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Abstract. This paper provides a comparative study of evolution methods for minimal weight
design of space trusses. Recently used genetic algorithms (GA), simulated annealing (SA)
and tabu search (TS) methods are observed for metal structures where the truss member
profiles are selected from available catalogue values. In this paper, global and local stability
problems are considered using a path-following method for non-linear stability investigation.
The results of the comparative study are presented for the commonly known numerical test
problems. A twenty-four-member shallow dome structure was presented where structural
instability constraints and member buckling are considered as well as using linear elastic
material property. The effect of the nonlinear material law is compared in optimal design
of the ten-bar truss structure and the twenty-five-bar transmission tower using an inverse
Ramberg-Osgood material law.
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1. Introduction

One of the most important practical considerations in the optimal design of steel
structures is the best selection of design variables from available catalogue values.
Therefore, the design is formulated as a discrete optimization problem, searching for
global or local optimal solution. However, most optimization methods are suited
and developed for continuous design variables. A few procedures [1, 3, 4, 5, 9, 13]
have been considered for discrete optimization including e.g. enumeration techniques,
integer programming, branch and bound algorithms.

This paper provides a comparative study where simulated annealing (SA), genetic
algorithms (GA), and tabu search methods (TS) are considered for discrete minimal
weight design problems of shallow space trusses with stability constraints.

c©2005 Miskolc University Press
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Simulated annealing as a heuristic algorithm is associated with its original use
for solving metal models as they heat and cool. Kirkpatrick et al. [10] introduced
it first for discrete optimization problems. In this paper a new SA algorithm is
presented for shallow space trusses with stability constraints. The SA algorithm has
proven to be a good technique [6, 11] for solving combinatorial optimization problems
in particular for large flexible space structures. However, it seems sometimes less
useful than some conventional algorithms. Consequently, simulated annealing has
not been widely accepted in engineering optimization. In order to accelerate the
overall convergence, it is proposed to use the best solution for a starting point every
time that the temperature is reduced. The results show that simulated annealing
algorithm provides a computationally efficient tool to find near optimal solutions to
otherwise computationally intractable problems.

GA methods are search algorithms that are based on the concepts of natural se-
lection and natural genetics. Recently GA methods are very popular and have been
used for sizing, shape, and topology optimization of structures, e.g. [8, 12]. The
core characteristics of GAs are based on the principles of survival of the fittest and
adaptation. GA methods operate on population of design variable sets, with each
design variable set defining a potential solution called a string. Each string is made
up of series of characters as binary numbers, representing the discrete variables for a
particular solution. The fitness of each string is a measure of performance of design
variables defined by the objective function and constraints. GA methods consist of a
series of three processes: coding and decoding design variables into strings, evaluat-
ing the fitness of each solution string, and applying genetic operators to generate the
next generation of solution strings. Most GA methods are variations of the simple GA
proposed by Goldberg [8], which consists of three basic genetic operators: reproduc-
tion, crossover, and mutation. By varying these parameters, the convergence of the
problem may be altered. Much attention has been focused on finding the theoretical
relationships between these parameters. Rajeev and Krishnamoorty [12] applied GA
for optimal truss design. They presented all the computations for three successive
generations in the form of tables for easy understanding of the problem. In this study
a GA method is proposed for minimal weight design of trusses. According to the
shallow space form, the instability consideration is required. The general procedure
is described in subsection 3.2.

Tabu search (TS) is a computational process which attempts to solve difficult com-
binatorial optimization problems through controlled randomization. In other words,
TS is a metaheuristic method designed to find near optimal solutions of combinato-
rial optimization problems. Basically it consists of several elements called the move,
neighborhood, initial solution, searching strategy, intensification, diversification and
stopping rules. For obtaining near optimum solutions of such problems, a better min-
imum of an objective function should be searched for among a huge number of local
minimums, since it is almost impossible to find an exact optimum. Intensification’
means decreasing of the objective function value to find a better solution closer to
the local minimum. Diversification’ means a jump from a searching region to other
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regions to avoid getting trapped in a single local minimum. The details of the TS
process are presented in paper [7] and in subsection 3.3.

2. Structural optimization problem

The basic, initial equation system of discrete minimal weight design is the total po-
tential energy function of the geometrically nonlinear truss structure.

