GENERALIZED FIBONACCI-TYPE NUMBERS AS MATRIX DETERMINANTS

Ferenc Mátyás (Eger, Hungary)

Abstract. In this note we construct such matrix determinants of complex entries which are equal to the numbers defined by Fibonacci-type linear recursions of order $k \ge 2$.

AMS Classification Number: 11B39, 11C20

1. Introduction

Let $k \geq 2$ be an integer. The recursive sequence $\{G_n\}_{n=2-k}^{\infty}$ of order k is defined for every $n \geq 2$ by the recursion

(1)
$$G_n = p_1 G_{n-1} + p_2 G_{n-2} + \dots + p_k G_{n-k},$$

where p_i $(1 \le i \le k)$ and G_j $(2 - k \le j \le 1)$ are given complex numbers and $p_1 p_k G_1$ is not equal to zero. For brevity, we will use the formula

$$G_n = G_n(p_1, p_2, \ldots, p_k, G_{2-k}, G_{3-k}, \ldots, G_1),$$

as well. In the case k = 2 we get the wellknown family of second order linear recurrences of complex numbers. The two most important sequences from this family are the Fibonacci $\{F_n\}$ and the Lucas $\{L_n\}$ sequences, where

$$F_n = G_n(1, 1, 0, 1)$$
 and $L_n = G_n(1, 1, 2, 1)$,

respectively.

The close connections between the Fibinacci (and Lucas) numbers and suitable matrix determinants have been known for ages. For example, it is known that for $k \geq 1$ F_k is equal to the following tridiagonal matrix determinant of $k \times k$:

$$F_k = \det \begin{pmatrix} 1 & i & & & \\ i & 1 & i & & \\ & i & 1 & i & \\ & & i & 1 & \ddots & \\ & & & i & 1 & \ddots & \\ & & & \ddots & \ddots & i \\ & & & & i & 1 \end{pmatrix}$$

Recently, some papers have been publicated in this field. (For more information about the list of these papers see [1].) One of the latest such papers was written by Nathan D. Cahill and Darren A. Narayan [1]. They have constructed such family of tridiagonal matrix determinants of $k \times k$ which generate any arbitrary linear subsequence

$$F_{\alpha k+\beta}$$
 or $L_{\alpha k+\beta}$ $(k=1,2,\ldots)$

of the Fibonacci or Lucas numbers. For example,

$$F_{4k-2} = \det \begin{pmatrix} 1 & 0 & & & \\ 0 & 8 & 1 & & \\ & 1 & 7 & 1 & & \\ & & 1 & 7 & \ddots & \\ & & & \ddots & \ddots & 1 \\ & & & & 1 & 7 \end{pmatrix}$$

The aim of this note is to investigate suitable matrix determinants of $n \times n$ which form the terms G_n of the Fibonacci-type sequences defined by (1). In this paper we suppose that in (1) $p_1 \neq 0, p_j = 0$ ($2 \leq j \leq k-1$ for $3 \leq k$), $p_k = \pm 1$, and $G_1 \neq 0$, that is we deal with the family of sequences

(2)
$$G_n = G_n(p_1, 0, \dots, 0, \pm 1, G_{2-k}, G_{3-k}, \dots, G_1).$$

(Naturally, the sign \pm in (2) is fixed in a given sequence.)

For our aim we construct the matrix $\mathbf{A}_{n \times n} = (a_{t,j})$ of complex numbers by the following forms: $a_{1,1} = G_1$, $a_{1,j} = -e^{j+1}G_{j-k}$ $(2 \le j \le k)$, $a_{j+1,j} = -e^3$ $(1 \le j \le n-1)$, $a_{j,k+j-1} = -e^{k+1}$ $(2 \le j \le n+1-k)$, $a_{j,j} = p_1$ $(2 \le j \le n)$ and the other entries are equal to 0. That is,

 $\mathbf{A}_{n \times n}$

$$= \begin{pmatrix} G_1 & -e^3G_{2-k} & -e^4G_{3-k} & \cdots & -e^{k+1}G_0 & 0 & 0 & \cdots & 0 & 0\\ -e^3 & p_1 & 0 & \cdots & 0 & -e^{k+1} & 0 & \cdots & 0 & 0\\ 0 & -e^3 & p_1 & \cdots & 0 & 0 & -e^{k+1} & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & -e^3 & p_1 \end{pmatrix}$$

where e = -1 if $p_k = -1$ and e = -i if $p_k = 1$.

2. Result

We shall prove the following theorem.

Theorem. Let the squence $\{G_n\}_{n=2-k}^{\infty}$ be defined by (2), where $p_1G_1 \neq 0$, $p_k = \pm 1$ and $k \geq 2$. Let the matrix $\mathbf{A}_{n \times n}$ be defined by (3). Then for every $n \geq 1$

$$G_n = \det(\mathbf{A}_{n \times n}).$$

Remark. In the case k = 2 our matrices $\mathbf{A}_{n \times n}$ are of tridiagonal ones.

