¢ < n/2. Let G1 = G[C], and
G2 = G\ E(G1). Let b denote the average degree in G,
and let @ be the edge expansion of G;. Let 8 < 1 be the in-
fection probability. For aseed set S, with | S| = s, we denote
by GP (5) the (random) set of nodes that get infected during
the epidemic when S is the seed (the set of nodes infected at
the start).

The following theorem is a version of our resules that can
be stated without too many technicalities.

Theorem 4.4. Consider the setting and notation of Definition 4.3
witha > 2b. Let Sy be a random s-subset of C' and Sa, a random
s-subset of V. Suppose that the following three assumptions hold
on the model parameters:

(i) B>4/a,
(i) 1lne P20 <

IN

c . n
- <=
27 4

(iit) sc(1 — B)? > nlog(n).
Then E(|GP(S2)|) > E(|GP(S1)|), ie., the uniform seeding
is more dangerous. On the other hand, for all sufficiently small
B < 1, central seeding is more dangerous. Hence, the switchover

phenomenon occurs on G.

Under slightly stronger assumptions on the parameters,
the epidemic size for seed set Sa can be larger than for seed
set S1 by a constant proportion of the population. The proof
of Theorem 4.4, along with related results, will be published
in a separate paper. While Theorem 4.4 talks about general
graphs, it can partially reproduce the more involved and pre-
cise results about the configuration model. This is surpris-
ing because Theorem 4.4 only lists a few general conditions
on the graph, and does not use its structure in much detail,
while the proofof‘Theorem 4.1 does.

Corollary 4.5 (Corollary to Theorem 4.4). Theorem 4.4 ap-
plied to the configuration model with exponent T € (2, 3) implies

rhat L’hC uniform SCCdi?‘lg is more dangcrous whcn Eht‘ CdgC—VC[CTlEiOTL

probability 5 and the size of the seed-set s satisﬁes

B> (n/s)” 7 log(n/s),
s> y/nlog(n).

See Figure 5 for an illustration of the app]icability of The-
orem 4.4 to the conﬁguration model.

5 Conclusions

The COVID-19 pandemic highlighted several new phenom-
ena, which challenged the state-of-the-art understanding and
mathematical modeling of network epidemic processes. In
this paper we brieﬂy described three interesting phenomena
that we studied lately using geographica]ly detailed epidemic
and mobility dara from Hungary. We discussed that

(1) The unpredictability of the epidemic curve near the
critical rate Ry = 1 is not a shortcoming of the
methods, but an inherent property of the process,
somewhat similarly to the weather forecast. On the
other hand, when there are only a few infection cases,
thus the system’s Ry is far from its critical value 1, the
predictions are much more reliable.

(2) The geographic distribution of a disease on a given
day during a real pandemic is strongly correlated
with the growth rate (daily number of new infec-
tions). In the carly phase of the process, infections
are more concentrated in large and well connected
cities, while in later phases, infections are distributed
more homogenecously between settlements. To im-
prove predictions in the future, collection of data on
a finer spatial scale would be necessary. This may fol-
low administrative spatial scructures like settlements
or counties; perhaps data could be considered on the
level of hospitals or family physician practices, which
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are potentially easier to collect. This is particularly
important in the phases of the epidemic when infec-
tion numbers are low. In these situations, the current
infected set can be considered as the seed for the fu-
ture dynamics, and could lead to significantly differ-
ent epidemic outcomes on the long run, as we have
demonstrated.

(3) From the point of view of network science, an impor-
tant long-term task is to develop theoretical founda-
tions for network epidemic models. Currently, con-
ventional network properties are considered, as the
degree heterogeneity, clustering, multi-layer organi-
zation or the temporal evolution of the network, and
their effects on the outcome oixongoing modeled epi-
demic processes. Meanwhile, there are several con-
cepts borrowed from graph theory that could con-
tribute to our deeper understanding of the interac-
tion of structure and ongoing spreading phenomena.

Although most of our results contribute to the funda-
mental understanding and theoretical modeling of epidemic
spreading, yet they have important policy implications. They
highlight that it is important to follow not only the number
of infected cases during an unfbiding pandemic, but also the
geographic distribution of the epidemics7 which could pro-
vide critical insights, as it may determine the long-term out-
come of the epidemic. Depending on the phase of a pandemic
and the actual reproduction rate of the disease, different in-
tervention efforts have to be concentrated in large and cen-
tral, and small and peripheral towns for a more effective epi-
demic control.
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