V (ui, aq, λ) = U (ui (aq))− λpiui , i = 1, 2, ..., n q = 1, 2, ..., e (1)

The total potential energy function is formulated in terms of load intensity parameter
λ, applied external load vector pi, nodal displacement vector ui, and vector of the
member sizing aq, where n is the number of nodes, e is the number of elements, and
U(ui(aq)) is the non-linear strain energy function. In this study nonlinear material is
supposed in comparison with the results obtained by using the linear elastic material
law. In the case of the nonlinear (Ramberg-Osgood) material law, the strain energy
function U (ui (aq)) is replaced by the following expression:
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−
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where E is the elasticity modulus, εq is the member strain, and σy is the yield stress
of the materials applied.

The design variables are selected from a discrete set of the predetermined cross-
sectional areas, such that minimize the total weight of the structure:

V (aq) −→ min (3)

subject to

V,i = 0 (4)

λ (aq) = 1 (5)

i = 1, 2, ..., n q = 1, 2, ..., e

where V,i = 0 is the equilibrium criterion, λ (aq) = 1 the maximal locally and globally
stable and stress feasible load intensity. The path-following procedure of instabil-
ity investigation is terminated when the unit load intensity is reached without any
constraint violation.

The proposed instability investigation [2] is based on the perturbation technique
of the stability theory and on the non-linear modification of the classical linear ho-
motopy method. With the help of the higher-order predictor-corrector algorithm, we
are able to compute an arbitrary load deflection path and detect the different types
of stability points. Within the predictor step, we compute the solution of an implicit
ODE problem and the corrector phase is the solution of a nonlinear equation system.
The first-order derivatives are obtained from the equation system by null-space com-
putation of the augmented Hessian matrix. The higher order derivatives are obtained
from the inhomogeneous equations using the Moor-Penrose pseudo-inverse.
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The basic function of the stability investigation is the total potential energy func-
tion. The equilibrium equation system is obtained from the total potential energy
function. Starting from the zero point of the equilibrium path assuming that the
Hessian is positive definite, the solution is obtained in terms of the arch-length para-
meter of the equilibrium path t.

The stability investigation is based on the eigenvalue computation of the Hessian
matrix V,ij . In every step of the path-following process we get information about the
displacement, stresses, local, and global stability of the structure. This higher order
predictor-corrector method provides an accurate computation of the singular points.
It is capable of computing not only points but also segments of the equilibrium path.
The curve segment approximation is the basis for the identification of the singular
points. Since we are concerned with finding feasible designs we must define a certain
appropriate measure of performance. In the proposed path-following approach the
applied measure of design infeasibility λ (aq) is defined as the solution of the following
system:

λ (aq, t) −→ max (6)

0 ≤ λ (aq, t) ≤ 1 (7)

ηi (aq, t) > 0 (8)

s ≤ sq (aq, t) ≤ s (9)

i = 1, 2, ..., n q = 1, 2, ..., e

where t is the arch-length parameter of the equilibrium path, ηi is the vector of
eigenvalues of Hessian matrix V,ij ., and s, s are the lower and upper bounds of the
stress constraints.

The path-following process is terminated at the first constraint violation.

3. Discrete optimization methods

In this study tree heuristic techniques are considered: simulated annealing, a genetic
algorithm and a tabu search method to find a solution for the discrete minimal weight
design problem of shallow space trusses.

3.1. Simulated annealing. Simulated annealing is a computational process, which
attempts to solve difficult combinatorial optimization problems through controlled
randomization. Simulated annealing emulates the physical process of annealing which
attempts to force a system to its lowest energy state through controlled cooling.

In general, the annealing process involves the following steps:

• The temperature of the system is raised to a sufficient level.
• The temperature of the system is maintained at the level for a prescribed

amount of time.
• The system is allowed to cool under controlled conditions until the desired

energy-state is attained.
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The initial temperature the time system remains at and the rate at which the system
is cooled are referred to as the annealing schedule. If the system is allowed to cool
too fast it may freeze at an undesirable high-energy state. In simulated annealing the
process starts at a given feasible or unfeasible solution. To avoid freezing at a local
optimum the algorithm walks very slowly through the solution space.

