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Abstract. The main result of this paper is that point sets of PG(n, q), q = p3h, p ≥ 7
prime, of size less than 3(qn−1 +1)/2 intersecting each line in 1 modulo 3

√
q points (these

are always small minimal blocking sets with respect to lines) are linear blocking sets. As
a consequence, we get that minimal blocking sets of PG(n, p3), p ≥ 7 prime, of size less
than (3p3(n−1) + 1)/2 with respect to lines are always linear.

1. Introduction

Throughout this paper PG(n, q) will denote the n-dimensional projective space over the
Galois field of order q, where q = ph, p ≥ 7 prime. An (n− k)-blocking set B in PG(n, q)
(0 < k < n) is a set of points intersecting each k-dimensional subspace. The smallest
(n− k)-blocking sets are the (n− k)-dimensional subspaces, see [11]. An (n− k)-blocking
set containing an (n−k)-dimensional subspace is called trivial. A point P of B is essential
to B, if there exists a k-space through P , called the tangent of B at P , intersecting B in
P only. The blocking set B is minimal, if each point of it is essential. Finally, B is small,
when |B| < 3(qn−k + 1)/2.

Small minimal (n− k)-blocking sets are of special interest, since there is hope to classify
them. Lines intersect small (n−k)-blocking sets in either 0 or 1 modulo p points, see [17],
[16], [18]. A wide class of small minimal blocking sets, called linear ones, were constructed
by Lunardon [9], Polito and Polverino [12]. Sziklai’s [16] linearity conjecture says that they
are the only examples.

The main result of this paper is that point sets of PG(n, p3h), n > 2, p ≥ 7 prime, with
cardinality less than 3(qn−1 + 1)/2 intersecting each 1-space (i.e. line) in 1 modulo ph

points are linear blocking sets. As a consequence, we get that small minimal blocking
sets of PG(n, p3), n > 2, p ≥ 7 prime, are linear. This confirms Sziklai’s conjecture in
this particular case. For planar point sets, this was already proved by Polverino [14] and
Polverino and Storme [13], see Remark 2.6.

We deal with the case n = 3 separately. Our proof also yields characterizations of Rédei
type blocking sets in PG(3, q3). In the case n = 3, we give an explicit description of the
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non-Rédei example. Similar results for (n − k)-blocking sets in PG(n, q3) were obtained
independently by Lavrauw, Storme, Van de Voorde [7] and also in Harrach, Metsch [5].

2. Small minimal blocking sets

There has been a lot of attention paid on small minimal (planar) blocking sets. Bruen
showed that a non-trivial blocking set has size at least q +

√
q + 1. When q is a square,

minimal blocking sets of this size exist; they are Baer subplanes (subplanes of order
√
q),

see [6].

For the construction of small linear blocking set we need the definition of linear point
sets, see Lunardon [8], [10].

Definition 2.1. ([9], [12]) (1) A point set S of PG(n, qt) is said to be linear if there
is a projective space PG(n′, qt) containing PG(n, qt) such that S is the projection of a
subgeometry PG(n′, q) ⊂ PG(n′, qt) from a suitable subspace (vertex) onto PG(n, qt).

(2) A point set S of PG(n, qt) is said to be linear if the (n + 1)−dimensional GF(qt)-
vectorspace V defining PG(n, qt) has a GF(q)-linear subspace W such that a point of
PG(n, qt) belongs to S if and only if it is defined by a vector of W .

In [10] Lunardon, Polito and Polverino prove the equivalence of these two definitions.
Linear blocking sets are obtained by the following construction.

Construction 2.2. (Linear blocking sets) Let 0 < k < n be integers and assume that
PG(n, qt) is embedded in PG(t(n − k), qt). Furthermore, let P be a (t(n − k) − n − 1)-
dimensional subspace not intersecting PG(n, qt). Then the projection of any subgeometry
(disjoint from P and) isomorphic to PG(t(n − k), q) from P onto PG(n, qt) is a small
minimal (n− k)-blocking set in PG(n, qt). �

In [8] Lunardon showed that small minimal planar blocking sets of Rédei type are linear.
For higher dimensions, this was proved by Storme and Sziklai, see [15]. An (n−k)-blocking
set B of PG(n, q) is called a Rédei type blocking set, if there is a hyperplane meeting B
in |B| − qn−k points. Such a hyperplane is called a Rédei hyperplane of the set.

Result 2.3. Let B be a minimal (n − k)-blocking set in PG(n, q), q = pm, p prime, of
size less than 3(qn−k + 1)/2.

(1) ([17], [18]) Then each subspace of dimension at least k intersects B in 1 modulo p
points.

(2) (Sziklai [16]) Let e be the largest integer such that B intersects each k-space in 1
modulo pe points (from above e ≥ 1), then e|m. Furthermore, if the k-space L
intersects B in pe + 1 points, then L ∩B is isomorphic to PG(1, pe). �

Denote by [lq(n, k, e), uq(n, k, e)] the smallest interval containing the sizes of all the small
minimal (n − k)-blocking sets for which e is the integer defined in Result 2.3 (2). In
[18] it is proved that these intervals are disjoint, furthermore, if e′|m and e′ < e, then
uq(n, k, e) < lq(n, k, e

′). Thus a minimal (n − k)-blocking set whose size belongs to the
interval [lq(n, k, e), uq(n, k, e)] intersects each k-space in 1 mod pe points.

For point sets of size less than 3(qn−k + 1)/2 (small point sets) the converse of Result 2.3
(1) is also true:
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Result 2.4. ([18]) Assume that B is a point set in PG(n, q), q = pm, 2 < p prime, with
|B| < 3(qn−k + 1)/2. Then B is a minimal (n− k)-blocking set if and only if B intersects
each k-space in 1 modulo p points. �

Now we discuss small minimal blocking sets in PG(2, q). The famous result of Blokhuis,
[1] shows that for q = p prime, there are no small minimal non-trivial blocking sets
in PG(2, p) at all. If q = p2, p prime, then small minimal non-trivial blocking sets in
PG(2, p2) are Baer subplanes, see [17].

Result 2.5. (Polverino [14], Polverino and Storme [13]) A non-trivial blocking set in
PG(2, p3h), p ≥ 7, meeting every line in 1 mod ph points is either a Baer subplane (and
h is even) or one of the following type:

(1) a minimal blocking set of size p3h + p2h + 1, projectively equivalent to the set
{(x, Tr(x), 1)||x ∈ GF(p3h)} ∪ {(x, Tr(x), 0)||x ∈ GF(p3h) \ {0}}, where Tr is
the trace function from GF(p3h) to GF(ph) (i.e. Tr : GF(p3h) →GF(ph) : x 7→
x+ xp

h
+ xp

2h
);

(2) a minimal blocking set of size p3h + p2h + ph + 1, projectively equivalent to the set

{(x, xph , 1)||x ∈GF(p3h)} ∪ {(x, xph , 0)||x ∈GF(p3h) \ {0}}.

