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PRIME NUMBERS AND CYCLOTOMY

Panayiotis G. Tsangaris (Athens, Greece)

Abstract. First, an explicite expression for (1—¢*)~!, where ¢=exp(27i/n), is given, in the
form of a polynomial in ¢, with rational coefficients. Then a new primality criterion is obtained,
which involves the greatest integer function. Further, using a result due to Yu.l. Volosin [10],
we transform this criterion into a series of criteria involving rational expressions of ¢ [one of
these criteria involves the numbers (1—¢*)~!, 1<k<n—1]. Finally, these criteria are refined to a

trigonometric primality criterion, that involves only sums of cosines.
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Introduction

Denote by F,(x) the n-th cyclotomic polynomial, while ¢ will denote Euler’s
function and { = exp(2mi/n). Given two polynomials f(v), g(v) in variable v,
denote by R,(f(v),g(v)) their resultant.

In Section 1 we express (1 — ¢¥)~1, explicitly, in the form of a polynomial in
¢, by employing a series of new properties of the cyclotomic polynomial (Theorems
1.1 and 1.2).

In Section 2 a new primality criterion is obtained. Our primality criterion

(Theorem 2.1) extends a previous result of author [7] which improves upon classical
result of Hacks [5].

In Section 3 the result of (Section 2) is given in “cyclotomic” form by using
roots of unity and trigonometric functions. The key result for such a “cyclotomic”
modification is a Theorem of Yu. I. Volosin [10] expressing [a/n] by means of a
primitive root of 1 of order n. Specifically, our Theorem 3.1 is a first primality
criterion for n formulated in terms of ¢ and involving (1—¢*)™1, 1 <k <n—1. To
calculate the inverse of (1—¢*) (Corollary 1.4), we thus obtain a second “cyclotomic”
primality criterion (Theorem 3.2). The “trigonometric elaboration” of this result
leads to our final Theorem 3.4, which is a “trigonometric” primality criterion.

1. Expressing (1 — ¢(¥)~! as a polynomial in ¢

Theorem 1.1. Let n, s be natural numbers and let d = (n, s). Then
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Fyq(a®)®m/¢/d) for n > 1 except for d = n = 2,
R,(v® —2®, F(v)) =8 —Fi(2%)=1—2°ford=n = 2,
(=1 P (2%) = (-1)*(2° — 1) for n = 1.

Proof. Let R(z) = R, (v®—2°, F,,(v)), G(z) = F, 4(z*)*™/¢/ 4 and p1, ps, ..., ps
be the s-th roots of unity. Then pix, pax, ..., psx are the roots of v® — z* (for x
fixed). Hence

R(z) = Fa(pr) - - Fu(psa).

Let £ be a root of R(x). Hence, F,,(pr€) = 0 for some k, with 1 < k < s, i.e. pi&
is a root of F,(v). Thus, pi€ is a primitive n-th root of unity. Set pp{ = ¢, then
&% = (*. But the order of ¢* is n/d. Hence £* is a primitive n/d-th root of unity,
ie.
F, (%) = 0.
Hence,
Fyjal€)#0/#019 =,

i.e. € is a root of G(z). Hence, every root of R(x) is a root of G(z), i.e.

R(z) | G(x). (1)
Also
degG(z) = degR(x) = so(n). (2)
From (1) and (2) we have:
G(x) = cR(x), where ¢ is a (rational) constant. (3)
Hence G(0) = cR(0), that is
Fn/d(0)¢(n)/¢(n/d) = cF,(0)*. (4)

To derive the sought formula it suffices now to evaluate the constant ¢. We have to
examine two cases:

(a) If n > 1. In case d # n, then n/d > 1. Also F,(0) = 1 and F;(0) = —1. Then,
in view of (4) we have ¢ = 1. In case d = n > 1, we have in view of (4) that

_(_ d)(n)_ —1, lf 71:2,
c=(-1) _{ 1, if n>2
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(b) If n =1, then (4) implies that

{1, if s isodd,
c=1q

if s 1iseven.

Remark. Theorem 1.2 should be considered as closely related to a corresponding
Theorem of T. Apostol [1] on the resultant of the cyclotomic polynomials F, (ax)
and F, (bx).

Theorem 1.2. Let n,s be natural numbers. Denote by p1 = 1,ps,...,ps all the
s-th roots of unity, and let

K3 (2) = Fa(p1a) -« Fa(ps®) — Fa(p1) -+~ Fu(ps).-

Then:

(i) (z° = DK (2).
(ii) If n fs, then

(1=¢)™ = LA(Q)/R(W =1, F,(v)),

where
Li(2) = K@)/ — 1).

Proof. The numbers p1, po, ..., ps form a cyclic group. Hence

Krsz(pk) = Fn(plpk) ' "Fn(Pst) - Fn(pl) e 'Fn(ps) =0 for k= 1,2,...,s.

Also p1z,. .., psx are the roots of v¥ — x®* = 0 (for z fixed). Thus
K (z) = Ry(v° — 2%, F,(v)) — R(v® — 1, Fy(v))

is a polynomial of x with integer coefficients. Since every pj, is a root of K3 (x),
part (i) follows immediately. Then

L3(¢) = K5(Q)/(¢° = 1)

and so
K (Q) = —Fu(p1) -+ Fu(ps) = —R(v® — 1, Fy, (v)).

In conclusion

(1=¢)7 = LA(Q)/R(w" = 1), Fu(v)).

Theorem 1.3. Let n, k be natural numbers such that n > 1, n fk and let d = (n, k).
Define
KZ(;U) = Fn/d(xk)¢(n)/¢(n/d) _ Fn/d(1)¢>(n)/¢(n/d)'
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Then z¥ — 1 is a divisor of KF(z), and
(1= ") = Lh(Q)/ Faya()? /2019,

where
Ly(x) = K}(z)/(z" = 1).

