
 

 

SUPPLEMENTARY MATERIALS 

 

Study1: Methods 

Participants 

Participants were, on average, 53.42 years of age (SD = 10.57, range = 21 – 68 years). The 

racial/ethnic makeup of the sample was predominately White/Caucasian (n = 59, 92.19%), 

with five participants identifying as racial and ethnic minorities (Black =1, 1.56%; Asian = 1, 

1.56%; Hispanic = 1, 1.56%; Native Hawaiian or Pacific Islander =1, 1.56%; Multiracial = 1, 

1.56%). On average, participants were overweight, as defined by having a body mass index 

(BMI) above 25 (Williams, Mesidor, Winters, Dubbert, & Wyatt, 2015)): participants’ 

average weight at baseline was 190.18 pounds (M=190.18, SD = 41.27), with an average body 

mass index (BMI) of 33 (SD = 7.16). Most participants had previous meditation experience (n 

= 38, 59.37%), and 84.2% among those (n = 32) reported practice of daily meditation. The 

majority of participants identified sweet food as the category of foods that they crave (n = 45, 

70.31%), followed by salty types of foods (n = 19, 29.69%). Participant characteristics are 

displayed in Table 1.  

 

Recruitment Procedure 

Interested individuals were considered eligible if they (a) were 18 to 70 years of age; (b) 

assigned female at birth and identify as a cisgender female; (c) able to read and speak English; 

(d) experienced food (salty or sweet) cravings as well as overate these foods (i.e. responded 

‘yes’ when asked ‘do you find yourself eating more than you’d like of a particular food or 

category of foods?’) at least 4 times per week; (d) owned a smartphone; (e) resided within 



driving distance of a city in northeast United States where the study assessment is conducted, 

and (f) indicated desire for eating behavior change. Exclusion criteria included (a) a current 

diagnosis of eating disorder; (b) a current strict diet (e.g., paleo, keto, vegan, calorie 

restriction); (c) active use of insulin; (d) current pregnancy; and (e) previous use of the 

mHealth application.  

 

Mindful Eating Craving Tool 

To use the mindful eating craving tool, participants were instructed to click “craving tool” on 

the app’s dashboard whenever they experienced a food craving. This would initiate the start of 

the guided mindful eating exercise described as follows (an example of screenshots taken at 

each stage of a prototypical craving tool use is illustrated in Figure 2A). As a first step (Figure 

2 A- Screenshot1), participants were invited to: identify and think of the food they are 

craving, simulate an experience of eating this food, and pay mindful attention to the 

phenomenological qualities experienced by this eating simulation (bodily sensations, 

emotions, and thoughts). After having completed this mindful eating simulation exercise, 

participants were then asked to rate the intensity of their craving (relative to what their 

baseline level of craving was before having completed the mindful eating simulation), and 

asked whether they wished to eat the craved food or not (Figure 2. A-Screenshot2). If 

participants chose not to eat, the exercise resumed, but if they opted to eat, they were 

prompted to rate the quantity of food eaten (Figure 2.A-Screenshot3). Next, participants were 

invited to pay mindful attention to bodily sensations, emotions, and thoughts experienced 

after having eaten, and asked to rate their level of contentment experienced from having eaten 

(Figure 2. A-Screenshot4). Following this, the participant was given the option to either 

resume the mindful eating exercise, or to receive another check-in five minutes later. If the 

individual opted to check-in 5 minutes later, they were directed to focus on present-moment 



bodily sensations/emotions/thoughts and rate their contentment levels experienced from 

having eaten. The participant was then given the final option to resume the use of the mindful 

eating craving tool, or to go through the same check-in procedure 15 minutes later.  A flow 

diagram (Figure 2B) conceptually displays the sequence of events, psychological processes or 

behaviors involved at each stage of a prototypical craving tool use.  