The general procedure for the simulated annealing algorithm can be described as
follows:

MaxStep = 1000
MaxNode = 150
MaxNeighbourhoodSearch = 10
Call ProblemDefinition
Temperature = 1
CoolingRatio = 0.95
n = 0
Call RandomInitialStructure
Call PathFollowingMethod
Call CurrentNodeUpdate
Call BestSolutionUpdate
Call BestFeasibleSolutionUpdate
For s= 1 To MaxStep
ParentSolution=BestSolution

For m = 1 To MaxNeighbourhoodSearch
If RandomNeighbourStructure(ParentSolution)

Then
Call PathFollowingMethod
If AcceptedSolution(Temperature) then
n = n+ 1

Call CurrentNodeUpdate
Call BestSolutionUpdate
Call BestFeasibleSolutionUpdate

Endif
Else

Exit
End If

Next m
Call TemperatureUpdate: If Temperature < 0.001

Then Exit
Next s

3.2. Genetic algorithm. The genetic algorithm (GA) is an efficient and widely
applied global search procedure based on a stochastic approach. All of the recently
applied genetic algorithms for structural optimization have demonstrated that genetic
algorithms can be powerful design tools [8, 12]. The crossover operation creates
variations in the solution population by producing new solution strings that consist of
parts taken from selected parent solution strings. The mutation operation introduces
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random changes in the solution population. In GA, the mutation operation can be
beneficial in reintroducing diversity in a population. In this study, a pair of parent
solutions is randomly selected, with a higher probability of selection being ascribed
to superior solutions. The two parents are combined using a crossover scheme that
attempts to merge the strings representing them in a suitable fashion to produce
an offspring solution. Offspring can also be modified by some random mutation
perturbation. The algorithm selects the fittest solution of the current solution set,
i.e. those with the best objective function values. Each pair of strings reproduces two
new strings using a crossover process and then dies.

The steps of the algorithm:

PopulationSize = 50
NumberOfNewGenerations=50
CrossoverProbability=0.5
SwapProbability=0.1
MutationProbability=0.1
Call ProblemDefinition
Call RandomInitialPopulationGeneration
Call BestFeasibleSolutionUpdate
For n = 1 to NumberOfNewGenerations
{i, j} ←−Call RandomFittestParentPairSelection

Call Crossover
For Each Child: Call Mutation

Call PathFollowingMethod
Call BestFeasibleSolutionUpdate

{i, j} ←−Call OffspringPairUpdate
Next n

3.3. Tabu search algorithm. In the case of tabu search, diversification is intro-
duced as follows: if there are no improving moves, the move that least degrades the
objective function is chosen. In order to avoid returning to the local optimum just
visited, the reverse moves are forbidden. This is realized by storing those moves in a
data structure called the tabu list. This contains s elements, which define forbidden
moves, where s is the tabu list size. Once a move is stored in the tabu list, it will
become available s iterations later.

The steps of the algorithm:

MaxStep = 1000
MaxNode=150
MaxNeighbourhoodSearch = 10
MaxTabuListSize=50
Call ProblemDefinition
n = 0
Call RandomInitialStructure
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Call CurrentNodeUpdate
Call BestFeasibleSolutionUpdate
Call BestNodeUpdate
For s= 1 To MaxStep

ParentSolution = BestSolution
For m = 1 To MaxNeighbourhoodSearch

If RandomNeighbourStructure(ParentSolution)
Then

n=n+1
Call PathFollowingMethod
Call BestFeasibleSolutionUpdate
Call CurrentNodeUpdate
Call BestNodeUpdate
If n = MaxNode then Exit

Else
Exit

End If
Next m

Next s

4. Numerical example

4.1. The 24-member dome structure. In this paper, one of the frequently used
test examples is considered. The geometry of the 24-member is shown in Figure 1
and Table 1. According to the requirement of the symmetrical structure, the truss
members were partitioned into linking groups. Group 1 includes bars 1-6, group 2
includes bars 7-12, and group 3 includes bars 13-24.
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Figure 1. Layout of the 24-member dome structure
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Nodal
X [m] Y [m] Z [m]

Points
1 0.0 0.00 0.000
3 25.0 0.00 2.000
4 12.5 21.65 2.000

10 43.3 25.00 8.216
11 0.0 50.00 8.216

Table 1. Geometry of the 24-member dome structure

The elasticity modulus is E = 7x1010N/m2. The stress constraints for tension and
compression are 25x10N/m2. The density is 27500N/m3.

