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PRIME NUMBERS AND CYCLOTOMY

Panayiotis G. Tsangaris (Athens, Greece)

Abstract. First, an explicite expression for (1−ζk)−1, where ζ=exp(2πi/n), is given, in the

form of a polynomial in ζ, with rational coefficients. Then a new primality criterion is obtained,

which involves the greatest integer function. Further, using a result due to Yu.I. Vološin [10],

we transform this criterion into a series of criteria involving rational expressions of ζ [one of

these criteria involves the numbers (1−ζk)−1, 1≤k≤n−1]. Finally, these criteria are refined to a

trigonometric primality criterion, that involves only sums of cosines.
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Introduction

Denote by Fn(x) the n-th cyclotomic polynomial, while φ will denote Euler’s
function and ζ = exp(2πi/n). Given two polynomials f(v), g(v) in variable v,
denote by Rv(f(v), g(v)) their resultant.

In Section 1 we express (1 − ζk)−1, explicitly, in the form of a polynomial in
ζ, by employing a series of new properties of the cyclotomic polynomial (Theorems
1.1 and 1.2).

In Section 2 a new primality criterion is obtained. Our primality criterion
(Theorem 2.1) extends a previous result of author [7] which improves upon classical
result of Hacks [5].

In Section 3 the result of (Section 2) is given in “cyclotomic” form by using
roots of unity and trigonometric functions. The key result for such a “cyclotomic”
modification is a Theorem of Yu. I. Vološin [10] expressing [a/n] by means of a
primitive root of 1 of order n. Specifically, our Theorem 3.1 is a first primality
criterion for n formulated in terms of ζ and involving (1− ζk)−1, 1 ≤ k ≤ n−1. To
calculate the inverse of (1−ζk) (Corollary 1.4), we thus obtain a second “cyclotomic”
primality criterion (Theorem 3.2). The “trigonometric elaboration” of this result
leads to our final Theorem 3.4, which is a “trigonometric” primality criterion.

1. Expressing (1 − ζk)−1 as a polynomial in ζ

Theorem 1.1. Let n, s be natural numbers and let d = (n, s). Then
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Rv(vs − xs, Fn(v)) =







Fn/d(x
s)φ(n)/φ(n/d) for n > 1 except for d = n = 2,

−F1(x
s) = 1 − xs for d = n = 2,

(−1)s+1F1(x
s) = (−1)s+1(xs − 1) for n = 1.

Proof. Let R(x) = Rv(v
s−xs, Fn(v)), G(x) = Fn/d(x

s)φ(n)/φ(n/d) and ρ1, ρ2, . . . , ρs

be the s-th roots of unity. Then ρ1x, ρ2x, . . . , ρsx are the roots of vs − xs (for x
fixed). Hence

R(x) = Fn(ρ1x) · · ·Fn(ρsx).

Let ξ be a root of R(x). Hence, Fn(ρkξ) = 0 for some k, with 1 ≤ k ≤ s, i.e. ρkξ
is a root of Fn(v). Thus, ρkξ is a primitive n-th root of unity. Set ρkξ = ζ, then
ξs = ζs. But the order of ζs is n/d. Hence ξs is a primitive n/d-th root of unity,
i.e.

Fn/d(ξ
s) = 0.

Hence,
Fn/d(ξ

s)φ(n)/φ(n/d) = 0,

i.e. ξ is a root of G(x). Hence, every root of R(x) is a root of G(x), i.e.

R(x) | G(x). (1)

Also
degG(x) = degR(x) = sφ(n). (2)

From (1) and (2) we have:

G(x) = cR(x), where c is a (rational) constant. (3)

Hence G(0) = cR(0), that is

Fn/d(0)φ(n)/φ(n/d) = cFn(0)s. (4)

To derive the sought formula it suffices now to evaluate the constant c. We have to
examine two cases:

(a) If n > 1. In case d 6= n, then n/d > 1. Also Fn(0) = 1 and F1(0) = −1. Then,
in view of (4) we have c = 1. In case d = n > 1, we have in view of (4) that

c = (−1)φ(n) =

{

−1, if n = 2,
1, if n > 2.
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(b) If n = 1, then (4) implies that

c =

{

1, if s is odd,
−1, if s is even.