 

Questionnaires Assessing Self-reported Maladaptive Eating Behaviors 

Self-reported maladaptive eating behaviors were assessed using the three following 

questionnaires. First, the Salzburg Stress Eating Scale (SSES) is a 10-item self-report measure 

of the extent to which an individual eats in response to stress (Meule, Reichenberger, & 

Blechert, 2018). Participants were instructed to respond to the items describing situations of 

perceived stress (e.g., “When I feel nervous and stressed,” “When I feel difficulties have been 

piling up so high that I cannot overcome them”) and their corresponding eating behaviors on a 

Likert Scale from 1 (I eat much less than usual) to 5 (I eat much more than usual). Higher 

scores indicate eating more than usual in response to stress and lower scores indicate eating 

less than usual in response to stress.  Cronbach’s α in our sample at baseline and post-

intervention were .88 and .93, respectively. 

Second, the Reward Based Eating Drive (RED) Scale is a self-report measure of 

reward-based eating (Epel et al., 2014). This questionnaire assesses constructs of 1) lack of 

control over cravings, 2) lack of satiety after eating and 3) over-preoccupation with food. 

Participants were asked to rate on 13 items regarding their eating behaviors related to these 

dimensions on a Likert scale from 0 (Strongly disagree) to 4 (Strongly agree). Higher scores 

indicate higher levels of reward-based eating (e.g., “When I start eating, I just can’t seem to 

stop,” “Food is always on my mind”). Cronbach’s alphas in our sample at baseline and post-

intervention were .88 and .91, respectively.  



Last, the Food Craving Questionnaire- Trait, Reduced (FCQ-T-r) consists of 15-items 

measuring the food craving experience patterns as a general tendency or as a psychological 

trait/characteristic (Meule, Hermann, & Kübler, 2014). This scale focuses on essential 

cognitive and behavioral aspects of food craving experiences such as thinking about food, 

intending to eat food, and losing control over food intake. Participants rated items on a 5-point 

Likert scale ranging from 1 (Strongly disagree) to 5 (Strongly agree). Sample items include 

“If I eat what I am craving, I often lose control and eat too much,” “I find myself preoccupied 

with food,” and “I crave foods when I feel bored, angry, or sad.” Cronbach’s a in our sample 

at S1 and S2 were .91 and .96, respectively.  

 

Data Analysis: Computational Model Description 

 A Rescorla-Wagner model of reinforcement learning (Rescorla and Wagner, 1972) was used 

to estimate participants’ expected reward values assigned to their eating behaviors as a 

function of the rewarding consequences of the behavior – i.e., the contentment experienced 

from eating. At each craving tool use ‘t’, the expected value for each action ‘a’ (eating /  not 

eating) was computed according to Equation 1.  

 

 

Equation 1):     

𝑉𝑎(𝑡 + 1	) 	= 		𝑉𝑎𝑡	 + 	a(l𝑡	 − 	𝑉𝑎𝑡) 
 

Specifically, the expected reward value of an eating behavior at time t  (Vat) was 

updated for use at the subsequent timepoint (Vat+1) using a prediction error term ( lt - Vat). 

This prediction error reflects the discrepancy between the expected reward value of an eating 

behavior at time t (Vat) and the experienced reward at time t (lt), scaled by a learning rate (a) 

controlling the size of the update at each time point. Here, lt at a given craving tool use (t) 



reflects the outcome resulting from the behavior, i.e. the level of contentment experienced 

after having eaten, and will update steeply if the level of contentment expected (Vat) is highly 

discrepant from that which was expected. For example, if an individual anticipated high 

levels of reward from eating, yet experienced strong discontentment after actually eating the 

craved food, this would yield a steep decrease in the behavior’s reward value due to the 

discrepancy between the expected and actual outcome resulting from the behavior.  

 

If the participant chose not to eat, the prediction error was coded as 0, and the reward value 

would remain as that assigned to the previous experience with the behavior Va(t-1). At each 

craving tool use trial, the likelihood of selecting the observed action given the expected values 

for each action was estimated using the softmax function (Equation 2). The likelihood that a 

participant would select a given action (eating vs not eating) at each trial was estimated using 

an inverse temperature parameter (denoted by ‘ß’), controlling the sensitivity with which 

reward values map onto the probability of selecting an action.  

