Unique reducibility of multiple blocking sets
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Abstract. A weighted t-fold (n — k)-blocking set B of PG(n,q) always
contains a minimal weighted t-fold (n — k)-blocking set. We prove that, if
|B| < (t+1)¢"*+6,_j_1, then the minimal weighted ¢-fold (n — k)-blocking
set contained in B is unique.
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1 Introduction

A t-fold (n — k)-blocking set of PG(n, q) is a set of points which meets every
k-dimensional subspace in at least ¢ points. To exclude the trivial cases we
will always suppose that 0 < & < n. If the points of the set are not all
different, so the set is a multiset of points, then it is called a weighted t-fold
(n — k)-blocking set. A weight function of PG(n,q) is a mapping from the
point set of PG(n,q) to the set of nonnegative integers. For a point P the
integer w(P) is the weight of P. There is a natural correspondence between
multisets and weight functions of PG(n, ¢q): let the weight of a point be the
multiplicity of that point in the set. For a weight function w, the weight of
a set M of points is by definition the sum of the weights of all its points,
denoted by w(M), and w(PG(n, q)) =: |w| can be called the total weight of w.
The multiset associated to a weight function w is a t-fold (n — k)-blocking set
if and only if the weight of every k-dimensional subspace is at least ¢. If this
is the case, then we will call the weight function w a t-fold (n — k)-blocking
set for short.

*The author was supported by OTKA Grant K81310.



If w is a t-fold (n — k)-blocking set, then a point P is called a non-essential
point of w, if the weight of every k-subspace containing P is at least ¢t 4+ 1
and w(P) > 1. Then the weight function w’ defined by

vy ) W(@) if @ # P,
wi@Q) {w(P)—l itQ=rp

is also a t-fold (n — k)-blocking set.

If w and w’ are weight functions, and w'(P) < w(P) for all points P €
PG(n, q), then we will say that w’ is contained in w, and denote this by
w < w.

The t-fold (n — k)-blocking set w is said to be minimal if w' = w for any
t-fold (n — k)-blocking set w’ contained in w.

A t-fold (n — k)-blocking set is not minimal if and only if it has non-essential
points. If we start reducing the weight of the non-essential points one by one,
always checking carefully that the resulting set /weight function is still a ¢-fold
(n — k)-blocking set, then after some steps we will arrive at a minimal ¢-fold
(n — k)-blocking set. It is a natural question to ask if there are conditions
which guarantee the uniqueness of this minimal ¢-fold (n — k)-blocking set.
Here, two weight fuctions w’ and w” are considered to be different if there is
a point P, such that w'(P) # w"(P).

In [12] such a condition is given for non-weighted 1-fold 1-blocking sets of
PG(2,q).

Result 1.1. (Szényi, [12]) A non-weighted 1-fold 1-blocking set of PG(2, q),
with size smaller than 2q+1 contains a unique minimal 1-fold 1-blocking set.

This result was recently generalized to non-weighted 1-fold (n — k)-blocking
sets of PG(n, ¢) in [9].

Result 1.2. (Lavrauw, Storme and Van de Voorde, [9]) A non-weighted 1-
fold (n — k)-blocking set of PG(n, q), with size smaller than 2¢"* contains a
unique minimal 1-fold (n — k)-blocking set.
Using the standard notation 6,, = qm:l_ !
m-dimensional subspace of PG(n, ¢), our result is the following.

for the number of points of an
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Theorem 1.3. A weighted t-fold (n — k)-blocking set of PG(n,q), with total
weight smaller than
(t + 1)qnik + enfkfl

contains a unique minimal weighted t-fold (n — k)-blocking set.

Note that Theorem 1.3 is stronger than Result 1.2. Examples in the last
section show that the bound is sharp if t =1, orif k =n — 1.