Remark. Theorem 1.2 should be considered as closely related to a corresponding
Theorem of T. Apostol [1] on the resultant of the cyclotomic polynomials Fm(ax)
and Fn(bx).

Theorem 1.2. Let n, s be natural numbers. Denote by ρ1 = 1, ρ2, . . . , ρs all the
s-th roots of unity, and let

Ks
n(x) ≡ Fn(ρ1x) · · ·Fn(ρsx) − Fn(ρ1) · · ·Fn(ρs).

Then:
(i) (xs − 1)|Ks

n(x).
(ii) If n 6 |s, then

(1 − ζs)−1 = Ls
n(ζ)/R(vs − 1, Fn(v)),

where
Ls

n(x) = Ks
n(x)/(xs − 1).

Proof. The numbers ρ1, ρ2, . . . , ρs form a cyclic group. Hence

Ks
n(ρk) = Fn(ρ1ρk) · · ·Fn(ρsρk) − Fn(ρ1) · · ·Fn(ρs) = 0 for k = 1, 2, . . . , s.

Also ρ1x, . . . , ρsx are the roots of vs − xs = 0 (for x fixed). Thus

Ks
n(x) = Rv(vs − xs, Fn(v)) − R(vs − 1, Fn(v))

is a polynomial of x with integer coefficients. Since every ρk is a root of Ks
n(x),

part (i) follows immediately. Then

Ls
n(ζ) = Ks

n(ζ)/(ζs − 1)

and so
Ks

n(ζ) = −Fn(ρ1) · · ·Fn(ρs) = −R(vs − 1, Fn(v)).

In conclusion
(1 − ζs)−1 = Ls

n(ζ)/R(vs − 1), Fn(v)).

Theorem 1.3. Let n, k be natural numbers such that n > 1, n 6 |k and let d = (n, k).
Define

Kk
n(x) = Fn/d(x

k)φ(n)/φ(n/d) − Fn/d(1)φ(n)/φ(n/d).
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Then xk − 1 is a divisor of Kk
n(x), and

(1 − ζk)−1 = Lk
n(ζ)/Fn/d(1)φ(n)/φ(n/d),

where
Lk

n(x) = Kk
n(x)/(xk − 1).

Proof. Immediate by using Theorems 1.1 and 1.2.

Corollary 1.4. If n is a prime and k < n, then we have

(1 − ζk)−1 =
1

n

∑

1≤w≤n−1

wζk(n−w−1).

Proof. Here (n, k) = 1 and Fn(1) = n, so by Theorem 1.3 we have

Lk
n(x) = (Fn(xk) − Fn(1))/(xk − 1) =

∑

1≤w≤n−1

wxk(n−w−1),

which proves the corollary.

2. A Primality Criterion

The known formula of Hacks [5, p. 205] for the g.c.d. of two natural numbers

(n, j) = 2
∑

1≤i≤n−1

[ji/n] − jn + j + n

together with the fact that n is prime if and only if
∑

1≤j≤m

(n, j) = m where m =

[
√

n ] implies the following:

Theorem 2.1. Let n be a natural number with n > 1, m = [
√

n ] and

g(n) = 4
∑

1≤j≤m

1≤i≤n−1

[ji/n]− (m − 1)m(n − 1).

Then the following hold true:
(i) n is prime if and only if g(n) = 0.
(ii) n is composite if and only if g(n) > 0.



Prime numbers and cyclotomy 7

3. Prime numbers, roots of unity, cyclotomy and trigonometry

By Vološin’s Theorem [10] we have:

[a

n

]

=
a

n
− n − 1

2n
− 1

n

∑

1≤s≤n−1

ζs(a+1)

1 − ζs
(5)

for any pair of (positive) integers a, n. Hence by (5) and Theorem 2.1 we have the
following:

Theorem 3.1. Let n be a natural number with n > 1 and m = [
√

n ]. Then, n is
prime if and only if

2
∑

1≤j≤m

1≤t,k≤n−1

ζk(tj+1)

1 − ζk
= m(n − 1).

