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1. Introduction

In this article we describe the computer approach to the analytic geometry
of the plane. In order to do this we shall use the symbolic computation program
Mathematica. Of course, the same could be done in the rival program Maple V.
These are the most widely known and the most popular extensive systems or CAS
that “know mathematics”. Each of them has its own programming language. Our
task is reduced to describing basic functions that are needed for solving geometry
problems with the analytic method.

This is the translation to English of the article [2] that is in Croatian. In the
references [1], [3] and [4] that are also in Croatian the same task was done in the
program Maple V. The whole project is the result of the second author’s course
“Geometry and computers” at the Mathematics Department of the University of
Zagreb (in Croatia) in which the first and the third authors (the undergraduate
mathematics teachers students) have been enrolled in the academic year 2002/2003.

This elective course is offered to all fourth year mathematics major students.
The number of students is growing so that for the academic year 2004/2005 there
will be ten participants. The aim of the course is to teach how to use computers
in mathematics working on projects under the guidance of the professor. We meet
four hours each week in the computer laboratory. The first few weeks the professor
is presenting the basics of text processing (LaTeX) in the program WinEdt and
the commands in Mathematica and Maple. For figures in geometry we use the
Geometer’s Sketchpad. None of these programs is really explained in all details
because we believe that they could be helpful even if we have rather limited
knowledge of them just as we drive cars without being mechanics. The students
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pick up on their own more advanced features of these programs later on while
working on the project.

What the project can be will become clear in the rest of this article because
this is an example of the final outcome. In short, here the project was to program
functions in Mathematica which cover analytic geometry in the plane and use them
to solve with computers several problems from the secondary school level as we
wanted to publish this in the Croatian mathematics and physics journal for high
schools “Matematičko–fizički list”. Some other projects were geometric inequalities,
properties of regular polygons, and identities for Fibonacci and Lucas numbers.

All this effort is in the direction to help teachers in Croatia to accept computers
as an important tool in teaching mathematics. The Croatian Mathematical Society
has started an experimental program for two groups of the first and the third
year pupils of gymnasiums in Zagreb that could be described as mathematics with
computers. Both high school and university professors are involved in this effort
but a lot of work still remains to effectively introduce computers into all levels of
schools. Ours is only a small contribution on this way.

2. Basic function of analytic geometry

The key idea of the analytic geometry is to associate algebraic entities with
geometric objects and then investigate them using algebraic methods.

The input of points on the plane in Maple V is quite simple because they are
just ordered pairs of real numbers (their rectangular coordinates). For example, the
input
tA:={2, 3}; tB:={5, 7}; tC:={-2, 0}; tT:={x, y};
defines four points on the plane A(2, 3), B(5, 7), C(−2, 0), T (x, y).

The function FS is a shortcut for the simultaneous use of commands Factor

and FullSimplify while distance measures the distance.

FS[m ]:=Factor[FullSimplify[m]]

distance[{a ,u }, {b ,v }]:=Sqrt[FS[(b-a)^2+(v-u)^2]]

The name of this function is distance. It asks for two ordered pairs of real
numbers. The first pair has the components a and u while the components of the
second pair are b and v. The machine first computes (b − a)2 + (v − u)2 and then
tries as much as possible to simplify and factor this sum of squares (the command
FS). In the end it finds the square root of everything (the command Sqrt).

Many times it is important to determine the midpoint of the segment whose
endpoints are given or the point which divides this segment either in ratio k (real
number different from −1) or in the ratio m

n
(of real numbers whose sum is not

zero).
midpoint[{a ,u }, {b ,v }] := FS[{(a+b)/2,(u+v)/2}]
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ratio[{a ,u },{b ,v },k ]:= FS[{(a+k*b)/(1+k),(u+k*v)/(1+k)}]
ratiomn[{a ,u },{b ,v },m ,n ] :=FS[{(a*n+b*m)/(m+n),(u*n+v*m)/(m+n)}]

The lines in the program Mathematica are represented as ordered triples
[a, b, c] of coefficients of their linear equations. For example, the input
pX:={1,0, 0}; pY:={0,1, 0}; pD:={1,-1, 0}; pG:={-1,2, 2}
defines four lines in the plane. They are the y-axis, the x-axis, the bisector of the
first and the third quadrant and the line −x + 2 y + 2 = 0.