2 t-fold (n — k)-blocking sets containing two
minimal ¢-fold (n — k)-blocking sets
Let w be a t-fold (n — k)-blocking set. We will now define a new weight

function s,, on the points of PG(n, ¢). For a point P let s,,(P) be the largest
integer for which the weight function w’ defined by

o Jw(@) if @ # P,
w(Q>_{w(P)—sw(P) itQ =P

is also a t-fold (n — k)-blocking set. Then w(P) > s,(P) > 0, so if w(P) =0,
then s, (P) = 0. It is also clear that w is minimal if and only if s, = 0.

Lemma 2.1. For a t-fold (n — k)-blocking set w and P € PG(n,q) the
following are true:
(a) su(P) = min{w(P),PI)niﬁq (w(lg) — t)}, where Iy runs along the k-
ellg
dimensional subspaces containing P;
(b) su(P) = rrllgx{w(P) —w'(P)}, where w' runs along the t-fold (n — k)-

blocking sets contained in w.

Lemma 2.2. [fw is a t-fold (n—k)-blocking set which contains two different
minimal t-fold (n — k)-blocking sets, then there is a weight function v < w
and a line I* with the following properties:

(a) v(Ilg) >t for any k-subspace 11y not containing I*;



(b) v(Ilx) >t —1 for any k-subspace Iy, containing I*;
(c) there is a k-subspace 11}, containing l*, for which v(Il}) =1t — 1,

(d) fw| = fo] + 2.

Proof. Let w' and w” be two different minimal ¢-fold (n — k)-blocking sets
contained in w. Then there is a point P* € PG(n,q), such that w'(P*) >
w”(P*). Define w as follows:

oy Jw(@) i Q# P
Q)= {w’(P*) it Q = P~.

Then @ is a t-fold (n — k)-blocking set, w’, w” < 1, and Lemma 2.1(b) yields
that sg(P*) > w(P*) — w"(P*) = w'(P*) —w"(P*) > 0. (¥)

As w contains the minimal ¢-fold (n—k)-blocking set w’, we can start reducing
the weight of the points with w(P) > w'(P), one at a time, until we arrive
at w’. Formally, let w = w; > wy > -+ > w,, = w' be a sequence of
t-fold (n — k)-blocking sets, such that for ¢ € {1,2,...,m — 1} the t-fold
(n — k)-blocking sets w; and w;;1 only differ in one point P;, and w;,1(P;) =
w;(P;)—1. Clearly P; # P*, and the points P; are not necessarily all different.
It is also clear that w # w’, because w = w’ would mean that w” is contained
in w’, which is a contradiction, so m > 2 follows.

By Lemma 2.1(a), Su,,, < Su,, in fact, for any point @, either s, (Q) =
Suw, (Q), OF Sy, 1 (Q) = 54, (Q)—1. For the point P* we have sgz(P*) > 0 by (*),
and s, (P*) = 0 by the minimality of w’. So there willbeani € {1,2,...,m—
1} such that s,,(P*) = 1 and s,,,,(P*) = 0. The weight functions w; and
w41 only differ in the point P;. Then by Lemma 2.1(a) there is a k-space II;
which contains P; and P*, and has weight w;(Il}) = ¢ + 1. Also by Lemma
2.1(a) this yields s,,(P;) < 1, and as w;1(FP;) = w;(FP;) — 1, so P; is a non-
essential point of w;, then s,, (P;) = 1 follows. Thus for any k-dimensional
subspace I, which contains P* and/or P; we have w;(II) >t 4 1.

Let [* be the line connecting P; and P*, and define v to be the following
weight function:

WOy @ QPR
(Q) {wi(Q) —-1 ifQe{P* P}



Clearly |w| > |w;| = |v| + 2, and v is a weight function contained in w. The
weight of a k-subspace Il is w;_(IIx) — Il N {P*, P;}|. Thus, v, [* and IT}
satisfy the properties given in the lemma. O

3 t-fold nuclei

Ift=1,n=2, k=1, then Lemma 2.2 yields that if w is a 1-fold 1-blocking
set of PG(2, ¢q) containing two different minimal 1-fold 1-blocking sets, then
w contains a weight function v, which defines a blocking set of the affine
plane AG(2,q) := PG(2,q) \ I*. Thus |w(PG(2,q))| > s(q) + 2, where s(q)
denotes the size of the smallest 1-blocking set of AG(2,¢q). There are several
independent proofs for s(q) = 2¢ — 1, from which Result 1.1 follows (see
Jamison [8], Brouwer and Schrijver [5], Blokhuis [2], Szényi [12]).