The cross-sectional areas of the truss-members with circular sections are selected
from an available catalogue:

Ai = {12.00; 12.25; 12.50; 12.75; 13.00; 13.25; 13.50; 13.75; 15.75} ∗ 10−4m2

The applied loads of the 24-member dome structure are P1 = 6kN at the nodal point
1, and P2−7 = 12kN at the nodal points 2-7, which causes a bifurcation instability
phenomenon. The results of the optimization process are shown in Tables 2-4.

Run Weight
Cross-sections

Relative error
(catalogue values)

1 258.506 {12.75,15.75,13.50} 1.408
2 258.013 {12.25,15.50,13.75} 1.215
3 256.994 {13.25,14.25,13.75} 0.815
4 256.940 {13.50,15.25,13.25} 0.794
5 256.549 {12.00,13.50,14.50} 0.641
6 256.447 {13.00,15.00,13.50} 0.601
7 256.440 {12.50,15.50,13.50} 0.598
8 256.440 {12.50,15.50,13.50} 0.598
9 255.953 {12.50,14.75,13.75} 0.407
10 255.953 {12.50,14.75,13.75} 0.407
11 255.950 {12.25,15.00,13.75} 0.406
12 255.899 {12.75,15.75,13.25} 0.386
13 255.463 {12.25,14.25,14.00} 0.215
14 255.409 {12.50,15.25,13.50} 0.193
15 255.406 {12.25,15.50,13.50} 0.192
16 255.406 {12.25,15.50,13.50} 0.192
17 255.402 {12.00,15.75,13.50} 0.191
18 254.916 {12.00,15.00,13.75} 0.000
19 254.916 {12.00,15.00,13.75} 0.000
20 254.916 {12.00,15.00,13.75} 0.000

Table 2. Results of genetic algorithm (GA)
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Run Weight
Cross-sections

Relative error
(catalogue values)

1 260.697 {13.75,12.75,14.50} 2.268

2 260.044 {14.25,15.25,13.25} 2.012

3 259.557 {14.25,14.50,13.50} 1.821

4 258.526 {14.25,14.25,13.50} 1.416

5 258.468 {14.25,15.50,13.00} 1.393

6 258.465 {14.00,15.75,13.00} 1.392

7 258.084 {13.25,13.25,14.25} 1.243

8 257.978 {14.00,15.00,13.25} 1.201

9 257.536 {13.00,14.00,14.00} 1.028

10 257.488 {13.75,14.50,13.50} 1.009

11 257.488 {13.75,14.50,13.50} 1.009

12 257.430 {13.75,15.75,13.00} 0.986

13 257.046 {12.75,13.50,14.25} 0.836

14 257.036 {12.00,14.25,14.25} 0.832

15 256.991 {13.00,14.50,13.75} 0.814

16 256.978 {12.00,15.50,13.75} 0.809

17 256.450 {13.25,14.75,13.50} 0.602

18 259.557 {14.25,14.50,13.50} 1.821

19 255.950 {12.25,15.00,13.75} 0.406

20 255.406 {12.25,15.50,13.50} 0.192

Table 3. Results of simulated annealing method (SA)

Run Weight
Cross-sections

Relative error
(catalogue values)

1 264.304 {15.75,12.25,14.25} 3.683

2 263.807 {15.00,12.25,14.50} 3.488

3 262.232 {15.00,12.50,14.25} 2.870

4 262.228 {14.75,12.75,14.25} 2.868

5 262.228 {14.75,12.75,14.25} 2.868

6 260.697 {13.75,12.75,14.50} 2.268

7 260.598 {15.00,14.00,13.50} 2.229

8 260.540 {15.00,15.25,13.00} 2.206

9 259.701 {12.00,13.00,15.00} 1.877

10 259.615 {14.25,13.25,14.00} 1.843

11 259.016 {14.50,14.75,13.25} 1.608

12 259.016 {14.50,14.75,13.25} 1.608

13 258.577 {13.75,13.50,14.00} 1.436

14 258.125 {12.00,13.25,14.75} 1.259

15 258.125 {12.00,13.25,14.75} 1.259

16 258.032 {13.75,14.00,13.75} 1.222

17 256.994 {13.25,14.25,13.75} 0.815

18 256.450 {13.25,14.75,13.50} 0.602

19 255.460 {12.00,14.50,14.00} 0.213

20 254.916 {12.00,15.00,13.75} 0.000

Table 4. Results of tabu search method (TS)
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The results obtained using simulated annealing (SA), genetic algorithm (GA), and
tabu search (TA) methods have been illustrated in Tables 2-4.