The next remark summarizes some properties of the blocking sets of Result 2.5. For more
details the reader is referred to [14] and [13].

Remark 2.6. ([14],[13]) All possible types of blocking sets in Result 2.5 are linear (and
hence each line intersects it in a linear point set).

The Baer subplane has p3h + p3h/2 + 1 points and every line meets it in 1 or p3h/2 + 1
points.

The minimal blocking set of size p3h + p2h + 1 has a unique point lying on ph + 1 lines
containing p2h + 1 points of the blocking set. The minimal blocking set of size p3h + p2h +
ph + 1 has exactly one (p2h + ph + 1)-secant. In both cases, all other lines are 1-secants
or (ph + 1)-secants, the points of the blocking set on a (ph + 1)-secant form a subline of
order ph.

From here on a blocking set will always mean an (n− 1)−blocking set of PG(n, q).

3. Small blocking sets in PG(n, p3h)

3.1. The main result. The smallest minimal blocking sets of PG(n, q), q = p3h, are
trivial (see e.g. [11]), these are the blocking sets of the interval belonging to e = 3h.
When q is a square (hence 2|h), then there are point sets intersecting each line in 1
modulo p3h/2 points and in this case they give the second interval (e = 3h/2). These
blocking sets are certain Baer-cones, see [19]. The next interval is when e = h and

our main aim is to characterize point sets of size at most uq(n, 1, h) intersecting each line
in 1 mod ph points; these are minimal blocking sets intersecting each line in 1 modulo ph

points.

Result 3.1. (Polverino [14]) A small minimal blocking set in PG(n, q), q = pmh intersect-
ing each line in 1 mod ph points has size at most uq(n, 1, h) < qn−1+qn−2p2h+qn−2(ph+3).
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It is easy to see that certain linear blocking sets satisfy our condition.

Example 3.2. Embed PG(n, p3h) in PG(t(n− 1), p3h), where t = 2, 3 when 2|h and t = 3
otherwise. Furthermore, let P be a (t(n−1)−n−1)-dimensional subspace not intersecting
PG(n, p3h). Then the projection of any subgeometry isomorphic to PG(t(n−1), p3h/t) from
P onto PG(n, p3h) is a small minimal blocking set in PG(n, p3h) intersecting each line in
1 modulo ph points. �

The main result of our paper is that we show that these are the only minimal blocking
sets intersecting each line in 1 modulo ph points.

Theorem 3.3. Let B be a point set of PG(n, q), q = p3h, p ≥ 7 prime, intersecting each
line in 1 mod ph points, and |B| < 3

2
(qn−1 + 1). Then B is a linear blocking set.

As a corollary, this shows that small minimal blocking sets of PG(n, q), q = p3, p ≥ 7 are
linear. As a further corollary minimal blocking sets of size at most lq(n, 1, s) are proven
to be linear, where s is the largest integer so that s < h and s|3h.

3.2. Proof of Theorem 3.3 for n = 3. Throughout this section it will be assumed that
B is a point set of PG(3, q), q = p3h, p ≥ 7 prime, intersecting each line in 1 mod ph

points, and |B| < 3
2
(q2 + 1).

The following lemma follows from Result 3.1.

Lemma 3.4. |B| < p6h + p5h + p4h + 3p3h. �

The next lemma is crucial when characterizing the above point sets.

Lemma 3.5. A plane π either intersects B in a small minimal blocking set, or contains
more than p4h − p3h points from B.

Proof. Let x = |B ∩ π|, where π is a plane of PG(3, p3h). Let bi be the number of lines
of π meeting B in exactly i points. As π has b := q2 + q + 1 lines and r := q + 1 lines on
each point, standard counting arguments give the following three equations.∑

i

bi = b∑
i

bii = xr∑
i

bii(i− 1) = x(x− 1)

Combining these we find∑
i

bi(i− 1)(i− ph − 1) = x(x− 1)− (ph + 1)xr + (ph + 1)b.

As every line meets B in 1 mod ph points, the left hand side is non-negative. As the
right-hand side is quadratic in x and negative for x = 3

2
q + 1 and x = qph − q, the

assertion follows. �

Corollary 3.6. On any line of PG(3, p3h) there has to be a plane which intersects B in
a small minimal blocking set.
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Proof. Suppose on the contrary, that all the planes on l contain more than p4h − p3h
points from B. Then counting the points of B on these planes we get

|B| > (p3h + 1)(p4h − p3h − |l ∩B|) + |l ∩B| > p7h − p6h − |l ∩B|p3h,
but |l ∩B| ≤ p3h + 1, which contradicts the bound of Lemma 3.4, as p ≥ 7. �

Corollary 3.7. For l an arbitrary line of PG(3, p3h), l∩B is a linear set of size 1, ph +1,
p2h + 1, p2h + ph + 1, p3h + 1, or p3h/2 + 1 if 2|h.

Proof. From above we have that every secant of B has to be a secant of a small minimal
planar blocking set. The secants of these sets are described in Remark 2.6. �

The following is a technical lemma which will be useful for us.

Lemma 3.8. (1) On a (ph + 1)−secant there are less than 4 planes intersecting B in
more than p4h − p3h points.

(2) On a (p2h + 1)− or a (p2h + ph + 1)−secant there are less than 2ph planes intersecting
B in more than p4h − p3h points.

(3) On a line totally contained in B there are less than p2h+3ph planes containing further
points of B.

Proof.

(1) Counting the number of points on the planes through a (ph + 1)−secant l, with K the
number of planes on l which intersect B in more than p4h − p3h points, gives

|B| > K(p4h − p3h − ph − 1) + (p3h + 1−K)(p3h + p2h − ph).

For K ≥ 4 this is in contradiction with Lemma 3.4.

(2) Counting the number of points on the planes through a (p2h + 1)− or a (p2h + ph +
1)−secant gives

|B| > K(p4h − p3h − p2h − ph − 1) + (p3h + 1−K)p3h.

For K ≥ 2ph this is in contradiction with Lemma 3.4.

(3) A plane on a line totally contained in B and containing a further point of B intersects
B in at least p4h + ph + 1 points, as B intersects every line in 1 mod ph points. Having at
least p2h + 3ph such planes on a line totally contained in B would lead to a contradiction
with Lemma 3.4. �

In case 2|h we will now characterize the blocking sets having a (p3h/2 + 1)−secant.