In [2], s(q) = 2¢ — 1 is proved as a corollary of a theorem on nuclei of point
sets. Now we generalize the notion of nucleus to multisets/weight functions.

Definition 3.1. (1) Let S be a multiset of PG(n,q). A point P ¢ S will
be called a t-fold nucleus of S if every line through P meets S in at
least t points, counted with multiplicities.

(2) Let w be a weight function of PG(n,q). A point P € PG(n,q) with
w(P) = 0 will be called a t-fold nucleus of w if every line through P
has weight at least ¢.

For S to have nuclei, clearly |S| > t6,,_1 is needed. Let |S| = t0,,_1+7r, r > 0.

Note that for |S| = t0,—1 —r, r > 0, a ‘symmetric’ version of the definition
can be: a point P ¢ S is a t-fold nucleus of S, if every line through P meets
S in at most ¢ points, counted with multiplicities.

The notion of nucleus was first introduced by Mazzocca for affine sets for
n=2,t=1and r = 0. Blokhuis extended the notion to r > 0 in [2] and to
t > 1 1in [3], and Sziklai generalized the definition for sets of the projective
space PG(n,q) in [11]. (The ’symmetric’ version was introduced in [7] and

[11].)
Denote by N*(S) the set of t-fold nuclei of S, and let p be the characteristic
of the field GF(q).



Result 3.2. (Sziklai, [11]) Let S be a set of points in PG(n,q) with |S| =
t0,_1 + 1, 7> 0. Let Hy, be a given hyperplane, |S N Hoo| = Moo. Then

IN'(S)\ Hoo| < (r+1)(q — 1),

provided that (w"”:”fm("’) # 0 (mod p).

Result 3.2 was proved in the case when m,, = 0, n = 2 by Blokhuis and
Wilbrink (r = 0, ¢t = 1, see [4]) and by Blokhuis (for » > 0, t = 1, see [2], and
for r >0, t > 1 see [3]). The ‘symmetric’ version was also settled by Sziklai
in [11].

As Result 3.2 is not applicable when (w"*rfl_mw) = 0 (mod p), to obtain

an upper bound in this case, Ball presented the following theorem.

Result 3.3. (Ball, [1]) Let S be a set of points in PG(n,q) with |S| =
t0,_1+ 1, r >0, and let Hy, be a given hyperplane, |S N Hy| = My Then

INY(S)\ Hoo| < (r+1+j)(q— 1),
provided that the binomial coefficient

(t&n_l T — Moo

for some j > 0.

The proof of Result 3.2 and 3.3 can be easily copied for multisets/weight
functions and we obtain the following lemma.

Lemma 3.4. Let w be a weight function on PG(n,q) and Hy, a given hyper-
plane with w(Hy) = My Suppose that w(PG(n,q)) = t0,_1+r, with r > 0.
Then if

(t&nl + 7 — M

for some j >0, then the number of t-fold nuclei of w in PG(n, q) \ Hs is at
most (r+1+j)(¢ —1).



Proof. If the binomial coefficient is nonzero, then w(PG(n,q) \ Hs) > 0, so
the number of ¢-fold nuclei in PG(n,q) \ Hy is at most ¢" — 1. Thus the
statement is trivially true for r +1 > 6,,_1, so from now on we will suppose
r < @n_l — 1.