Proof. First we consider the case $1 \le n \le k$. Then, for n = 1

$$\det(\mathbf{A}_{1\times 1}) = G_1$$

If n = 2 or 3, then

$$\det \begin{pmatrix} G_1 & -e^3 G_{2-k} \\ -e^3 & p_1 \end{pmatrix} = p_1 G_1 - e^6 G_{2-k}$$
$$= p_1 G_1 + p_k G_{2-k} = G_2$$

and

$$\det \begin{pmatrix} G_1 & -e^3 G_{2-k} & -e^4 G_{3-k} \\ -e^3 & p_1 & 0 \\ 0 & -e^3 & p_1 \end{pmatrix}$$
$$= p_1 G_2 - e^4 G_{3-k} e^6 = p_1 G_2 - e^2 G_{3-k} = p_1 G_2 + p_k G_{3-k} = G_3.$$

Suppose that $G_{n-j} = \det(\mathbf{A}_{n-j \times n-j})$ (j = 1, 2, 3) holds for an integer n, where $4 \le n < k$. Then, developing the determinant

$$\det \left(\mathbf{A}_{n \times n}\right) = \det \begin{pmatrix} G_1 & -e^3 G_{2-k} & -e^4 G_{3-k} & \cdots & -e^n G_{n-1-k} & -e^{n+1} G_{n-k} \\ -e^3 & p_1 & 0 & \cdots & 0 & 0 \\ 0 & -e^3 & p_1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -e^3 & p_1 \end{pmatrix}$$

with respect to the last column, we have

$$\det \left(\mathbf{A}_{n \times n}\right) = p_1 G_{n-1} - (-1)^{n+1} e^{n+1} G_{n-k} \left(-e^3\right)^{n-1}$$
$$= p_1 G_{n-1} + (-1)^{2n+1} e^{4n-2} G_{n-k} = p_1 G_{n-1} + p_k G_{n-k} = G_n$$

That is, our theorem holds for every n, if $1 \le n \le k$.

Now, we shall deal with the case n > k. If n = k + 1 then

$$\det \left(\mathbf{A}_{k+1\times k+1}\right) = \det \begin{pmatrix} G_1 & -e^3G_{2-k} & -e^4G_{3-k} & \cdots & -e^{k+1}G_0 & 0\\ -e^3 & p_1 & 0 & \cdots & 0 & -e^{k+1}\\ 0 & -e^3 & p_1 & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & \cdots & -e^3 & p_1 \end{pmatrix}$$
$$= p_1G_k + e^3 \det \begin{pmatrix} G_1 & -e^3G_{2-k} & -e^4G_{3-k} & \cdots & -e^kG_{-1} & 0\\ -e^3 & p_1 & 0 & \cdots & 0 & -e^{k+1}\\ 0 & -e^3 & p_1 & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & \cdots & -e^3 & 0 \end{pmatrix}.$$

Developing successively the resulting determinants with respect to their last rows, we have $\begin{pmatrix} C & c \\ c & c$

$$\det (\mathbf{A}_{n \times n}) = p_1 G_k + (e^3)^{k-1} \det \begin{pmatrix} G_1 & 0 \\ -e^3 & -e^{k+1} \end{pmatrix}$$
$$= p_1 G_k - e^{3k-3} e^{k+1} G_1 = p_1 G_k + p_k G_1 = G_{k+1}.$$

Let us suppose that det $(\mathbf{A}_{n-j\times n-j}) = G_{n-j}$ $(1 \le j \le k)$ holds for an integer $n \ge k+2$. In this case

$$\det\left(\mathbf{A}_{n\times n}\right)$$

$$= \det \begin{pmatrix} G_1 & -e^3 G_{2-k} & \cdots & -e^{k+1} G_0 & 0 & 0 & \cdots & 0 & 0 \\ -e^3 & p_1 & \cdots & 0 & -e^{k+1} & 0 & \cdots & 0 & 0 \\ 0 & -e^3 & \cdots & 0 & 0 & -e^{k+1} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & -e^3 & p_1 \end{pmatrix}$$
$$= p_1 G_{n-1} + e^3 \det \begin{pmatrix} G_1 & -e^3 G_{2-k} & \cdots & -e^{k+1} G_0 & 0 & \cdots & 0 & 0 \\ -e^3 & p_1 & \cdots & 0 & -e^{k+1} & \cdots & 0 & 0 \\ 0 & -e^3 & \cdots & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & -e^3 & 0 \end{pmatrix}.$$

Now, develop successively the resulting determinants with respect to their last rows. Then one can get the following equalities:

$$\det \left(\mathbf{A}_{n \times n}\right) = p_1 G_{n-1} + \left(e^3\right)^{k-1} \left(-e^{k+1}\right) G_{n-k}$$
$$= p_1 G_{n-1} - e^2 G_{n-k} = p_1 G_{n-1} + p_k G_{n-k} = G_n.$$

This completes the proof of the Theorem.

Reference

 CAHILL, N. D., NARAYAN, D. A., Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinant, *The Fibonacci Quarterly* 42 (2004), 216–221.

Ferenc Mátyás

Department of Mathematics Eszterházy Károly College H-3301 Eger, P.O. Box 43. Hungary E-mail: matyas@ektf.hu