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ELEMENTARY PROBLEMS WHICH ARE EQUIVALENT TO

THE GOLDBACH’S CONJECTURE

Bui Minh Phong and Li Dongdong (Budapest, Hungary)

Abstract. We denote by {p1=2, p2=3, p3=5,..., pk,...} the sequence of increasing primes,

and for each positive integer k≥1 let

S(k):=min{2n>pk: 2n−p1, 2n−p2,..., 2n−pk all are composite numbers}.

We prove that the following conjectures are equivalent to the Goldbach’s conjecture.

Conjecture B. For every positive integer k, we have

S(k) ≥ pk+1 + 3.

Conjecture C. For every positive integer k, the number S(k) is the sum of two odd primes.

1. Introduction

Goldbach wrote a letter to Euler in 1742 suggesting that every integer n > 5 is
the sum of three primes. Euler replied that this is equivalent to the following
statement:

Conjecture A. Every even integer 2n > 4 is the sum of two odd primes.

This is now known as Goldbach’s conjecture. A. Schinzel showed that Gold-
bach’s conjecture is equivalent to every integer n > 17 is the sum of three distinct
primes. It has been proven that every even integer is the sum of at most six primes
[2] (Goldbach suggests two) and in 1966 Chen proved every sufficiently large even
integers is the sum of a prime plus a number with no more than two prime factors.
In 1993 Sinisalo [5] verified Goldbach’s conjecture for all integers less than 4 · 1011.
More recently Jean-Marc Deshouillers, Yannick Saouter and Herman te Riele [1]
have verified this up to 1014 with the help of a Cray C90 and various workstations.
In July 1998, Joerg Richstein [4] completed a verification to 4 · 1014 and placed a
list of champions online. See the monograf of P. Ribenboim [3] for more information.

In the following, we shall denote by P the set of all increasing primes, that is

P := {p1 = 2, p2 = 3, p3 = 5, . . . , pk, . . .}.
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For each positive integer k ≥ 1, let

Ak := {2n > pk: 2n − p1, 2n − p2, . . . , 2n − pk all are composite numbers}.

Since p1 · · · pk ∈ Ak ⊆ N, therefore Ak has a minimum element. Let

S(k) := minAk.

We shall prove that the following conjectures are equivalent to Conjecture A.

Conjecture B. For every positive integer k, we have

S(k) ≥ pk+1 + 3.

Conjecture C. For every positive integer k, the number S(k) is the sum of two

odd primes.

The purpose of this note is to prove the following

Theorem. We have

(a) Every even integer 2n > 4 is the sum of two odd primes if and only if

(1) S(k) ≥ pk+1 + 3.

holds for every positive integer k.

(b) Every even integer 2n > 4 is the sum of two odd primes if and only if

the number S(k) is the sum of two odd primes for all positive integers k.

In the other words, Conjectures A, B and C are equivalent.

2. Lemmas

In the following we denote by G the set of all even positive integers which are
the sums of two odd primes. Goldbach’s conjecture states that G contains all even
integers 2n ≥ 6.

Lemma 1. We have

{ 2n: 6 ≤ 2n ≤ pk + 3 } ⊂ G if and only if {2n: 6 ≤ 2n < S(k)} ⊂ G.

Proof. It follows from the definition of S(k) that S(k) ≥ pk + 9, consequently

{2n: 6 ≤ 2n ≤ pk + 3} ⊂ G if {2n: 6 ≤ 2n < S(k)} ⊂ G.
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Now assume that {2n: 6 ≤ 2n ≤ pk +3} ⊂ G. Let 2N be an even integer with
6 ≤ 2N < S(k). If 2N ≤ pk + 3, then we have 2N ∈ G by our assumption.
Let pk + 3 < 2N < S(k). Hence

2N − p1 > 2N − p2 > · · · > 2N − pk > 3.

On the other hand, the conditions 2N < S(k) and S(k) = min Ak yield

2N 6∈ Ak.

Since

Ak = {2n > pk: 2n − p1, 2n − p2, . . . , 2n − pk all are composite numbers},

the last relations imply that

2N − pi is a prime for some pi ∈ {p1, p2, p3, . . . , pk}.

Consequently, 2N ∈ G, and so Lemma 1 is proved.

Lemma 2. Let k be a positive integer. Then

{2n: S(k) ≤ 2n < S(k + 1)} ⊂ G if and only if S(k) ≥ pk+1 + 3.

Proof. Assume that S(k) 6= S(k+1) and {2n: S(k) ≤ 2n < S(k+1)} ⊂ G. Then
we have S(k) = p+ q for for some primes p and q. Since the numbers S(k)−p and
S(k) − q are primes, we infer from the definition of S(k) that p > pk and q > pk.
Consequently, S(k) = p + q ≥ 2pk + 4 ≥ pk+1 + 3.

Now assume that S(k) 6= S(k + 1) and S(k) > pk+1 + 3. Let 2N be an even
integer for which S(k) ≤ 2N < S(k + 1) is satisfied. As we have seen in the proof
of Lemma 1, in this case we also have 2N 6∈ Ak+1 and

2N − p1 > 2N − p2 > . . . > 2N − pk > 2N − pk+1 ≥ S(k) − pk+1 > 3.

Consequently,

2N − pi is a prime for some pi ∈ {p1, p2, p3, · · · , pk, pk+1},

which shows that 2N ∈ G.

Finally, in the case S(k) = S(k + 1) we also have that S(k) = S(k + 1) ≥
pk+1 + 9 > pk+1 + 1 by the definition of S(k + 1).

The proof of Lemma 2 is finished.
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3. Proof of the theorem

Proof of (a). Assume that every even integer 2n > 4 is the sum of two odd
primes. In this case we infer from Lemma 2 that S(k) ≥ pk+1+3. Thus, Conjecture
A implies Conjecture B.

Now we assume that Conjecture B is true, that is (1) holds for every positive
integer k. Hence, Lemma 2 shows that

(2) {2n: 6 ≤ 2n < S(k + 1) } ⊂ G

holds for all positive integers k.

Finally, let 2n > 4 be any even integer. It is clear to see from the definition
of S(k) that S(k) > pk. Hence

S(k) → ∞ as k → ∞.

Consequently, S(ℓ) > 2n is true for some positive integer ℓ, and so we get from
(2) that 2n ∈ G. The proof of the the part (a) of the theorem is completed.

Proof of (b). It is obvious that Conjecture C is a consequence of Conjecture A.

Assume now that the conjecture C is true, that is, for each positive integer k,
we have S(k) = p + q for for some primes p and q. Since the numbers Sk − p and
S(k) − q are primes, we also have p > pk and q > pk. Consequently,

S(k) = p + q > 2pk ≥ pk+1 + 1,

and so Conjecture B is true. This with (a) completes the proof of (b). The assertion
(b) is proved.

The proof of the theorem is finished.
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