 

Equation 2):  

𝑃(𝑒𝑎𝑡(𝑡)	|	𝑉𝑒𝑎𝑡, 𝑉𝑛𝑜_𝑒𝑎𝑡)

= 	𝑒𝑥𝑝	(ß	 ∗ 	𝑉𝑒𝑎𝑡(𝑡))			/		(	𝑒𝑥𝑝	(ß	 ∗ 	𝑉𝑒𝑎𝑡(𝑡)) 	+ 	𝑒𝑥𝑝	(ß	 ∗ 	𝑉𝑛𝑜_𝑒𝑎𝑡(𝑡))	) 

 
The following variables were set as free parameters and estimated for each participant: the 

learning rate, initial expected eating behavior reward value for each action, and inverse 

temperature parameter. Free parameters were estimated using an optimization search function 

which maximized the summed likelihood of observed actions across trials.   

 

Next, in order to compare the goodness of fit of our learning model to our data with 

that of alternative types of RL models, we also estimated expected values using a learning 



model (Rescorla-Wagner / Pearce-Hall Hybrid Model) in which learning rates were 

dynamically updated at each trial. Thus, at each trial, this model depicts that (Equations 3-4) 

the learning rate is modulated by an associability term (assoc), which is updated based on the 

prediction error term experienced on the previous trial. For instance, on a trial in which the 

subject experiences high levels of uncertainty (high prediction error, or high discrepancy 

between his expected reward and actual reward received), the associability term would update 

and steeply increase on the next trial and correspondingly modulate the rate at which the 

prediction error would update the reward value. The associability term has been interpreted as 

reflecting attention levels, such that highly surprising events might signal to the individual 

that there is a lot to learn from these experiences and lead to enhanced levels of attention to be 

paid on the immediately subsequent experiences with the behavior (Le Pelley, 2004). The rate 

at which the associability term updated at each trial was controlled by an individually fixed 

parameter (gamma). This model is depicted in equations 3 and 4.  

 

Equation 3):     𝑉𝑎(𝑡 + 1	) 	= 		𝑉𝑎𝑡	 + 	𝑎𝑠𝑠𝑜𝑐(𝑡) 	∗ 	a(l𝑡	 − 	𝑉𝑎𝑡)	 

 

Equation 4):     𝑎𝑠𝑠𝑜𝑐(	𝑡 + 1	) = 	𝑔𝑎𝑚𝑚𝑎	 ∗ 	 |	(l𝑡	 − 	𝑉𝑎𝑡)| 	+	(1	– 	𝑔𝑎𝑚𝑚𝑎)	∗ 𝑎𝑠𝑠𝑜𝑐	(𝑡) 

 

The likelihood of selecting an action given the reward values assigned to each action 

were estimated using the softmax rule as described for the Rescorla-Wagner Model. The same 

free parameters were estimated in the same way as for the previously described Rescorla-

Wagner model, with the addition of the individually fixed gamma parameter.  

 

 

 



Study2: Methods 

 

Data Analysis: Computational Modeling  

For participants in the low-use sample (N = 1044) that had less than 10 craving tool 

uses, reward values were computed using the same Rescorla-Wagner model as for the high-

use sample (Equation 1), and used as variables in multi-level regression models. Parameters 

for these subjects (learning rate, V0_no_eat, V0_eat, inverse temperature) were estimated 

using empirical priors obtained from the high-use sample dataset, as has been done in 

previous work (Gershman, 2016). Here, parameter point estimates for each subject (denoted 

by 𝜃𝑠 in Equation 5) were obtained from the maxima of the resulting posterior distributions 

over parameter values (given the model and data), in which 𝑝(𝐷𝑠	|	𝜃𝑠,𝑚) represents the 

likelihood that the data for subject ‘s’ (Ds) were observed given the parameters for this 

subject (′𝜃𝑠′)	 and the model (‘m’), multiplied by the prior probability distribution for 

parameters givcn the model and model hyperparameters ‘𝜑𝑚’ (or specific point estimates 

used as empirical priors). The maximized a posteriori probability estimate for each subject 

was obtained using optimization procedures within software available at 

https://github.com/sjgershm/mfit.  