Lemma 3.9. If 2|h and B has a (p3h/2 + 1)−secant, then a line can intersect B in 1,
p3h/2 + 1 or p3h + 1 points only.

Proof. If B has a (p3h/2 + 1)−secant, then by Corollary 3.6 and Result 2.5 there has to
be a plane π intersecting B in a Baer subplane. Through a point P ∈ π ∩ B, there are
p3h/2 + 1 (p3h/2 + 1)−secants in π. Suppose now that there is a line l through P , not in
π which intersects B in ph + 1, p2h + 1 or p2h + ph + 1 points. The planes containing l
and a (p3h/2 + 1)−secant have to intersect B in more than p4h− p3h points (see Result 2.5
that a small minimal planar blocking set having a (p3h/2 + 1)−secant can have tangents
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or (p3h/2 + 1)−secants only), but there are p3h/2 + 1 such planes, which is in contradiction
with (1) and (2) of Lemma 3.8. �

Corollary 3.10. If B has a (p3h/2 + 1)−secant, then B meets all lines in 1 mod p3h/2

points. In [19] it was proved that such point sets are so-called Baer cones, which are in
fact projections of a PG(2(n− 1), p3h/2) subgeometry and thus are linear.

For the rest of this section we will assume that B has no (p3h/2 + 1)−secants, and thus no
Baer plane sections. Thus all lines intersect B in a linear set of size 1, ph + 1, p2h + 1,
p2h + ph + 1, or p3h + 1. A plane can intersect B in a line, a small minimal blocking set
described in (1) or (2) of Result 2.5 or in more than p4h − p3h points.

Definition 3.11. We will call a point P ∈ B special, if there is a plane π through P for
which the following holds: π ∩ B is the small minimal blocking set described in (1) of
Result 2.5, and P is the point of this point set playing the special role.

The following lemma summarizes some properties of the special points of B.

Lemma 3.12. (1) On every (p2h + 1)−secant there is exactly one special point.

(2) The lines through a special point can be tangents, lines totally contained in B, or
(p2h + 1)−secants only.

(3) Two special points are always connected by a line contained in B.

Proof. (1) The (p2h + 1)-secant of the Rédei type blocking set of size (p3h + p2h + 1)
on the line y = 0 is just A = {x : Tr(x) = 0} ∪ {(∞)}, with special point (∞). Let G
be the subgroup of PGL(2, p3h) leaving A invariant. The stabilizer G(∞) is transitive on
A \ {(∞)}, since it contains all translations by a trace zero element. If there were two
special points then G itself would also be transitive on A, so |G| would be divisible by
|A| = p2h + 1. This is impossible, since the g.c.d. of p2h + 1 and (p3h + 1)p3h(p3h − 1) is
at most 2.

(2) Let P be a special point, l a (p2h + 1)−secant through P . According to Lemma 3.8,
more than p3h + 1− 2ph of the planes on l intersect B in the small minimal blocking set
(1) of Result 2.5, thus more than (p3h + 1− 2ph)ph + 1 of the lines through P have to be
(p2h + 1)−secants.

If m is a (p2h +ph +1)−secant on P , then because of Corollary 3.6 there has to be a plane
on m in which there are (ph + 1)−secants on P .

Now let m be a (ph + 1)−secant on P . Assume that a plane π on m intersects B in
the small minimal blocking set (1) of Result 2.5. From Remark 2.6 it is clear that in
this blocking set, on a special point there are tangents or (p2h + 1)−secants only. Thus
the special point of π ∩ B has to be a point Q, different from P and the line PQ is a
(p2h + 1)−secant of π ∩ B. But this would be in contradiction with (1), because P and
Q would be two special points of the line PQ. Thus all the planes on m intersect B in
the small minimal blocking set (2) of Result 2.5 or in more than p4h − p3h points. By (1)
of Lemma 3.8, there can be at most 3 planes meeting B in more than p4h − p3h points,
and thus there can be at most 3 planes on m containing (p2h + 1)−secants on P , which
means that the number of (p2h + 1)−secants on P can be at most 3p3h, a contradiction.
Thus there are no (ph + 1)− or (p2h + ph + 1)−secants on P .
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(3) is a direct consequence of (1) and (2). �

Lemma 3.12 (1) was also proved by Fancsali and Sziklai, see [3] and [4] where a more
general case is discussed.

Proposition 3.13. If π is a plane of PG(3, q) such that |π ∩ B| > p4h + 3p3h, then B is
of Rédei type, where π is a Rédei plane.

Proof. First observe that there are no special points outside π, because if S ∈ B were
a special point, S /∈ π, then according to Lemma 3.12, all lines connecting S with a point
of B ∩ π would intersect B in at least p2h + 1 points and counting the points of B on the
lines through S would give |B| > (p4h + 3p3h)p2h + 1, contradicting Lemma 3.4.

Now we will prove that there are no (ph + 1)−secants in π. Suppose on the contrary that
l is a (ph + 1)−secant in π. If a plane through l intersects B in a small minimal blocking
set, it has to be the one given in (2) of Result 2.5, as there are no special points outside
π. But then even if all the planes through l (other than π) would intersect B in small
minimal blocking sets, we would get to a contradiction with Lemma 3.4, because counting
the points of B in these planes would give |B| > p4h + 3p3h + p3h(p3h + p2h). Thus π ∩B
has no (ph + 1)−secants.

Let l 6⊂ π be a line meeting π in the point P ∈ π \B. Assume |l∩B| > 1, that is (as there
are no special points outside π) |l∩B| = ph + 1 or p2h +ph + 1. Let α be a plane on l, and
let m := α∩π. If l is a (ph+1)−secant of B and m a (p2h+ph+1)−secant, then the plane
α meets B in more than p4h − p3h points, because in a small minimal planar blocking set
every (ph + 1)−secant has to meet the (p2h + ph + 1)−secant in a point belonging to the
set (see Result 2.5), but P = l ∩m /∈ B. With similar arguments |α ∩ B| > p4h − p3h if
l is a (ph + 1)−secant and m a (p2h + 1)−secant, and clearly |α ∩ B| > p4h − p3h if l is a
(p2h + ph + 1)−secant and m a (p2h + 1)−secant or a (p2h + ph + 1)−secant.

By Lemma 3.8, as l is a (ph+1)−secant or a (p2h+ph+1)−secant, then there are less than
2ph planes on l intersecting B in more than p4h−p3h points. But then by these reasonings
there are less than 2ph lines on P meeting B ∩ π in more than one point. As every line of
π on P contains at most p2h +ph +1 points of B, we have |B∩π| < p3h +1+2ph(p2h +ph),
but this is in contradiction with the lower bound on B ∩ π.

