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ABSTRACT

Potato tubers defend themselves against herbivores with endogenous secondary compounds such as so-
lanine and scopolamine. They also recruit endophytes and members of the tuberosphere to repel herbi-
vores. Many of these endophyte defence features are overcome by cooking, with some notable exceptions
that have been identified by rDNA analysis of potato peel samples and may account for some previously
unrecognised features of potato peel colic. This is relevant regarding the rather modern way of cooking,
where the potato peel is left intact in food and consumed.
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1. INTRODUCTION

Potato tubers are an excellent source of nutrients, though they do have some drawbacks.
Especially parts near the epidermis can cause bowl irritation and colic, though this tissue has
traditionally been peeled and disposed of. Unfortunately, since the 1940s, potato peels have been
popularly, but wrongly, accepted as the most nutritious part of this food (Gale, 1941;
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Camire et al., 2009). However, this part of the potato tuber can also be the most hazardous,
where the associated human pathology is usually attributed entirely to alkaloids (Iablokov et al.,
2010), especially if the tubers are allowed to green. In addition to alkaloids, but much less well
defined, there is additional pathological material at the surface of tubers. These include mi-
crobial endophytes, microbial toxins, heat resistant toxins and spores, which may also contribute
to colic and irritable bowel syndrome caused by the ingestion of these microbial elements in the
potato peel, even if cooked (Altayar and Sutherland, 2006; Iablokov et al., 2010).

Metabarcoding or analysis of environmental samples for rDNA (ribosomal DNA) is an
excellent method for determining the entire microbial community in a sample, including
recalcitrant species that cannot be cultivated. This paper presents some examples of the normal
microbial components of potato peel. This supplements the abundant body of research concerned
with conventional microbiological methods used to study plant pathogenic endophytes (Stone
et al., 2004). In nature, however, such sharp and anthropocentric distinctions are not seen, and
instead there is a natural spectrum of endophyte functions from pathological, to “normal”, to
symbiotic, and endophytes sometimes even protect plants because they repel herbivores (Durham
and Tannenbaum, 1998; Fortier et al., 2001). With this method, in some cases, even human
bacterial pathogens can be detected (Brandl et al., 2013; van Overbeek et al., 2014), because of the
practice of using animal dung or even human manure for fertilisation (Bryan, 1977). Sometimes
even fungal human pathogens are detected (Doan and Davidson, 2000), though fungi are less
commonly cited. Here we report examples of bacterial and fungal endophytes from potato peels,
emphasising organisms capable of causing colic and bowel irritation even after cooking. We hope
that in the future, people will avoid food like this, which could cause harm to their health.
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Fig. 1. Endophytes grown out of tubers to reveal reproductive structures, then stained using the Aniline
Lactophenol Blue Cellophane Tape method (Carmichael, 1956). Numerals show species number. N: new;

O: old, R: red
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2. MATERIALS AND METHODS

Red (Petite Red), New (Publix White), and Old (Russet, aged at 4 8C for ≥ one month) potato
tubers were purchased from Publix Supermarkets (Lakeland, Fl). For microscopic studies Red,
New, and Old potatoes were halved and incubated at 25 8C, in a glass dish, under plastic wrap
until fungal endophytes produced visible conidiospores (day 5). These fungal colonies were

Table 1. Most abundant prokaryotes

Species New Red Old Notes Reference

Arthrobacter sp. 0.0 0.0 0.2 Normal soil microbiome
members

Mongodin et al. (2006)

Bacillus sp. 8.6 41.6 24.4 Normal soil microbe with
heat resistant spores. Heat
resistant toxins in some

species

Vary et al. (2007); Taylor
et al. (2005); Rasimus-Sahari
et al. (2015); Altayar and

Sutherland (2006)
Enterobacter sp. 46.1 32.6 12.7 Indicator of faecal material,

some species produce heat
stable carbohydrate

endotoxins

Alegbeleye et al. (2018); Guo
et al. (2018)

Enterococcus
casseliflavus

0.1 0.5 0.0 Enterococcus indicate faecal
material, E. casseliflavus has a
heat stable small protein toxin