Identify the points of AG(n, q) := PG(n, q)\ H with the elements of GF(¢"),
and the points of H,, with the 6,_1-st roots of unity of GF(¢") in the usual
way. The points of PG(n,q) will be denoted by capital letters, and the
corresponding elements of GF(¢") by the same lowercase letters. Then for
points A # B € AG(n,q), the line AB contains the ideal point C' € H, if
and only if (a — b)7~! = ¢ holds.

Let S = {ay, a9, ..., a1, ,+r—m. tU{c1,...,Cm. } be the multiset of elements
of GF(q") corresponding to the points of nonzero weight of PG(n,q) \ Hs
and H,, respectively, such that @ € § has multiplicity w(A) in S for the
corresponding point A € PG(n, q).

Let X and Y be variables, and define

B(X) = {(X —ai)qflli = 1,...,159”,1 +7‘—moo}U {Cl,...,Cmoo},

and
Fy,X)= [] (v-b).
beB(X)
Then
t0n_1+T
F,X)= > (1) o;(B(X))Y"n+,
§=0

where 0;(B(X)) denotes the jth elementary symmetric polynomial of the set
B(X).

Suppose that x € GF(¢") is an element corresponding to a t-fold nucleus of
w. Then B(z) contains every 6,_1-st root of unity with multiplicity at least
t, so

F(Y,z) = (Y% —1)"(Y" + terms of lower degree).

Asr < 0, 1 — 1, the coefficients of the terms

Ytenfl_l Yt0n71—2 Y(t—1)9n,1+r+1
, y e

are 0 in F (Y, z). Thus 0,414+;(B(z)) =0for 0 <5 <6,y —r — 2.



The degree of 0,414+;(B(X)) as a polynomial of X is at most (r+1+j)(¢g—1),
with equality precisely if the binomial coefficient

0,1 +7 — Moo
r+1+jy
does not vanish. In this case 0,414+;(B(X)) is not the zero polynomial, and

every nucleus is a root of it, hence the number of nuclei is at most its degree:
(r+1+74)(¢g—1). O

We will now use Lemma 3.4 forn =2, j =0 and my =t — 1.

Lemma 3.5. Suppose that v is a weight function of PG(2,q) such that there
is a line lo, with v(lo) =t — 1, while all other lines have weight at least t.
Then |v| > (t +1)qg — 1.

Proof. Assume first that ¢ < g — 2. Suppose on the contrary that v is such
a weight function, yet the total weight of v is less than (¢t + 1)g — 1. We
may suppose |[v| = (t + 1)g — 2 (or else increase the weight of some of the
points of PG(2,¢) \ l). All lines other than [, have weight at least ¢, which
means that all the points of PG(2,¢) \ I with weight 0 are ¢-fold nuclei of
v. Asv(PG(2,9)\l) = (t+1)g—2—(t—1)=tqg+qg—t—1,PG(2,9) \ I
has at most tq + ¢ —t — 1 points with positive v weight (and exactly this
many if every point of PG(2,q) \ I has weight < 1). So v has at least
@ —(tg+q—t—1)=¢*—tq—q+t+ 1 t-fold nuclei.

We will use Lemma 3.4 to prove that this is not possible. As
wf=0Ft+1)g—2=tqg+1)+q—t—-2

and

(t(q+1)+q—t—2—(t—1)> _ (tq+q—t—1

0 d
G—t—2+1 g—1t—1 )# (mod p)

by Lucas’ theorem, so Lemma 3.4 yields that the number of ¢-fold nuclei of
visat most (—t—1)(¢q—1) = ¢* —tq — 2¢+t + 1, a contradiction. The
same arguments prove that, if |v| = (t+1)g — 1, then v(P) < 1 for all points
P € PG(2,9) \ lso-

For t > ¢—1, the assertion can be proved by summing the weights of all lines
through a carefully selected point P. If P € PG(2,q) \ l and v(P) = 0,
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then |[v| > t(¢+1) =tq+t >tqg+q—1. If P € I, and v(P) = 0, then
lv| > tg+t—1 and so if ¢ > ¢, then we are done. If ¢t = ¢ — 1 and all
points of PG(2,q) \ s have positive weight, then v(PG(2,¢) \ ls) > ¢*, so
lv] > ¢*+t—1> (t+1)g—1. With this we have proved that if we can select
a point P € PG(2, q) with v(P) = 0, then the assertion is true.