Thus for the point P ∈ π \ B, all the lines through P , but not in π are tangents to B,
and this means that |B \ π| = p6h, and so B is of Rédei type with π a Rédei plane. �

Corollary 3.14. If there is a line contained in B and a special point of B not on this
line, then B is of Rédei type.

Proof. If a plane contains a line of B and a special point of B not on the line, then it
contains at least p2h(p3h + 1) + 1 points of B, because by (2) of Lemma 3.12 any line on a
special point which intersects B in at least 2 points, has to intersect it in at least p2h + 1
points. �

The following is a technical lemma, which will be useful for us.

Lemma 3.15. Let P ∈ B be a non-special point and t a tangent on P . Denote by N the
number of planes on t which intersect B in the small minimal blocking set of type (1) of
Result 2.5 and M is the number of planes on t which intersect B in a line. Suppose that



8 NÓRA V. HARRACH, KLAUS METSCH, TAMÁS SZŐNYI, AND ZSUZSA WEINER

M ≤ ph and N ≤ p2h. Then all the planes on t intersect B in small minimal blocking
sets and

|B| = (p3h + 1)(p3h + p2h + ph) + 1−M(p2h + ph)−Nph.

Proof. Having a plane on t which intersects B in more than p4h − p3h points would
result in

|B| > p4h − p3h + p3h(p3h + p2h + ph) + 1− ph(p2h + ph)− p2hph,
which is in contradiction with the bound of Lemma 3.4. Thus B = N(p3h +p2h)+Mp3h +
(p3h + 1−N −M)(p3h + p2h + ph) + 1. �

Lemma 3.16. There has to be at least one line contained in B.

Proof. Suppose on the contrary that there are no lines totally contained in B. Then by
(3) of Lemma 3.12, there can be at most one special point in B. Let P be a nonspecial
point of B and t a tangent on P . By Lemma 3.15,

|B| = (p3h + 1)(p3h + p2h + ph)−Nph + 1,

with N ≤ 1 the number of special points in B.

Now if N = 1 then let l be a (ph+1)−secant of B in a plane which intersects B in the small
minimal blocking set (1) of Result 2.5, while if N = 0 then let l be any (ph + 1)−secant
of B. Counting the points of B in the planes on l yields that one plane π has to intersect
B in exactly p4h + p3h + p2h + ph + 1 points. By the choice of l, there is no special point in
π. From this it follows, that there are no (p2h + 1)−secants on π. There are no tangents
on π either, because having a tangent t would lead to a contradiction with Lemma 3.15
(with P := t ∩B, N ≤ 1, M = 0, and π ∩B not being a small minimal blocking set).

Thus through a point of π not belonging to B there can be (ph + 1)−secants or (p2h +
ph + 1)−secants in π only. Denote by L the number of (p2h + ph + 1)−secants in π on a
point Q ∈ π \B. We have:

|B ∩ π| = L(p2h + ph + 1) + (p3h + 1− L)(ph + 1),

from which L = 1. Now denote by K the number of (p2h + ph + 1)−secants in π. Double-
counting the number of pairs (Q,m), Q ∈ π \ B, m a (p2h + ph + 1)−secant on Q, we
get:

(p6h + p3h + 1− |π ∩B|) · 1 = K · (p3h − p2h − ph),

which has no integer solutions for K. �

Proposition 3.17. If there are at least two lines contained in B, then B is of Rédei type.

Proof. Any two lines totally contained in B must intersect, as two skew lines would
contradict (3) of Lemma 3.8. Let l1 and l2 be lines contained in B and let P = l1 ∩ l2. If
there is a special point in B \ {P} or if P is special and there are further lines in B that
are not on P , then by Corollary 3.14, B is of Rédei type.

Case 1: Suppose now that P is the only special point of B and all the lines of B go
through P . Let Q be any point on a line of B through P . From Lemma 3.15,

|B| = (p3h + 1)(p3h + p2h + ph) + 1− p2h − ph.
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Now let R be any point of B which is on a (p2h + 1)−secant through P . Then again from
Lemma 3.15

|B| = (p3h + 1)(p3h + p2h + ph) + 1− ph,
but this is a contradiction. Thus there are no (p2h + 1)−secants through P , but then P
is not a special point.

Case 2: Suppose now that there are no special points in B at all and again P = l1 ∩ l2,
where l1 and l2 are lines contained in B. If there is a (ph + 1)− or a (p2h + ph + 1)−secant
on P then by (1) and (2) of Lemma 3.8 we can find a (ph + 1)−secant l on P which is
not in the plane of l1 and l2. Because the planes 〈l, l1〉 and 〈l, l2〉 both contain at least
p4h+p3h+1 points of B, we have |B| ≥ 2(p4h+p3h−ph)+(p3h−1)(p3h+p2h)+ph+1, which
is in contradiction with Lemma 3.4. Thus there are no (ph +1)− or (p2h +ph +1)−secants
on P and B has to be a cone with vertex P . The base of this cone has to be a plane
section of B, but from Lemma 3.4 |B| ≥ p3h(p4h − p3h) + 1 is not possible, and thus the
base has to be a small minimal blocking set, which is either a line, or has to be of type
(2) of Result 2.5. This planar blocking set is of Rédei type, and so the cone is of Rédei
type also. �

Proposition 3.18. B is either of Rédei type, or is a blocking set with the following
properties:

• |B| = p6h + p5h + p4h + p3h + 1;
• There is exactly one line l contained in B. There are ph + 1 special points in B

and all are on the line l.
• On a nonspecial point of l there are tangents and (ph + 1)−secants only. On a

special point of l there are tangents and (p2h + 1)−secants only.
• There are p2h + ph + 1 planes on l containing further points of B. These planes

meet B in p4h + p3h + 1 points.
• On a (ph+1)−secant meeting the line l, there is one plane meeting B in p4h+p3h+1

points (the plane on l), and all other planes intersect B in the small minimal
blocking set (2) of Result 2.5.

Proof. By Lemma 3.16, Proposition 3.17 and Corollary 3.14, we can assume that there
is exactly one line l totally contained in B and all the special points of B (if there are
any) are on l. If there are at least 4ph special points on l, then a plane on l which contains
further points of B will contain at least 4php2h + (p3h + 1 − 4ph)ph + 1 points of B, and
thus by Proposition 3.13, B is of Rédei type.

Suppose now, that the number of special points is less than 4ph. Let P be any non-special
point of the line l containing the special points and let t be a tangent of P such that the
plane on t and l intersects B in the points of l only. By Lemma 3.15,

|B| = p3h(p3h + p2h + ph) + p3h + 1.