Theorem 3.2. Let n be a natural number with n > 1 and m = [
√

n ]. Then n is
prime if and only if

2
∑

1≤j≤m

1≤t,k≤n−1

ζtjk(1 − ζk)

ζk(n−1) + ζk − 2
= m(n − 1). (6)

Proof. If n is a prime, by Theorem 3.1 and Corollary 1.4 we obtain:

2

n

∑

1≤j≤m

1≤t,k≤n−1

ζ(tj+1)k
∑

1≤w≤n−1

wζk(n−w−1) = m(n − 1). (7)

Let ζk = 1/z. Clearly ζk 6= 1, i.e. z 6= 1. Therefore

∑

1≤w≤n−1

wζk(n−w−1) =
1

zn−2

∑

1≤w≤n−1

wzw−1 =
n(ζk(n−1) − 1)

ζk(n−1) + ζk − 2
. (8)

By (7) and (8) follows (6).

Assume now that (6) holds true. We have ζk(n−1) + ζk − 2 6= 0 and ζk(n−1) 6= 1
because ζk 6= 1. Also, the following hold true:

1 − ζk

ζk(n−1) + ζk − 2
=

1

ζk(n−1) − 1
.

Hence
ζtjk(1 − ζk)

ζk(n−1) + ζk − 2
=

ζk(tj+1)

1 − ζk
.
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Hence by our assumption we have:

m(n − 1) = 2
∑

1≤j≤m

1≤t,k≤n−1

ζtjk(1 − ζk)

ζk(n−1) + ζk − 2
= 2

∑

1≤j≤m

1≤t,k≤n−1

ζk(tj+1)

1 − ζk
.

Finally, by Theorem 3.1, n is prime Q.E.D.

Our next Lemma 3.3 aims at transforming the above Theorem 3.2 into a
“trigonometric” primality criterion.

Lemma 3.3. Let m, n be natural numbers with n > 1 and m = [
√

n ]. Then

2
∑

1≤j≤m

1≤t,k≤n−1

ζtjk(1 − ζk)

ζk(n−1) + ζk − 2
= −

∑

1≤j≤m

1≤t,k≤n−1

cos
2πtjk

n
.

Proof. The following hold true

ζtjk(1 − ζk) = 2 sin
πk(2tj + 1)

n
sin

πk

n
− 2i sin

πk

n
cos

πk(2tj + 1)

n
. (9)

Also

ζk(n−1) + ζk − 2 = −4 sin2 πk

n
. (10)

From (9) and (10) we obtain:

2
∑

1≤j≤m

1≤t,k≤n−1

ζtjk(1 − ζk)

ζk(n−1) + ζk − 2
= −

∑

1≤j≤m

1≤t,k≤n−1

sin πk(2tj+1)
n

sin πk
n

+ i
∑

1≤j≤m

1≤t,k≤n−1

cos πk(2tj+1)
n

sin πk
n

. (11)

Moreover

−
∑

1≤j≤m

1≤t,k≤n−1

sin πk(2tj+1)
n

sin πk
n

= −
∑

1≤j≤m

1≤t,k≤n−1

sin
2πtjk

n
cot

πk

n

−
∑

1≤j≤m

1≤t,k≤n−1

cos
2πtjk

n
. (12)
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On the other hand

∑

1≤j≤m

1≤t,k≤n−1

cos πk(2tj+1)
n

sin πk
n

=
∑

1≤j≤m

1≤t,k≤n−1

cos
2πtjk

n
cot

πk

n
−

∑

1≤j≤m

1≤t,k≤n−1

sin
2πtjk

n
. (13)

The following hold true

∑

1≤j≤m

1≤t,k≤n−1

sin
2πtjk

n
cot

πk

n
= 0, (14)

∑

1≤j≤m

1≤t,k≤n−1

cos
2πtjk

n
cot

πk

n
= 0 (15)

and
∑

1≤j≤m

1≤t,k≤n−1

sin
2πtjk

n
= 0. (16)

Finally, by (11) together with (12), (13), (14), (15) and (16) we obtain:

2
∑

1≤j≤m

1≤t,k≤n−1

ζtjk(1 − ζk)

ζk(n−1) + ζk − 2
= −

∑

1≤j≤m

1≤t,k≤n−1

cos
2πtjk

n
.

It is now clear that Theorem 3.2 and Lemma 3.3 imply the following

Theorem 3.4. Let n be a natural number with n > 1 and m = [
√

n ]. Then n is
prime if and only if

∑

1≤j≤m

1≤t,k≤n−1

cos
2πtjk

n
= −m(n − 1).
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