Assume now that v(P) > 0 for every point, let m = minp v(P) and define a
new weight function o, by 0(P) := v(P) —m. Then 9(lo) =t —m(q¢+1)—1
and 0(l) > t —m(q+ 1) for any line | # l. If t —m(¢+ 1) < g — 2 then
we can use the first part of the proof to prove |0| > (t —m(¢+ 1)+ 1)g — 1.
If t —m(q+1) > q— 1 then we can use the second part, as there will be a
point with zero v weight. Then

lv| = [0|+m(g®+q+1) > (t—m(g+1)+1)g—14+m(¢* +q+1) = (t+1)g—1+m.

Hence the result is established. O

4 Proof of the main theorem

Theorem 1.3. A weighted t-fold (n — k)-blocking set of PG(n,q), with total
weight smaller than
(t+ 1" + Ok

contains a unique minimal weighted t-fold (n — k)-blocking set.

Proof. Assume that w is a weighted t-fold (n — k)-blocking set of PG(n, q)
which contains two different minimal ¢-fold (n — k)-blocking sets. We will
prove |w| > (t +1)¢" % + 0, _1_1. By Lemma 2.2 there is a weight function
v < w, a line [* and a k-subspace II; containing [*, such that

=
o=
N
v
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S
=
@
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@
=
<
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=
o
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o
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=
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o
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=
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Case 1

Assume first that £ = 1. Then II; = [* is a line, and v(I*) = ¢t — 1, while
the v weight of any other line is at least t. If n = 2, then |v| > (t +1)g —1
by Lemma 3.5, which proves the theorem in this case. Now assume n > 3
and let II be a plane containing the line [*. Then the weight function v
restricted to the plane II fulfills the requirements of Lemma 3.5, so v(II) >
(t + 1)g — 1. This is true for all the planes containing the line [*, so clearly
0] >0 0 (t+1)g—1—(t=1)+t—1=(t+1)g" ' +6, 2—2.

Case 2

For n > 3 and k£ > 2 we will use induction on n to prove that

lo| > (t+1)¢"F 4+ 0,_p_1 — 2.

Case 2a Let V € II; \ I* be a point with v(V) = 0. Consider the quotient
space PG(n,q)/V = PG(n — 1,q), and the weight function ¢ induced by v
on PG(n — 1,q). Clearly 9(PG(n — 1,q)) = v(PG(n,q)). The plane (V,*)
corresponds to a line, and a k-space containing V' corresponds to a (k — 1)-
space. It is not hard to check that o fulfills requirements (a)-(c) with (V,*)/V
as [* and I} /V as II}_,, and so by induction

9(PCG(n—1,q)) > (t+1)¢" 4+ 0,_p_1 — 2.

Case 2b Suppose now that for all P € II; \ I*: v(P) > 0, but there is a
point v(V) =0. Then t — 1 > 6, — (¢ + 1). Increase the weight of one point
(# V) of I* by one to obtain the new weight function v, which is now a ¢-fold
(n — k)-blocking set of PG(n, q). We will prove that |[v/| > tq"* + 60, — 1.
This is generally not true for ¢-fold (n — k)-blocking sets of PG(n, q), only if
t is large enough.

Assume, on the contrary, that [v'| < t¢" % + 6, — 2. Then we can find a
line ¥4 containing V', such that

=@+ T4

' (%)

k—1 ’
q

because if all lines through V' had v weight more than

t— ("' +¢" 2+ +q)
qkfl

Y
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t-(@ " +¢"+ g 1
qkfl ’

then all these weights would be at least > =)
q

and then the total weight of v" would be

t_qkfl_qk‘72_.___q 1
/
o] = < gkl T g1 !

t k;+ ]{,‘—1_’_..._’_2 k—1+ k}—2+~.'+ eni
_t¢1b+<q 4" +q Np 1 q g, b

qn_1+qn_2+'+qk_

> tq"F +
1

We will now prove that if 1 < j7 <k —2 and ¥, is a j-space with

=@+ 4 )

v'(%5)

)

q"
then we can find a (j + 1)-space ¥;1; D X;, with

t— (@7t +q)
g1 .