Equation 5): 

	𝜃s = 𝑎𝑟𝑔𝑚𝑎𝑥		𝑝(𝐷𝑠	|	𝜃𝑠,𝑚) ∗ 𝑝(𝜃𝑠	|𝑚, 𝜑𝑚) 

 

Probability distributions of empirical priors consisted of gaussian distributions centered 

around hyperparameter values (i.e. the mean and standard deviation of free parameters 

obtained from subjects in the high-use sample). The resulting reward values for each action 

𝜃𝑠 

 

^ 

 

^ 

 



(eating vs not eating) were then entered as variables in multi-level regression analyses. In 

addition, the likelihood that a participant would select a given action (eating vs not eating) at 

each trial was estimated using the softmax rule computed as in Study 1 and the high-use 

subsample (Equation 2). 

 

Study2: Results 

Multi-level regression analyses by High- and Low-Use samples 

The results reported over the aggregated dataset in Study 2 (both high- and low-use 

subsamples combined) due to their similar pattern are reported here separately for each of 

these subsamples. Specifically, multi-level regression analyses’ effects of TIME (1st-level 

predictor) on reward values (expected and present-moment reward values) and on likelihood 

of eating estimated from the RW model are reported by High- and Low-Use samples. In 

addition, multi-level regression analyses’ effects of reward values on eating behaviors, and 

likelihood of eating predictive effect on selected actions (decisions to eat or not) are also 

reported by High- and Low-Use samples. Finally, a multi-level regression analysis model 

examining the correspondence between expected and present-moment reward values, using 

expected reward values as a first-level predictor of present-moment reward values, is reported 

by High and Low-use samples.  

 First, multi-level regression analysis revealed a significant negative effect of TIME on 

expected reward values for both the High-use (B = -0.014, SE = 0.005, t = -3.06, p = 0.003) 

and Low-use sample (B = -0.032, SE = 0.002, t = -20.30, p < 0.001), but no significant effect 

of TIME was observed for present-moment reward values (B = -0.002, SE = 0.002, t = -0.99, 

p = 0.336 for the High-use sample; B = 0.002, SE = 0.005, t = 0.35, p = 0.727 for the Low-use 

sample). A significant negative effect of TIME was also observed on likelihood of eating for 



the High-use (B = -0.013, SE = 0.004, t = -3.32, p = 0.002) as well as Low-use sample (B = -

0.06, SE = 0.003, t = -17.82, p < 0.001).   

 In addition, multi-level regression analyses revealed a significant positive predictive 

effect of expected reward values on eating frequency (B = 0.25, SE = 0.042, t = 6.04, p < 

0.001 for the High-use sample; B = 1.40, SE = 0.053, t = 26.33, p < 0.001 for the Low-use 

sample) and eating intake (B = 0.51, SE = 0.100, t = 5.19, p < 0.001 for the High-use sample ; 

B = 2.91, SE = 0.137, t = 21.34, p < 0.001 for the Low-use sample) for each High and Low-

use samples. With respect to present-moment reward values, this variable also predicted 

eating frequency (B = 0.51, SE = 0.041, t = 12.50, p < 0.001 for the High-use sample ; B = 

0.46, SE = 0.021, t = 22.04, p < 0.001 for the Low-use sample) and intake (B = 1.10, SE = 

0.100, t = 10.99, p < 0.001 for the High-use sample; B = 1.06, SE = 0.049, t = 21.33, p < 0.001 

for the Low-use sample) for each sample. Likelihood of eating also significantly predicted 

decisions to eat or not for the High (B = 1.02, SE = 0.044, t = 23.14, p < 0.001) and Low-use 

sample (B = 1.06, SE = 0.017, t = 62.38, p < 0.001).  

 Finally, analyses revealed that expected reward values significantly predicted present-

moment reward values in each High- (B = 0.12, SE = 0.04, t = 2.83, p = 0.007) and Low-use 

samples (B = 0.32, SE = 0.05, t = 6.86, p < 0.001).  
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