Now let P be a point of B not on the line l, and t a tangent of P . Again by Lemma 3.15,
we have

|B| = (p3h + 1)(p3h + p2h + ph)−Nph + 1,

with N the number of special points in B. From this N = ph + 1.
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Let π be a plane on the line l and containing further points of B. As there are ph + 1
special points on l, counting the points of B ∩π on the lines through a point of π∩B not
on l we have: |B ∩ π| ≥ (ph + 1)p2h + (p3h − ph)ph + 1. Counting the points of B in the
planes on any (ph + 1)−secant m of π, we have |B| ≥ p3h(p3h + p2h) + |B ∩ π|, because
there are no special points outside π, and so the small sections on m can be of type (2) of
Result 2.5 only. From the size of B comes that |B ∩ π| = p4h + p3h + 1 and that equality
has to hold above. From this it is clear that a point of π \ l is connected to the special
points of l by (p2h + 1)−secants, and to the non- special points by (ph + 1)−secants. It
is also clear, that on a (ph + 1)−secant which intersects l, all the planes not containing l
will intersect B in the small minimal blocking set (2) of Result 2.5. Counting the points
of B in the planes on l, we see that there have to be exactly p2h +ph +1 planes containing
p4h + p3h + 1 points of B, and all other planes are tangent planes. �

Remark 3.19. The blocking set with the properties above is not a Rédei type blocking set.
The Rédei plane would have to contain |B| − p6h = p5h + p4h + p3h + 1 points and (as it is
proved in the proof of Proposition 3.13) would have to contain all the special points of B.
But the planes containing the special points of B all contain p4h + p3h + 1 points of B.

Notation: Let V be the GF(p3h)-vectorspace defining PG(3, p3h). For every line e put
eB := e ∩ B. Suppose that P is a point of B and e1, . . . , es are lines on B such that
all sets eBi are sublines isomorphic to PG(1, ph). Let v ∈ V be any vector representing
P . Then V has a unique GF(ph)-subspace Vi of rank two containing v and representing
exactly the points of eBi . Consider the GF(ph)-span of the vectors in V1 ∪ · · · ∪ Vs. The
set of all points of PG(3, p3h) generated by vectors in this GF(ph) span will be denoted
by 〈eB1 , . . . , eBs 〉h. Notice that this definition does not depend on the choice of the vector
v representing P . If the Vi subspaces are GF(ph)-independent, then 〈eB1 , . . . , eBs 〉h will be
referred to as an s-dimensional GF(ph)-linear subspace.

Lemma 3.20. Suppose that B is as described in Proposition 3.18. Let P be a point not
on l and consider two (ph + 1)-secants l1 and l2 on P such that l1 meets l. Then 〈lB1 , lB2 〉h
is contained in B.

Proof. Case 1: l2 is skew to l. Then the plane 〈l1, l2〉 meets B in a small blocking set
and thus the assertion follows by inspection of the small blocking sets. Alternatively, the
small blocking set is GF(ph)-linear, which also proves the claim.

Case 2: l2 meets l, that is the plane π = 〈l1, l2〉 contains l. Then E1 := l ∩ l1 and
E2 := l ∩ l2 are non- special points of l. It suffices to show for all points R ∈ lB2 that
the set E1R ∩ 〈lB1 , lB2 〉h is contained in B. This holds for R = P and R = E2 (because
E1E2 = l is contained in B). Suppose therefore that R 6= P,E2.

As stated in Proposition 3.18, all planes on l2 other than π intersect B in small minimal
blocking sets (2) of Result 2.5. Thus we can find a point E3 outside π such that l3 := PE3

and E3R are (ph + 1)−secants. By Proposition 3.18, also E1E3 is a (ph + 1)−secant.

From Case 1 we see that 〈lB1 , lB3 〉h is contained in B. As E1E3 contains the points E1, E3

of this set, it follows that
(E3E1)

B ⊆ 〈lB1 , lB3 〉h
Similarly

(E3R)B ⊆ 〈lB2 , lB3 〉h and (E1R)B ⊆ 〈(E3E1)
B, (E3R)B〉h.
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Hence (E1R)B ⊆ 〈lB1 , lB2 , lB3 〉h. As E1R is also contained in π, it follows that (E1R)B ⊆
〈lB1 , lB2 〉h. �

Theorem 3.21. Let B be a point set of PG(3, q), q = p3h, p ≥ 7 prime, intersecting each
line in 1 mod ph points, and |B| < 3

2
(q2 + 1). Then B is a linear blocking set.

Proof. Clearly by Result 2.4, B is a small minimal blocking set of PG(3, p3h). If 2|h
and B has a (p3h/2 + 1)−secant, then by Corollary 3.10 and [19] we are done. Suppose
now that B has no (p3h/2 + 1)−secants. If B is of Rédei type, then B is linear by [15].

Suppose therefore, that B is the point set described in Proposition 3.18. We will be using
the properties of B given there.

Let P be any point of B not on the line l containing the special points, and let π be the
plane on P and l. Take any two (ph + 1)− secants e1, e2 through P in π, let E1 := e1 ∩ l
and E2 := e2 ∩ l. By the previous lemma, we have 〈eB1 , eB2 〉h ⊆ B. Let e3 be a third
(ph + 1)−secant of π on P meeting the set 〈eB1 , eB2 〉h only in point P , and let E3 := e3 ∩ l.
We will now prove that 〈eB1 , eB2 , eB3 〉h is also contained in B. Because of Lemma 3.20,
〈eB1 , eB3 〉h and 〈eB2 , eB3 〉h are contained in B, thus for any point R ∈ eB3 it is true that
〈eB1 , eB2 , eB3 〉h ∩ RE1 ⊆ RE1 ∩ B and 〈eB1 , eB2 , eB3 〉h ∩ RE2 ⊆ RE2 ∩ B, with equality iff
R /∈ l, because in this case RE1 and RE2 are (ph +1)−secants of B∩π. Applying Lemma
3.20 to R and the (ph + 1)−secants RE1 and RE2, we have that 〈(RE1)

B, (RE2)
B〉h ⊂ B.

Every point of 〈eB1 , eB2 , eB3 〉h is contained in one of the sets 〈(RE1)
B, (RE2)

B〉h with R ∈ eB3 ,
and thus 〈eB1 , eB2 , eB3 〉h ⊂ B follows.