U/(Zjﬂ) <

If this were not true, then we would have

, t—(gF 1 +... 4+ , ,
o> (S0 D 4(2)) g + ()

qk—j—l
= gk—i-1 N g7 nmil

Pl A R ')

qk—j = tqnik + Qn,k + 1.

Thus we can find a (k — 1)-space ¥j_1, with v/(2;_1) < t_Tq. But all k-spaces

containing Y;_; have v" weight at least ¢, so

t t—
|mza—5+nﬁwwwzﬁ=m%Mwwwﬁ7

a contradiction.

Case 2c There is one more case remaining to be proved: if v(P) > 0 for all
points P € PG(n,q). Then let m := minpv(P) and let © := v —m. Then
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0 fulfills requirements (a)-(c) with t:=1t—m-0. Cases 2a and 2b prove
0] > tq" % + 0, — 2 and then

o] = o] +m -0, > (t —m-0,)¢" " + Oy, —2+m -0,
= tqnik + enfk — 2+ menfkfl-

5 Examples

In this section we investigate the sharpness of Theorem 1.3. We are looking
for weighted t-fold (n — k)-blocking sets of size (t + 1)¢"~* + 6,,_1_1, which
contain two different minimal ¢-fold (n — k)-blocking sets.

5.1 The caset=1

Example 1 Let IT! and I1% be two (n — k)-dimensional subspaces of PG(n, q)
meeting in an (n —k — 1)-dimensional subspace. Then B := IT* UTI? contains
two different minimal 1-fold (n — k)-blocking sets (IT' and I1?), and |B| =
2qn_k + 6 —p—1. [ ]

Corollary 5.1. Theorem 1.3 is sharp, if t = 1.

The following proposition is a corollary of Theorem 1.3, but in fact equivalent
toit if ¢t =1 and k = 1. Corollary 5.3 can also be found in [13].

Proposition 5.2. Let B be a minimal 1-fold (n—1)-blocking set of PG(n, q),
and P € B. Then there are at least > 2¢" ' + 0,,_o — | B| tangents thorugh
P.

Proof. Suppose that there are k tangents through P. Take points Py, P, ...,
Py, one from each of the tangents, P; # P. Clearly (B \ {P})U{Pi,..., B}
is a 1-fold (n — 1)-blocking set. It contains a minimal 1-fold (n — 1)-blocking
set B', and B # B’. Thus BU{P,,..., P} contains two different minimal
1-fold (n — 1)-blocking sets, so |B| +k > 2¢"' + 6,,_». O
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Corollary 5.3. Let B be any 1-fold (n — 1)-blocking set of PG(n,q), and
P € B an essential point of B. Then there are at least > 2¢"* +6,,_o — | B|
tangents thorugh P.

Construction 1 Let B be a 1-fold (n — 1)-blocking set which has a point
P € B, through which there are exactly 2¢"~! + 6,,_, — | B| tangents to B.
Then adding a point to every tangent will result in a 1-fold (n — 1)-blocking
set of size 2¢" ' + 6,,_», which contains two different minimal 1-fold (n — 1)-
blocking sets. O]

Construction 2 Embed construction 1 in an (n—k+1)-dimensional subspace
of PG(n, q) to obtain 1-fold (n—k)-blocking sets of size 2¢"*+6,,_;_1, which
contain two different minimal 1-fold (n — k)-blocking sets. O

Note that blocking sets used in the above construction exist: the so called
Rédei type blocking sets always contain points which are on exactly 2¢" ! +
0,—2 — | B| tangents (see [10]).