Proof. Immediate by using Theorems 1.1 and 1.2.
Corollary 1.4. If n is a prime and k < n, then we have

(1 _ <k)—1 _ % Z wé—k(n—w—l)'

1<w<n—1

Proof. Here (n,k) =1 and F,, (1) = n, so by Theorem 1.3 we have
Li(z) = (Fa(@*) = Fu(1) /(" ~ 1) = 3" wattrmvh,
1<w<n—1

which proves the corollary.

2. A Primality Criterion

The known formula of Hacks [5, p. 205] for the g.c.d. of two natural numbers

(n,j)=2 Y [ji/nl—jn+i+n
1<i<n—1

together with the fact that n is prime if and only if Z (n,7) = m where m =
1<j<m

[v/n ] implies the following:

Theorem 2.1. Let n be a natural number with n > 1, m = [\/n ] and

g(n) =4 Z [ji/n] = (m —1)m(n —1).

Then the following hold true:
(i) n is prime if and only if g(n) = 0.
(ii) n is composite if and only if g(n) > 0.
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3. Prime numbers, roots of unity, cyclotomy and trigonometry

By Volosin’s Theorem [10] we have:

(5)

for any pair of (positive) integers a,n. Hence by (5) and Theorem 2.1 we have the
following:

Theorem 3.1. Let n be a natural number with n > 1 and m = [\/n |. Then, n is
prime if and only if

Ch+1)
1—¢k

=m(n—1).

>

1<j<m
1<t,k<n—1

Theorem 3.2. Let n be a natural number with n > 1 and m = [\/n ]. Then n is
prime if and only if

tjkl_k
Y wzm(n—n. (6)

1<j<m
1<t,k<n—1

Proof. If n is a prime, by Theorem 3.1 and Corollary 1.4 we obtain:

% Z C(tj+1)k Z wck(n—w—l) _ m(n _ 1) (7)

1<j<m 1<w<n—1
1<t,k<n—1 - =

Let ¢¥ = 1/z. Clearly ¢* # 1, i.e. z # 1. Therefore

o 1 B n(é-k(n—l) _ 1)

k(n—w—1) __ w—1 __

Z wé_ — on—2 Z wz — (k(n—1 k : (8)
1<w<n—1 o 1<w<n—1 C ( ) +< -2

By (7) and (8) follows (6).

Assume now that (6) holds true. We have ¢¥(»=1 4 ¢k — 2 £ 0 and ¢*»~1 #£1

because ¢* # 1. Also, the following hold true:

1—¢* _ 1
<k(n—1) + <k -9 - Ck(n—l) -1

Hence
Ctjk(l _ Ck) Ck(tj+l)
Ck(n_1)+<k_2: 1_Ck '




P. G. Tsangaris

Hence by our assumption we have:

s g

m(n—1)=2 . L S R A—— .

1<j<m (Rl 4 ¢k — 2 1<j<m 1-¢*
1<t,k<n—1 1<t,k<n—1

Finally, by Theorem 3.1, n is prime Q.E.D

Our next Lemma 3.3 aims at transforming the above Theorem 3.2 into a

“trigonometric” primality criterion.

Lemma 3.3. Let m,n be natural numbers with n > 1 and m = [\/n]. Then

9 Z ¢F(1 - ¢F)
5= Ck(n—l) + Ck —9
1<t,k<n-—1

Proof. The following hold true

CUR(1 — k) = 25in TR D

Also
Ck(n—l) + <k -9
From (9) and (10) we obtain:

>

1<j<m
1<t,k<n—1

k(1 - ¢¥)

2 Ck(n—l) + Ck -9 -

Moreover
. k(2ti
sin & (2tj41)
— n —
: : 7wk
1<j<m sin =t
1<t,k<n-—1

.. mk
n— — 2¢sin — cos
n n

2ntjk
cos ——.
n

>

1<j<m
1<t,k<n—1

wk wk(2tj + 1)

7k
= —4sin? — (10)
- Z sin 7rk(2flj+1)
iy ok
1<j<m sin 7
1<t,k<n—1
mk(2tj+1)
cos —=2 =2
+ioy — (11)
1<j<m sin 7
1<t,k<n-—1
. 2mtjk wk
Z sin cot —
- n n
1<j<m
1<t,k<n-—1
2mtjk
Z cos 17 (12)
- n
1<j<m

1<t,k<n—1
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On the other hand

k(2tj+1
os Tk(2ti+1)

¢ 2rtjk wk . 2mtik
E — = E cos —— cot — — E sin . (13)
sin 2= n n
1<j<m n 1<j<m 1<j<m
1<t,k<n-—1 1<t,k<n-—1 1<t,k<n-—1

The following hold true

2tjk k
Z sin 2% cot T8 = 0, (14)
1<5<m " "
1<t,k<n—1
2tjk k
Z cos T ot T8 — (15)
1<j<m " n
1<t k<n—1
and N
2mtg
Y s T =, (16)
1<j<m n
1<t k<n—1

Finally, by (11) together with (12), (13), (14), (15) and (16) we obtain:

¢F1—-¢") 2mtjk
2 —_— Y — — COS .
D PV
1<t,k<n—1 1<t,k<n—1

It is now clear that Theorem 3.2 and Lemma 3.3 imply the following

Theorem 3.4. Let n be a natural number with n > 1 and m = [\/n ]. Then n is
prime if and only if

2rtjk
Z cos 17 =—-m(n—1).

- n
1<j<m
1<t,k<n—1
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