Thus we have found a 3-dimensional GF(ph)-linear subspace containing P and contained
in B. The number of (ph + 1)−secants a 3-dimensional subspace can generate on a point
is at most p2h + ph + 1, but in π the number of (ph + 1)−secants on P is p3h − ph (see
Proposition 3.18) and thus there have to be further (ph + 1)−secants of π on P . Take
one and denote it by e4, and let E4 := e4 ∩ l. We will prove 〈eB1 , eB2 , eB3 , eB4 〉h ⊂ B ∩ π.
By Lemma 3.20 we have that 〈eB1 , eB4 〉h, 〈eB2 , eB4 〉h and 〈eB3 , eB4 〉h are contained in B. Thus
for any point R ∈ eB4 \ E4 the set 〈eB1 , eB2 , eB3 , eB4 〉h meets the lines RE1, RE2 and RE3 in
the sets RE1 ∩ B, RE2 ∩ B and RE3 ∩ B respectively (these are all (ph + 1)−secants).
Clearly from the reasonings of the previous paragraph 〈(RE1)

B, (RE2)
B, (RE3)

B〉h ⊂ B
if R ∈ eB4 . (Note that (RE3)

B 6⊂ 〈(RE1)
B, (RE2)

B〉h, but we don’t need it in the proof.)
From this 〈eB1 , eB2 , eB3 , eB4 〉h ⊂ B ∩ π clearly follows.

The number of (p2h+1)−secants on P in π is ph+1 and the number of (ph+1)−secants on
P in π is p3h−ph, thus the lines on P in π can contain at most (p3h−ph)+(ph +1)(ph +1)
sublines, and this proves 〈eB1 , eB2 , eB3 , eB4 〉h = B ∩ π.

Now let α be a plane on e1 different from π. By the properties of B stated in Proposition
3.18, α ∩ B is the small minimal blocking set (2) of Result 2.5. This is a linear blocking
set, thus there are (ph + 1)−secants e5 and e6 on P such that 〈eB1 , eB5 , eB6 〉h = α ∩ B. We
will now prove that 〈eB1 , eB2 , eB3 , eB4 , eB5 , eB6 〉h ⊂ B.

There is exactly one (p2h + ph + 1)−secant on α, and we may suppose that P is not
contained in it (if it were, then choose another point as P ). Thus for any point R ∈ α∩B
the line PR is a (ph+1)−secant. By Lemma 3.20, 〈(PR)B, eBi 〉 ⊂ B for all i = 1, . . . , 4 and
all R ∈ α ∩ B, R 6= E1. But then the lines REi all meet the set 〈eB1 , eB2 , eB3 , eB4 , eB5 , eB6 〉h
in exactly the points of REi ∩ B, as these are all (ph + 1)−secants of B. Applying
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the reasonings of this proof in the previous paragraphs on R in place of P , we come to
〈(RE1)

B, (RE2)
B, (RE3)

B, (RE4)
B, 〉h ⊂ B. But from this 〈eB1 , eB2 , eB3 , eB4 , eB5 , eB6 〉h ⊂ B

follows.

Thus B contains a 6-dimensional GF(ph)-linear subspace. By observation of ranks it is
clear that such a point set is blocking all the lines of PG(3, p3h), and so if B contained
further points, it would be in contradiction with the minimality of B. �

3.3. Proof of Theorem 3.3 for arbitrary n ≥ 4. Throughout the section it will be
assumed that B is a point set of PG(n, q), q = p3h, p ≥ 7, n ≥ 4, with |B| ≤ 3

2
(qn−1 + 1)

and intersecting every line of PG(n, q) in 1 mod ph points.

Our technique will be to prove that the plane sections of such point set are always linear,
and then prove the linearity of the whole set similarly as in the case n = 3.

For the size of B, we will again be using the upper bound which follows from Result 3.1,
that is |B| < qn−1 + qn−2p2h + qn−2ph + 3qn−2.

Lemma 3.22. A 3-dimensional subspace of PG(n, q) either intersects B in a small min-
imal blocking set, or contains more than q2ph − q2 points from B.

Proof. The 3-dimensional subspace has b := (q2 + 1)(q2 + q+ 1) lines and r := q2 + q+ 1
lines on every point. With these values for b and r, equation (1) in the proof of Lemma
3.5 remains true in our situation. As the right-hand side of this equation is negative for
x = 3

2
q2 + 1 and x = q2ph − q2, the assertion follows. �

Corollary 3.23. On any plane of PG(n, p3h) there has to be a 3-dimensional subspace
which intersects B in a small minimal blocking set.

Proof. If all 3-spaces on a plane π contained more than q2ph − q2 points from B, then
counting the points of B in these 3-spaces we would get

|B| ≥ (qn−3 + qn−4 + · · ·+ 1)(q2ph − q2 − |π ∩B|) + |π ∩B|,
which is in contradiction with Result 3.1, because |π ∩B| ≤ q2 + q + 1. �

Corollary 3.24. Every plane of PG(n, p3h) intersects B in a linear point set.

Proof. By Corollary 3.23 every plane π is contained in a 3-dimensional space which
intersects B in a small minimal blocking set. From Theorem 3.21 we have that the
intersection is a linear point set, and thus π ∩B is also a linear point set. �

Corollary 3.25. An arbitrary line can intersect B in 1, ph + 1, p2h + 1, p2h + ph + 1,
p3h + 1, or p3h/2 + 1 (if 2|h) points.

In case 2|h we will now characterize the blocking sets which have a (p3h/2 + 1)−secant.

Lemma 3.26. If 2|h and B has a (p3h/2 + 1)−secant, then B intersects every line in
1 mod p3h/2 points

Proof. If a (p3h/2+1)−secant m were in the same plane with a (ph+1)−, a (p2h+1)− or
a (p2h + ph + 1)− secant l, then by Lemma 3.23 there would be a 3-dimensional subspace
intersecting B in a small minimal blocking set and having a (p3h/2 + 1)−secant and a
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(ph + 1)−, a (p2h + 1)− or a (p2h + ph + 1)− secant. This would be in contradiction
with Theorem 3.21. Suppose now that m and l are skew, and take P ∈ l \ B and π the
plane on m and P . All the lines through P in π have to be tangents of B which is a
contradiction. �

Corollary 3.27. If B has a (p3h/2 + 1)−secant, then it is a so-called Baer cone charac-
terized in [19]. Such point sets are known to be linear.

From now on we will suppose that B has no (p3h/2 + 1)−secants.

A point set S of PG(n, q) will be called a projected PG(s, ph), if there is a projective space
PG(n′, q) containing PG(n, q) such that S is the projection of a subgeometry PG(s, ph) ⊂
PG(n′, q) from a suitable vertex onto PG(n, q). A point of S will be called single projected
or multiple projected accordingly. The next statements follow from simple rank argument.