The line is given either by one of its points and the tangent k of the angle
which it makes with the positive direction of the x-axis (better known as its slope)
or by two different points.
line1[k , {b1 ,b2 }]:= FS[{k,-1,b2-b1*k}]
line2[{x1 ,y1 },{x2 ,y2 }]:= FS[{y2-y1,x1-x2,x1*y2-x2*y1}]

Sometimes it is useful to have the following functions which test if a point lies
on a line and if three points are collinear. The letter Q in their names suggests
the word“question”. A point is on a line or points are collinear if and only if the
function evaluates to zero.
onlineQ[{a ,b },{x ,y ,z }] := FS[a*x+y*b+z]
collinearQ[{x1 ,y1 },{x2 ,y2 },{x3 ,y3 }]:=

FS[y2*x3-y1*x3+x1*y3-x2*y3+x1*y2-x2*y1]

The intersection of lines or the information that they are parallel (when we
get the error message of division with zero) gives our next function.
inter[{a ,b ,c },{i ,j ,k }]:=

FS[(-j*c+k*b)/(-i*b+a*j),(i*c-a*k)/(-i*b+a*j)]

Functions for the parallel and the perpendicular through a point to a line and
tests if lines are parallel or perpendicular are next.
parallel[{a ,b },{x ,y ,z }] := FS[{x,y,-x*a-b*y}]
perpen[{a ,b },{x ,y ,z }] := FS[{y,-x,x*b-y*a}]
parallelQ[{a ,b ,c },{x ,y ,z }] := FS[a*y-x*b]
perpenQ[{a ,b ,c },{x ,y ,z }] := FS[a*x+y*b]

When the functions parallelQ or perpenQ, for a given pair of lines, return
the value zero, then these two lines are parallel or perpendicular, respectively.

In Mathematica the test for concurrency of three lines (i.e., whether they are
parallel or intersect in a point) is the following.
concurQ[{a ,b ,c },{i ,j ,k },{p ,q ,r }]:=

FS[a*j*r-a*k*q-i*b*r+i*c*q+p*b*k-p*c*j]

Hence, three lines either intersect in a point or are parallel provided the value
of the function concurQ in them is zero.

In solving problems using the analytic geometry it is often necessary to deter-
mine the projection of a point onto a line. Since the projection is the intersection
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of the line and the perpendicular to the line through the point, if we input into
Mathematica
P:={p,q}; m:={a,b, c}; Q:=inter[m,perpen[P,m]];

the output will be the coordinates of the projection Q of the point P onto the line
m. Hence, the corresponding function looks as follows:
project[{p , q },{a , b , c }]:=

FS[{-(c*a+b*q*a-p*b^2)/(b^2+a^2),(-b*c+q*a^2-a*p*b)/(b^2+a^2)}]
This concludes the listing of the most basic functions for the analytic geometry

of the plane. In the rest of this paper we shall present fifteen geometry problems
from the problem collection [6] and give detailed solutions of them in Mathematica.
The collection is for the first year high school level (age 15–16) but some solutions
require knowledge from the second and the third year.

3. Fifteen problems

Our first example is the problem 395 from the book [6] that reads as follows:

Problem 1. Prove that the area P of a triangle ABC with vertices in the points
A(x1, y1), B(x2, y2) and C(x3, y3) is given by the formula:

P =
|x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)|

2

or

P =
|y1(x2 − x3) + y2(x3 − x1) + y3(x1 − x2)|

2
.

Solution. Recall that the area of a triangle is a half of the product of lengths of any
of its sides with the corresponding altitude. Hence, with the help of Mathematica
functions introduced earlier, the area is easily computed as follows:
tA:={Subscript[x,1],Subscript[y,1]};
tB:={Subscript[x,2],Subscript[y,2]};
tC:={Subscript[x,3],Subscript[y,3]};
tD:=project[tC,line2[tA,tB]];

vP:=FS[distance[tA,tB]*distance[tC,tD]/2];

The output in Mathematica will be a rather complicated expression

1
2

√

(−y3x1+x3y1+y3x2−x2y1−x3y2+x1y2)
2

x2
2−2 x2x1+x1

2+y1
2−2 y1y2+y2

2

√

x2
2 − 2 x2x1 + x1

2 + y1
2 − 2 y1y2 + y2

2.

As the computer is just a machine and we have not explained the nature of
symbols representing the coordinates of the vertices, it will not cancel out the
denominator in the first square root with the second square root even though they
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are clearly identical. It also does not notice that the square root of the square in
the numerator of the first square root is equal to the absolute value

|−y3x1 + x3y1 + y3x2 − x2y1 − x3y2 + x1y2| .

When we make these simplifications we shall obviously get the required formula.
It is interesting to note that without the absolute value the above formula

computes the oriented area of the triangle ABC. If this triangle is positively
oriented, i.e., if the movement ABCA is in the counterclockwise direction, then
this real number will be positive and otherwise is negative. It will be zero if and
only if the points A, B and C are collinear.