The total number of the cross-sectional combinations for three member groups is
4096. The global optimal solution of the problem: GW = 254.916 the weight of
the structure; GC = {12.00; 15.00; 13.75}. Using a standard implicit enumeration
algorithm, 1615 node evaluations were needed to obtain this solution and to prove its
global optimality. To compare the standard local search methods, we ran each method
20 times from a randomly selected design (population). In each case we stopped the
searching process after 150 design evaluations.

4.2. The 10-bar truss. In this comparative study, according to the widely used
dimension in the literature we adopted the same values and the same dimension
system in our computation.

Load condition: P = 100000 lb; Material density: ρ = 0, 1 lb/in2;
Young modulus: E = 107 psi ; Yield stress: σ = 40000 psi ±.
The following conversion table gives us the International System of Units (SI):
1 inch (in) = 25, 4 mm;
1 pound (lb) = 0, 4536 kg;
1 pound per square in (lb/in2) =6895 N/m2;
1 kips = 4448 N .

In this example, a genetic algorithm was applied for both cases using One-Point
Crossover. The cross-sectional areas are selected from the given set of the catalogue
values of

{

36; 27; 19; 12; 7; 4; 2; 1
}

.
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Figure 2. Layout and load condition of the 10-bar truss

The results of the ten-bar truss example (Table 5 and Table 6) demonstrate that the
efficiency of GA strongly depends on the choices of population size and the crossover
size. Using the nonlinear material law, we obtained much a lighter structure in both
cases than in the case of a linear elastic material in the paper quoted [3] (see table
10).
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However we have to note that the discrete solution method proposed was different
in paper [3].

Population Crossover Best weight Cross-sections
50 50 3028.06 {19,4.,19,2,7,2,7,4,4,7}
50 50 5833.94 {7, 27, 19, 36, 1, 7, 4, 19, 19, 4}
50 50 3819.00 {12, 2, 19, 19, 2, 4, 7, 7, 19, 1}
50 50 3552.09 {19, 4, 19, 7, 2, 1, 2, 12, 12, 7}
50 50 4154.29 {12, 4, 19, 7, 12, 2, 4, 12, 7, 19}
50 50 3727.41 {4, 12, 7, 1, 2, 4, 12, 2, 19, 19}
50 50 3466.23 {12, 27, 19, 7, 2, 1, 4, 7., 7, 2}
50 50 3682.23 {19, 12, 7, 7, 2, 27, 7, 2, 4, 7}
50 50 3725.91 {7, 7, 12, 12, 12, 4, 19, 2, 7, 7}
50 50 4841.91 {7, 12, 19, 4, 7, 36, 12, 19, 2, 2}

Table 5. Results of ten-bar truss

Population Crossover Best weight Cross-sections
100 100 3045.53 {12, 2, 19, 4, 1, 7, 7, 12, 7, 2}
100 100 2823.35 {7, 7, 7, 7, 4, 4, 7, 12, 4, 7}
100 100 4539.00 {7, 7, 19, 7, 2, 36, 7, 1, 7, 19}
100 100 3343.32 {12, 12, 19, 4, 12, 7, 12, 1, 4, 2}
100 100 3708.44 {36, 4, 7, 12, 2, 1, 4, 12, 12, 1}
100 100 3930.62 {7, 7, 19, 27, 7, 4, 12, 4, 7, 4}
100 100 3750.62 {27, 1, 12, 12, 12, 2, 7, 4, 4, 12}
100 100 3908.47 {12, 4, 19, 4, 1, 12, 27, 2, 4, 7}
100 100 4588.41 {4, 19, 27, 12, 36, 4, 12, 1, 1, 4}
100 100 3157.15 {4, 2, 12, 2, 2, 36, 12, 4, 1, 4}

Table 6. Results for ten-bar truss

4.3. The 25-bar truss. Material density, Young modulus, and yield stress con-
straints are the same as for the ten-bar truss. The loads are given in Table 7. The
relationship between the indices and the cross-sections is given in Table 8. The results
obtained by using the nonlinear material law (see Table 9) are approximately half of
the optimal weight obtained using the linear elastic material law (see Table 10).

In this example a genetic algorithm was also applied. The cross-sectional areas are
selected from the given set of the catalogue values of

{

3, 5 3, 4 3, 3 ...... 1, 0 0, 9 ..... 0, 2 0, 1 0, 01
}

.