Rajarajan et al. (2018)

Escherichia
hermannii

0.1 1.3 0.3 Escherichia is an indicator of
faecal material, E. hermannii
is an opportunistic pathogen

Yamanaka et al. (2010)

Kluyvera
intermedia

0.4 0.2 0.1 Kluyvera indicate faecal
material

Balzer et al. (2010)

Microbacterium sp. 0.0 0.1 0.2 Microbacterium sp. indicate
faecal material and may be
opportunistic pathogen

Balzer et al. (2010)

Pantoea sp. 34.1 18.6 58.1 Pantoea sp. is an
enterobacterial opportunistic

pathogen

Liberto et al. (2009)

Pseudomonas sp. 0.3 0.1 0.3 Some rhizosphere
Pseudomonas spp. are

opportunistic pathogens.
Some produce heat resistant

toxins

Berg et al. (2005); Heckly
(1970)

Serratia
proteamaculans

0.4 0.1 0.0 Some rhizosphere Serratia
spp. may be opportunistic

pathogens

Berg et al. (2005)

Staphylococcus
epidermidis

9.6 4.1 3.3 Part of normal skin
microbiom but may be an

opportunist

Fey and Olson (2010)

All prokaryotes detected by rDNA analysis were ranked by relative abundance (numbers shown above) and
species that ranked ≥0.1 were selected for this table. Species were then reordered alphabetically.
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Table 2. Most abundant fungi

Species New Red Old Notes Reference

Acremonium sp. 2.3 0.9 0.1 Common endophytes. Some
are opportunist pathogens.
Some produce heat stable

alkaloids

Wicklow et al. (2005);
Perdomo et al. (2011)

Alternaria sp. 0.0 3.4 0.0 Some are opportunists. Some
produce several toxic heat
stable secondary products

Davis and Stack (1994); De
Hoog and Horré (2002);
Terminiello et al. (2006)

Athelia bombacina 0.0 0.0 2.3 Normal soil fungus and plant
pathogen

Heye and Andrews (1983)

Chaetomium sp. 0.3 0.0 3.1 Soil fungus, endosymbiont and
plant pathogen. Rare human

pathogen

Haruma et al. (2018);
Barron et al. (2003),
Sodeoka et al. (2012)

Cladosporium sp. 0.3 0.0 0.0 Soil microbiom member and
plant pathogen. Rarely human

pathogenic. Heat stable
mycotoxins

Ogórek et al. (2012); Cheng
et al. (2015); Ma et al.

(2017)

Colletotrichum
coccodes

0.0 0.0 1.1 Soil microbiom member and
plant pathogen

Cummings and Johnson
(2014)

Cryptococcus sp. 2.4 83.2 0.7 Yeast soil microbiom member
and plant pathogen. Some

species are human pathogens

Fonseca et al. (1999)

Debaryomyces
hansenii

7.4 0.1 0.1 Soil yeast. Some strains are
human pathogenic

Breuer and Harms (2006)

Doratomyces sp. 0.0 0.0 0.3 Soil fungus Jiang and Zhang (2008)
Emericellopsis
stolkiae

0.0 0.3 0.0 Soil fungus Davidson and Christensen
(1971)

Erysiphe
huayinenesis

4.2 0.1 0.1 Most Erisiphe spp. are plant
pathogens causing powdery

mildews

Saenz and Taylor (1999)

Filobasidium
floriforme

0.0 2.1 0.0 Environmental
basidiomycetous yeast

Bandoni et al. (1991)

Fusarium sp. 1.1 0.2 9.1 Soil fungus. Some are human
opportunists. Some Fusarium
spp. produce heat stable toxins

Babic et al. (2015); King
(1981)

Geomyces sp. 0.8 0.1 2.5 Soil fungus. Some are animal
opportunists

Gargas et al. (2009)

Helminthosporium
solani

0.1 4.0 0.0 Aetiological agent of Silver
Scurf disease of potato

Errampalli et al. (2001)

Lactarius volemus 1.5 0.0 0.0 Widespread ectomycorrhizal
fungus

Shimono et al. (2007)

Meyerozyma
guilliermondii

0.0 0.3 0.0 Soil fungus. SomeMeyerozyma
spp. are opportunists

Coda et al. (2013); Babic
et al. (2015)

Penicillium sp. 0.1 0.1 3.7 Environmental ascomycetous
fungus. Some produce heat

stable mycotoxins

Pitt (1987); Cruz et al.
(2013)

(continued)
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counted. No bacterial colonies were visible. The fungal structures were harvested using cello-
phane tape (Carmichael 1956), stained with Lactophenol Blue (Linder, 1929), and examined
using bright field microscopy.