The function that gives this oriented area in Mathematica is realized in the
following input:

area[{a , x },{b , y },{c , z }]:=FS[(x*c-b*x-a*z+a*y+b*z-c*y)/2]
The second example is the problem 425 from the same book [6].

Problem 2. Let ABC be a triangle and let U , V , W be midpoints of sides BC, CA

and AB. The segments AU , BV and CW are called the medians of the triangle
ABC. Prove analytically that the three medians intersect in a point that we call
the centroid of the triangle and that the centroid divides each median in the ratio
2 : 1 counting from the vertex.

Solution. The proof on the computer, in Mathematica, begins by typing the
following input:
tA := {Subscript[x,1],Subscript[y,1]};
tB := {Subscript[x,2],Subscript[y,2]};
tC := {Subscript[x,3],Subscript[y,3]};
tU:=midpoint[tB,tC]; tV:=midpoint[tC,tA];tW:=midpoint[tA,tB];

concurQ[line2[tA,tU],line2[tB,tV],line2[tC,tW]];

In amazingly short time the computer will output the value zero which proves
that the medians intersect in a point. The coordinates of this point are revealed
with the commands:
tG := inter[line2[tA,tU],line2[tB,tV]];

The point G has the coordinates
(

x1+x2+x3

3 , y1+y2+y3

3

)

so that we can imme-
diately write down the Mathematica function which associates the centroid to a
triangle:
centroid[{a ,x },{b ,y },{c ,z }]:=FS[(a+b+c)/3,(x+y+z)/3]

In order to prove the second claim of the problem we shall find the point that
divides the median of the vertex A (i.e., the segment AU) in the ratio 2 : 1 counting
from the vertex A and show that it coincides with the point G (the centroid of
the triangle ABC). The same argument could be repeated for the medians of the
vertices B and C.
tT:=ratiomn[tA,tU, 2, 1]; distance[tG,tT]
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Since the returned value is zero, the points G and T coincide so that the proof
of the problem is completed successfully.

The third example is the problem 989 also from the collection [6].

Problem 3. Prove that the midpoints of sides and the feet of the altitudes of a
triangle lie on the same circle.

Solution. Without loss of generality we can assume that the points A, B and
C are selected in the plane so that their coordinates are (0, 0), (c, 0) and (u, v),
where c, u and v are real numbers with c and v different from zero.
eA:={0, 0}; eB:={c, 0}; eC:={u, v};

Then we get the midpoints of the sides applying the function midpoint:
eAp:=midpoint[eB,eC]; eBp:=midpoint[eC,eA]; eCp:=midpoint[eA,eB];

The feet of the altitudes are the projections of the vertices onto the opposite
sidelines:
eApp:=project[eA,line2[eB,eC]]; eBpp:=project[eB,line2[eC,eA]];

eCpp:=project[eC,line2[eA,eB]];

The center of the circle circumscribed to a triangle is the intersection of
perpendicular bisectors of its sides. Hence, in our situation, the center S of the
circle circumscribed to the triangle A′B′C′ with vertices in the midpoints of sides
is defined as follows:
eS:=inter[perpen[midpoint[eBp,eCp],line2[eBp,eCp]],

perpen[midpoint[eCp,eAp],line2[eCp,eAp]]]

Applying the same method to the triangle A′′B′′C′′ with vertices at the feet
of the altitudes we can find the center T of its circumscribed circle.
eT:=inter[perpen[midpoint[eBpp,eCpp],line2[eBpp,eCpp]],

perpen[midpoint[eCpp,eApp],line2[eCpp,eApp]]]

After we type in the above commands the computer will output the coordinates
of the points S and T . We see that they are equal, so that the points S and T

coincide.
In order to complete the proof it remains still to prove that the radii of the

circumcircles of the triangles A′B′C′ and A′′B′′C′′ are equal. This is checked in
Mathematica with the following input:
FS[distance[eS,eCp]-distance[eT,eCpp]]

Since the returned value is zero the proof is successfully accomplished.
With almost no effort we can now prove that the radius of the above circle (also

known as the nine-point circle because it also goes through the midpoints of the
segments joining vertices with the orthocenter) is equal to the half of the radius of
the circle circumscribed to the triangle ABC. In order to check this using the same
method as above we first find the coordinates of the center O of the circumcircle
of ABC

eO:=inter[perpen[midpoint[eB,eC],line2[eB,eC]],
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perpen[midpoint[eC,eA],line2[eC,eA]]]

and request from Mathematica to compute the following:
FS[distance[eO,eC]/distance[eS,eCp]]

Of course, the result is the number two.
The fourth example are the problems 719 and 720 from the book [6].

Problem 4. Prove that if a triangle has two equal altitudes or two equal medians,
then it is isosceles.