Nodal
X [kips] Y [kips] Z [kips]

points
1 - 20 -5
2 - -20 5

Table 7. Applied loads of 25-bar truss
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Figure 3. Geometry of the 25-bar truss

[ 1]=0.01 [ 2]= 0.1 [ 3]= 0.2 [ 4]= 0.3 [ 5]= 0.4 [ 6]= 0.5
[ 7]= 0.6 [ 8]= 0.7 [ 9]= 0.8 [10]= 0.9 [11]= 1.0 [12]= 1.1
[13]= 1.2 [14]= 1.3 [15]= 1.4 [16]= 1.5 [17]= 1.6 [18]= 1.7
[19]= 1.8 [20]= 1.9 [21]= 2.0 [22]= 2.1 [23]= 2.2 [24]= 2.3
[25]= 2.4 [26]= 2.5 [27]= 2.6 [28]= 2.7 [29]= 2.8 [30]= 2.9
[31]= 3.0 [32]= 3.1 [33]= 3.2 [34]= 3.3 [35]= 3.4 [36]= 3.5

Table 8. Relationship between the indices and cross-sections
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Population Crossover Best weight Cross-sections
50 50 201.678 {12, 5, 3, 14, 17, 5, 7, 10}
50 50 165.837 {3, 6, 12, 15, 13, 3, 4, 4}
50 50 204.183 {10, 11, 16, 3, 17, 3, 5, 3}
50 50 260.231 {15, 15, 10, 8, 3, 6, 11, 4}
50 50 188.972 {30, 8, 9, 5, 11, 5, 3, 7}
50 50 153.736 {27, 4, 4, 12, 15, 3, 4, 7}
50 50 166.926 {13, 3, 6, 6, 15, 5, 9, 3}
50 50 228.348 {8, 4, 13, 23, 16, 3, 7, 9}
50 50 160.656 {27, 4, 9, 3, 7, 3, 7, 5}
50 50 157.644 {15, 6, 4, 7, 13, 6, 5, 4}

Table 9. Results of 25-bar truss

Results of ten-bar truss Results of twenty-five-bar truss

Variables
Continuous Discrete

Variables
Continuous Discrete

solution method solution method
1 30.4015 36.0 1 0.3 0.3
2 0.1 0.1 2 2.03572 2.00
3 23.1041 27.0 3 2.75761 2.80
4 15.2160 19.0 4 0.01 0.01
5 0.1 0.5 5 0.01778 0.01
6 0.6623 0.1 6 0.33511 0.40
7 7.5049 7.0 7 1.9 1.90
8 20.9631 19.0 8 0.1 0.20
9 21.5409 19.0
10 0.1 0.1

weight [lb] 5056.15 5273.32 394.027 403.897

Table 10. The optimum cross-sectional areas [in2] using linear elastic material law

The optimal weight of the 25-bar truss structure is 153.736 lb using the nonlinear
material law instead of the linear elastic rod members resulting in 403.897 lb for
discrete design variables and resulting in 394.027 lb in the case of continuous solution
methods.

5. Conclusions

In this work, three different solution techniques are discussed and compared, sim-
ulated annealing (SA), genetic algorithm (GA), and tabu search (TS) methods, for
solving a discrete minimal weight design problem for shallow space trusses. In each
case we stopped the searching process after 150 design evaluations. The computational
results reveal the fact that the GA method produces high quality results when the
solution time is limited. Obviously, the performance of SA, TA, and GA depends on
various parameter choices, such as the cooling parameter for SA, and the population
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size, frequency of mutation for GA. The TA and the SA methods are very sensitive
to the starting (initial) design. When the solution time is limited, the likelihood that
the TA and SA methods provide near optimal solutions is very low.

We compared the numerical results of two frequently used test problems obtained
by using the linear and nonlinear material law. We obtained much lighter structure in
both cases but we have to note that the solution method was different in the quoted
paper [3] (see Table 7) and in the present study. In contradiction with paper [3], here
nodal displacement constraints were not considered. However, the large deflection in
the behavior of the initial structure might be significant. In the last two examples, a
genetic algorithm (GA) was adopted for the discrete optimal design problem. In each
case we stopped the searching process after 150 (300) design evaluations related to a
population size of 50 (100).
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