For molecular analysis, endophytes in the tuberosphere were harvested by peeling the outer
1.5mm using a kitchen potato peeler. The peel was placed on paper towels and dried at 45 8C,
50 8C, or 55 8C to optimise the drying process and to find conditions for drying at the lowest
temperature to avoid microbial decomposition. Appearance, odour, and mass were recorded
periodically, and according to the results, 50 8C was selected for drying potato peel for sub-
sequent analyses. For DNA analysis tuber peel was dried at 50 8C for 2 days and then sequence
analyses were performed using the Illumina sequencing platform (Reeder and Knight, 2010)
optimised for prokaryote or fungal rDNA targets (Scott Dowd, personal communication).
DNA primers used for detection of bacteria were bac799F 50-ACCMGGATTAGATACCCKG-
30 and illbac1193R 50-CRTCCMCACCTTCCTC-30. Primers used for detection of fungi were
ITS1F-Bt1 50-CTTGGTCATTTAGAGGAAGTAA-30 and ITS2R 50-GCTGCGTTCTTCATC-
GATGC-30.

Sequence relative abundance was screened for values above 0.1, and graphs were drawn using
the Excel program. After identification of the microbes, literature databases were searched to
determine if relevant microbes were known to produce, especially heat resistant, substances that
are toxic, allergenic, or irritating.

Table 2. Continued

Species New Red Old Notes Reference

Plectosphaerella sp. 0.5 0.1 17.7 Soil fungi, many are plant
pathogens

Raimondo and Carlucci,
2018

Preussia sp. 0.0 0.0 0.1 Dung and soil fungi Cain (1961); Mapperson
et al. (2014)

Rhodotorula sp. 0.0 0.6 0.0 Environmental
basidiomycetous yeast, some
species are opportunists

Zaas et al. (2003)

Stemphylium solani 0.0 0.5 0.0 Aetiological agent of Grey Leaf
Spot and other diseases in
several plant species. Heat

stable phytotoxin

Zheng et al. (2009, 2010)

Termitomyces sp. 0.0 1.1 0.0 Symbionts with termites Pegler and van Haecke
(1994)

Trichocladium
asperum

0.6 0.3 54.9 Soil fungus, some
dermatophyte species

Góralska et al. (2015)

Trichosporon sp. 0.9 0.4 0.2 Environmental
basidiomycetous yeast, some
species are human pathogens

Gemeinhardt (1965); Sugita
et al. (2000); Archer-Dubon

et al. (2003),
Umbelopsis sp. 1.6 0.0 0.0 Soil fungus Meyer and Walter (2003)
Volutella ciliata 0.8 0.0 0.1 Plant litter fungus Collado et al. (2007)

All fungi detected by rDNA analysis were ranked by relative abundance (numbers shown above) and
species which ranked ≥0.1 were selected for this table. Species were then reordered alphabetically.
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3. RESULTS AND DISCUSSION

When endophytes were grown out of potato tubers, only a few types were identifiable using the
unaided eye (three from Red, three from New, and five from Old potatoes) or bright field
microscopy (one from Red, four from New, and four from Old potatoes, see Fig. 1). All these
fungal types were recognised as separate species because of their different types of conidia and
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Fig. 2. A: Four important prokaryote species were detected by rDNA analysis of A: new potato peel, B: red
potato peel; C: old potato peel
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conidiophores. Because of this obvious underestimation of microbial load, detection of microbes
using rDNA analysis was done.