Lemma 3.28. Let S be a projected PG(s, ph) contained in a t-dimensional subspace π of
PG(n, q). Then

(1) s ≤ 3t+ 2;

(2) If s = 3a+ b with 0 ≤ b ≤ 2, then S meets every (t− a)−dimensional subspace of π in
a projected PG(d, ph) with d ≥ b.

By Corollary 3.24 every plane intersects B in a projected PG(m, ph). Clearly m ≤ 2
would not block all the lines of the plane, and by (1) of Lemma 3.28 m ≤ 8.

Corollary 3.29. An arbitrary plane of PG(n, p3h) intersects B in a projected PG(m, ph),
with 3 ≤ m ≤ 8. �

Corollary 3.30. Let π be a plane of PG(n, p3h) intersecting B in a projected PG(m, ph).

(1) Every point of a (ph + 1)−secant of B in π is the projection of one point only.
(2) If m ≥ 6, then π is totally contained in B.
(3) If m ≥ 5, then B has no (ph + 1)−secants in π.
(4) If m = 4, then in π there are no tangents on a single-projected point and at most

ph + 1 of the lines through a single-projected point can be long secants (that is
secants containing at least p2h + 1 points of B ∩ π).

Proof. (1) If a PG(s, ph) with s ≥ 1 is projected onto a (ph + 1)−secant, then the
preimages of the points of the (ph + 1)−secant give a partition of the space PG(s, ph) into
ph + 1 non-empty subspaces, which is only possible if s = 1.

(2) Clear from (2) of Lemma 3.28.

(3) Clear from (2) of Lemma 3.28 and (1) of this lemma.

(4) By Lemma 3.28 every line contains a projected PG(d, ph) with d ≥ 1. For a single
projected point P ∈ π ∩B and l1, . . . , lp3h+1 the lines on P in π, the preimages of the sets
B ∩ li are subspaces of PG(4, ph) of dimension at least 1 and meeting in one point (the
preimage of P ). Counting the points of PG(4, ph) in these subspaces yields that either
one line li contains a projected 3-dimensional subspace, and all others contain projected
lines, or ph + 1 have projected planes and all others lines. �
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Lemma 3.31. Let π be a plane of PG(n, q) intersecting B in a projected PG(m, ph). Let
H be a plane of PG(m, ph) and P ′ ∈ H a point which is projected onto P ∈ π. Suppose
that the lines of H through P ′ are projected onto the lines li, i = 1, . . . , ph + 1, which are
lines of π through the point P . Then either |li ∩ B| ≥ p2h + 1 for each li or this is true
only for at most two of these lines.

Proof. By Corollary 3.30, we may assume that m ≤ 4. If P is not a single projected
point, then having a (ph +1)−secant on it would be in contradiction with (1) of Corollary
3.30, thus we may assume that P is a single projected point with preimage P ′. If m = 3
then clearly there can be at most one long secant on a single projected point. Thus we
can also assume m = 4, and the projection can be viewed as the projection of a PG(4, ph)
subgeometry embedded into PG(4, p3h), with the vertex of the projection being a line v.
The lines in π through P correspond to 3-spaces on the plane 〈v, P ′〉. By the proof of
Corollary 3.30 (4), we may also assume that ph + 1 of these 3-spaces meet the PG(4, ph)
in planes (denote these by π′i, i = 1, . . . , ph + 1), while all others meet it in lines. Any
two of these π′i planes have only the point P ′ in common. We will prove that the union
of the π′i planes is a cone of PG(4, ph) with vertex P ′ and a regulus of a 3-dimensional
space Σ as base. This finishes the proof, as a plane H on P ′ which meets at least three
of the planes π′i (that is: has at least three lines on long secants through P ) will meet the
3-dimensional space Σ in a line meeting at least three lines of the regulus, and thus will
have to meet all the lines of the regulus, from which it is clear that the H has to meet all
the planes π′i.

Let r′1 and r′2 be any lines of the planes π′1 and π′2 respectively, such that neither of them
contains P ′ and that their extensions over GF(q) meet the plane 〈v, P ′〉 in points R1, R2.
Let Σ be the 3-dimensional GF(ph)-space spanned by r′1 and r′2. Clearly Σ does not
contain P ′ (because then it would contain the planes π′1 and π′2, but these planes have
only one point in common), and thus intersects the planes π′i, i = 3, . . . , ph + 1 in lines r′i;
and so Σ∗, the extension of Σ, does not contain P ′. Thus Σ∗ meets 〈v, P ′〉 in a line t on R1

and R2. For every i, the extension of the line r′i will also meet t, because it is contained
in a 3-dimensional subspace on 〈v, P ′〉, and thus has to meet it, but is also contained in
Σ∗, so it can meet it in a point of t only.

We will prove that the lines r′i are the only lines of Σ with the property that their extension
meets the line t. If a line has this property, then it is projected onto a line on P . It is
either projected onto a (ph+1)−secant on P , but these all have to contain P ′ (and P ′ /∈ t),
or is contained in one of the π′i subplanes. But these subplanes meet Σ only in the lines
r′i.

Let R be a regulus of Σ determined by any three of the lines r′i. The extensions of
these three lines also determines a regulus R∗ of Σ∗ and R∗ will contain the extensions
of the elements of R. The line t will be an element of the opposite regulus of R∗.
Thus the extensions of all the elements of R meet the line t. But then this means that
R = {r′1, . . . , r′ph+1

} is the regulus we are looking for. �

Lemma 3.32. If there is a (ph + 1)−secant on a point P ∈ B, then the number of
(ph + 1)−secants on P is at least ph(3n−4) − ph(3n−6) .
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Proof. Let l be a (ph + 1)−secant on the point P ∈ B. By Corollary 3.29 and (3) of
Corollary 3.30, a plane on l meets B in a projected PG(3, ph) or a projected PG(4, ph). In
the first case it is easy to check that there are at least p2h−1 further (ph+1)−secants on P .
In the latter case according to (4) of Corollary 3.30 at least p3h− ph of the lines on P are
(ph+1)−secants. Thus in any plane on l there are at least p2h−1 further (ph+1)−secants
on P . As there are qn−2 + qn−3 + · · · + q + 1 planes on a line of PG(n, q), we have that
the number of (ph + 1)−secants on P is at least (p2h − 1)(p3h(n−2) + p3h(n−3) + · · ·+ 1) ≥
p(3n−4)h − p(3n−6)h. �

We are now ready to prove the main theorem. We will again use the notation 〈eB1 , . . . , eBs 〉h
given before Lemma 3.20.

Theorem 3.33. Let B be a point set of PG(n, q), q = p3h, p ≥ 7, n ≥ 4, with |B| <
3
2
(qn−1 +1) and intersecting every line of PG(n, q) in 1 mod ph points. Then B is a linear

point set.