5.2 The case t > 2

We will use the following notation: for the multisets B; and Bs, with associ-
ated weight functions w; and wy respectively, By U B, will denote the multiset
defined by the weight function max{ws,ws}, while By + By will denote the
multiset defined by the weight function w; + ws.

Note that the proof of Lemma 3.5 yields that for n = 2, £ = 1 it is not
possible to have v(PG(2,q)) = (t +1)¢ — 1, if t > ¢+ 1, and so the proof of
Theorem 1.3 yields that the bound cannot be sharp if ¢t > ¢ + 1. Also from
the proofs of Lemma 3.5 and Theorem 1.3 it follows that if t < ¢ — 2 and B
is a weighted ¢-fold (n — k)-blocking set which contains two different minimal
t-fold (n — k)-blocking sets and |B| = (t + 1)¢" % + 6,,_x_1, then only points
on one line (the line [*) can be multiple points.

Example 2 Let II be a plane of PG(n, k), let Iy, [, ...,l; be different lines
in IT through a common point P, and [;;; a further line of II, with P ¢ [,,.
Then the multiset B := (I; + Iy + -+ + ;) U ;41 is a t-fold 1-blocking set in
PG(n,q), |B|=tl¢g+1)+(q+1—t)=(t+1)g+1,and [y +ly+---+1; and
lLiU(ly+---+1;) Ul are two minimal ¢-fold 1-blocking sets contained in
B; the latter one differs from B only in the point P. O
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Corollary 5.4. Theorem 1.3 is sharp if k=n—1,2 <t <gq.

The following proposition is again a corollary of Theorem 1.3, which is in
fact equivalent to it if K = 1. For n = 2 and with an upper bound on the
size of B, it can also be found in [6].

Proposition 5.5. Let B be a minimal t-fold (n—1)-blocking set of PG(n, q),
and P € B. Then there are at least > (t+1)q" ' +6,_o—|B| t-secants through
P.

Proof. Suppose that there are k t-secants through P. Take points Py, P, ...,
Py, one from each of the t-secants, P; # P. Clearly the t-fold (n—1)-blocking
set B\{P}+{P,..., P} contains a minimal ¢-fold (n — 1)-blocking set B’,
and B # B'. Thus B + {Py,..., P;} contains two different minimal ¢-fold
(n — 1)-blocking sets, so |B| +k > (t + 1)¢" ' 4 0,_». O

Construction 3 Let B be a minimal ¢-fold (n — 1)-blocking set which has
a point P € B, through which there are exactly (¢t + 1)¢"" ' + 6,,_o — | B|
t-secants to B. Then adding a point to every t-secant will result in a ¢-fold
(n — 1)-blocking set of size (t + 1)¢g"~! + 6,5 and containing two different
minimal ¢-fold (n — 1)-blocking sets. O

Construction 4 Embed Construction 3 in an (n — k + 1)-dimensional sub-
space of PG(n, q) to obtain ¢-fold (n — k)-blocking sets of size (¢ + 1)¢" " +
0p—k—1, which contain two different minimal ¢-fold (n — k)-blocking sets. [J

Forn =2k =1and 2 <t < qone can find t-fold 1-blocking sets in PG(2, q)
which have points that are on exactly (t+1)g+1—|B]| t-secants to B: take the
sum of ¢ Rédei type blocking sets which have a common Rédei line, and share
exactly one point, that is not on the Rédei line. Example 2 is a special case
of this: the sum of ¢ lines sharing a common point. Then, with Construction
4, we get examples forn > 3, k =n —1 and 1 <t < ¢q. Unfortunately, for
t >2,n>3and k =1, in the minimal ¢-fold (n — 1)-blocking sets examined
by the author all points have at least t0, 1 — (¢ + 1 —t)¢" 2 — | B| t-secants
to B. Thus it may be conjectured that the correct bound in Theorem 1.3
should be
0+ (g +1—t)g" 1
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