Nucleotide sequencing data were ranked by abundance because it was assumed that the
more abundant examples were more important. This showed a ranked list of eleven pro-
karyotes with relative abundance higher than 0.1, four of which were implicated in producing
heat resistant pathological substances (Table 1). A similar process of ranking showed twenty
seven fungi with relative abundance higher than 0.1, five of which were able to produce heat
resistant pathological substances (Table 2). Literature search has shown that many of
these species are characteristic of tubers used for food and cooking because they have been
linked to research that on heat resistant pathological features. Relevant papers are listed in
Tables 1 and 2.
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Fig. 3. Fungi in potato peel. A: More than ten important fungal species were detected by rDNA analysis of
new potato peel. B: One important fungal species was detected by rDNA analysis of red potato peel;

C: Seven important fungal species were detected by rDNA analysis of old potato peel
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4. CONCLUSIONS

For endophyte growth, physiological state of tubers is more important than genetic cultivar,
and that is why the three groups of tubers were selected for DNA analysis: new, red, and
old. The number of fungal colonies that could be used for microscopy was very small and
could be prepared for the examinations with difficulty. Many more species were identified
by rDNA analysis, as shown by comparison of the small number of species seen in Fig. 1
and the ranked abundance data recorded in Tables 1 and 2. This shows that rDNA sequencing
analysis was needed to avoid underestimates of species present and also to avoid the bias that
always comes from culturing microbes, i.e. some important fungi may be slow to grow and some
irrelevant fungi may grow very well under the particular conditions of cultivation.

The tuber peel samples were prepared to obtain material similar to peels served as potato
peels and chips, i.e. residual soil, epidermis, and buds were retained. Air drying at the optimal
temperature of 50 8C was enough to obtain material suitable for sequencing, providing water
removal quickly enough to prevent microbial decomposition, as detected by strong amine odour
development.

Considering the diverse origin of these potato peels, it is quite an oddity that the major
bacterial species are the same in all three cases (Fig. 2A-C), i.e. Bacillus sp., Enterobacter sp.,
Pantoa sp., and Staphylococcus epidermidis. Faecal species were found like Escherichia, Enter-
obacter and Enterococcus spp., even though potatoes grown in the USA do not use solid human
waste as a fertiliser. These may have originated in wild animal faeces. S. epidermidis is a part of
normal human skin microbiom and may have originated from handling of the tubers at some
point between the field and the laboratory. This is in contrast to fungi, where much greater
variation of species was seen between the three samples (Fig. 3A-C). With the exception of
Cryptococcus, no fungal species associated with human pathology have been observed. However,
many species implicated in producing heat stable mycotoxins and allergens (Ogórek et al., 2012)
have been detected (Table 2). This study is obviously not representative of all potato tuber peels,
but does show that disturbing microbial species are fairly easy to find.

Obviously, cooking potato peels kills almost all live vegetative cells associated with con-
ventional food poisoning (Doan and Davidson, 2000). However, the data in Tables 1 and 2 show
that heat resistant irritants, allergens, alkaloids, and possibly unknown irritating compounds
may be present, which could survive cooking and account for some human pathology observed
from eating potato peels, even after cooking (Altayar and Sutherland, 2006; Iablokov et al.,
2010). This is all over and above the fact that bitter tuber alkaloids are found mostly in the
epidermis (Friedman and Dao, 1992; Deußer et al., 2012; Zhang and Peterson, 2018) and
contribute significantly to potato peel colic from green tubers. Endophytes may account for the
colic observed when consuming non-green cooked potato peels. This is enough to come to the
obvious conclusion that potato tubers defend themselves in several ways including cooperation
with symbiotic endophytes. It is not unexpected, as plants are already known to defend
themselves using symbiotic fungi (Hardoim et al., 2015). Little research has been done to
determine if potato endophytes are similar worldwide, so the particular species described here
might be limited to North American potatoes and cultivation methods. However, caution is
advisable, because eating unknown microbes is a risky activity. Therefore, to improve food
safety, we should do the sensible thing, which is to peel potato tubers and throw the poisonous
epidermal defence layer away rather than expose ourselves to the danger of eating it.
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