Proof. By Result 2.4 B is a minimal blocking set of PG(n, q). We may assume, that
B is not a hyperplane (which is clearly linear). If 2|h and B has a (p3h/2 + 1)−secant,
then by Corollary 3.27, B is a linear point set. Now we may assume that B has no
(p3h/2+1)−secants, and so by Corollary 3.29 every plane meets B in a projected PG(m, ph)
with 3 ≤ m ≤ 8. If B has a (p2h + 1)− or a (p2h + ph + 1)−secant, then B has to have
(ph + 1)−secants also, or else all the planes on such a secant would meet B in a projected
PG(5, ph), which would be in contradiction with the size of B.

Let P ∈ B be a point of a (ph + 1)−secant. By Lemma 3.32, there are many (ph +
1)−secants on P . Let e1 and e2 be two (ph + 1)−secants of B meeting in the point
P . The plane containing e1 and e2 meets B in a projected PG(m, ph), and by (1) of
Corollary 3.30, the point P is a single-projected point. Thus eB1 and eB2 are projections
of intersecting lines of PG(m, ph). But then the subplane 〈eB1 , eB2 〉h generated by them
is the image of the plane of PG(m, ph) on the pre-images, and thus is contained in the
projection.

Now suppose that e1, e2, . . . , es are (ph + 1)−secants through P ∈ B, such that eBi /∈
〈eB1 , . . . , eBi−1〉h for i = 2, . . . , s and 〈eB1 , . . . , eBs 〉h ⊂ B. If s < 3(n − 1) then we can find

further (ph + 1)−secants through P , as the subspace 〈eB1 , . . . , eBs 〉h has at most ph(s−1) +
ph(s−2) + · · ·+ 1 (ph + 1)−secants through P , and from Lemma 3.32 there are more. Let
es+1 be any further (ph + 1)−secant through P not contained in 〈eB1 , . . . , eBs 〉h.

Let Σ be a 3-dimensional GF(ph)-linear subspace of 〈eB1 , . . . , eBs , eBs+1〉h on 〈eB1 , eBs+1〉h.
Σ meets 〈eB1 , . . . , eBs 〉h in a subplane on e1 which contains by Lemma 3.31 further lines
fi (i = 1, . . . , ph − 2) which are all (ph + 1)−secants of B going through P . From the
reasonings above, the subplane 〈es+1, e1〉h and the subplanes 〈es+1, fi〉h are all contained in
B. Suppose now that Q ∈ Σ is not on any of these planes. Again by Lemma 3.31, among
the ph further GF(ph)-linear subplanes on the line PQ in Σ we can find a subplane which
intersects two of the subplanes 〈es+1, fi〉h in sublines which are both (ph + 1)−secants of
B. But then the subplane generated by these two (ph + 1)−secants is contained in B and
Q is an element of this subplane.

With this we have proved that any 3-dimensional GF(ph)-linear subspace of 〈eB1 , . . . , eBs , eBs+1〉h
on eB1 and eBs+1 is contained in B, thus 〈eB1 , . . . , eBs , eBs+1〉h is contained in B.
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From this it is clear that B contains a projected PG(3(n − 1), ph). This projected sub-
geometry is a blocking set of PG(n, q), and so it is equal to B by the minimality of
B. �

3.4. Constructions for n = 3. In Theorem 3.3 we have proved, that a small minimal
blocking set of PG(3, q3) which meets every line in 1 mod q points and has no (q3/2 +
1)−secants is a projected PG(6, q) subgeometry. Two wellknown such blocking sets are
the cones over the blocking sets (1) and (2) of Result 2.5, which are of Rédei type. Now
we present a construction for the blocking set with properties given in Proposition 3.18.
The construction is of special interest, because it gives a blocking set of PG(3, q3) that is
linear, but not of Rédei type. We will use Construction 2.2 with n = 3, k = 1, t = 3.

Construction 3.34. Let PG(6, q) be embedded in PG(6, q3) as a subgeometry. Suppose
that Σ = PG(3, q) is a 3-dimensional subspace of the embedded subgeometry, denote by
e(Σ) the unique PG(3, q3) ⊂ PG(6, q3) subspace which contains Σ (the extension of Σ).
Let R be a regulus of Σ. The extensions of the lines of R are elements of a regulus R∗ of
e(Σ). Let v be a line of the opposite regulus of R∗ such that v is skew to Σ (that is v is
not the extension of an element of ROPP ). Let Q be a further point of PG(6, q3)\PG(6, q)
such that Q is not contained in the extension of any of the 5-dimensional subspaces of
PG(6, q) containing Σ. We can find such a point, because the number of 5-dimensional
subspaces of PG(6, q) containing Σ is q2 + q + 1, the extension of such a 5-dimensional
subspace contains q15 + q12 points from PG(6, q3) \ e(Σ) and thus even if these were all
different points, the extensions would be covering at most (q2 + q + 1)(q15 + q12) + |e(Σ)|
points, but the number of points in PG(6, q3) \ PG(6, q) is larger than q18.

We will now prove, that if π is the plane on v and Q, then the projection of the em-
bedded subgeometry PG(6, q) from the plane π onto an arbitrary 3-dimensional subspace
PG(3, q3) disjoint from π will be a minimal blocking set B having the properties described
in Proposition 3.18.

The points of Σ are distributed on the q3 +1 planes on v in e(Σ). As Σ is a plane blocking
set of e(Σ) (see Lemma 3.28), from counting arguments it follows that q+ 1 of the planes
on v meet Σ in lines (the elements of R) and all other planes on v meet Σ in exactly
one point. If m is a line of PG(6, q) with e(m) ∩ π = P ∈ v, then clearly m ⊂ Σ and
so m ∈ R. Suppose now that m is a line of PG(6, q) with e(m) ∩ π = P , P /∈ v. The
extension of the subspace generated by Σ and m contains π, and thus contains Q, which
is in contradiction with the choice of Q, because this subspace has dimension at most 5.

With this we have proved that the lines of R are the only lines of PG(6, q) with the
property that their extension meets π. From this it follows, that there are exactly q + 1
multiple projected (special) points in B and so |B| = q6 + q5 + q4 + q3 + 1. By the
reasonings above it is clear that the special points are on a line which is totally contained
in B, while all other points are non-special. The other properties can be derived from
these. �

Remark 3.35. Starting with the same line v, but choosing the point Q to be a point
contained in the extension of a 5-space on Σ, but not contained in the extension of a
4-space on Σ will result in a Rédei type blocking set of size q6 + q5 + q4 + 1, which is not
a cone. For a complete characterization of the projections of PG(6, q) into PG(3, q3) see
[5].
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