Solution. With the assumptions and the notation from the proof of the Problem
3, typing in
FS[distance[eA,eApp]^2-distance[eB,eBpp]^2]

we obtain c3v2(2 u−c)
(v2+u2−2 uc+c2)(v2+u2) . Hence, if the altitudes AA′′ and BB′′ have the

same lengths then u = c
2 so that ABC is an isosceles triangle because the vertex

C lies on the perpendicular bisector of the side AB.
Similarly we see that after typing into the program Mathematica

FS[distance[eA,eAp]^2-distance[eB,eBp]^2]

the output is 3 c(2 u−c)
4 that leads to the same conclusion for medians.

More complicated to prove is the Problem 721 from [6]. Our method of its proof
assumes the knowledge of the trigonometric functions (the cotangent in particular).

Problem 5. Prove that a triangle is isosceles if and only if it has two equal angle
bisectors.

Solution. In order to have simple expressions we shall assume that the vertices A

and B and the incenter I (i.e., the center I of the circle inscribed to the triangle
ABC) have the coordinates (0, 0), (f +g, 0), and (f, 1), where f and g are positive
real numbers. In fact, these are the cotangents of the halves of the angles A and
B. In addition, we assumed that the inradius is equal to 1.
tA:={0, 0}; tB:={f+g, 0}; tI:={f, 1}; tJc:={f, 0};

If the points Ja, Jb, Jc are the projections of the incenter I onto the sides
of ABC, then Jc has the coordinates (f, 0) while we get the coordinates of Ja as
solutions of the following system of equations:
sys:=Solve[{distance[tB,{p, q}]==distance[tB,tJc],

distance[tI,{p, q}]==1},{p, q}];
where p and q are the coordinates of the point Ja that we are trying to determine.
This system has only two solutions. The first are the coordinates of the point Jc

while the second are the required coordinates f(g2+1)+2 g

g2+1 and 2 g2

g2+1 of the point Ja.

tJa:={p,q} /. Extract[sys, 2]

In a similar way we can find also the coordinates f(f2−1)
f2+1 i 2 f2

f2+1 of the point
Jb.
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tJb:={p,q} /. Extract[Solve[{distance[tA,{p, q}]==
distance[tA,tJc], distance[tI,{p, q}]==1},{p, q}], 2]

Now we can find the points Ai and Bi of intersection of bisectors of angles A

and B with the opposite sides as intersections AI ∩ BJa and BI ∩ AJb.
tAi:=inter[line2[tA,tI],line2[tB,tJa]];

tBi:=inter[line2[tB,tI],line2[tA,tJb]];

Let us now ask the program Mathematica to calculate the difference of the
squares of lengths of angle bisectors with the following input:
Q:=FS[distance[tA,tAi]^2-distance[tB,tBi]^2];

The output will be the quotient

4 (f + g)
3
(f − g)

(

f4g2 + 4 g3f3 − 5 f2g2 + g4f2 + 4 fg − 1
)

(g2 + 2 fg − 1)
2
(f2 + 2 fg − 1)

2 .

Since its numerator contains f − g as a factor and f + g is obviously never zero,
we conclude that the proof will be completed provided we show that the long
parenthesis

Z = f4g2 + 4 g3f3 − 5 f2g2 + g4f2 + 4 fg − 1

in the numerator is always positive.

First note that the sum
A

2
+

B

2
of halves of the angles is at most

π

2
so that

cot

(

A

2
+

B

2

)

=
cot(A

2 ) cot(B
2 ) − 1

cot(A
2 ) + cot(B

2 )
=

f g − 1

f + g
> 0.

We conclude that f g > 1.
The first and the fourth term of Z together give

f4g2 + f2g4 = (f2 + g2)(f g)2 ≥ 2(f g)(f g)2 = 2(f g)3

because f2 + g2 ≥ 2fg. If we introduce the notation ϑ = fg then

Z ≥ 6ϑ3 − 5ϑ2 + 4ϑ − 1.

Since ϑ > 1 we can replace ϑ in the above cubic polynomial with 1 + η with η > 0
and get (3 η + 2)

(

2 η2 + 3 η + 2
)

. This expression is always positive because the
new variable η is positive. This completes the proof.

Notice that the same could be obtained with the substitution f = 1+k
g

for the
positive real number k in the polynomial Z. Following the input
Collect[Extract[Q,4] /. f->(1+k)/g, g];
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the program Mathematica outputs

(1 + k)
2
g2 +

(1 + k)4

g2
+ 2 + 6 k + 7 k2 + 4 k3

which is obviously always positive.
We continue with the problem 833 from [6] which is in the section about

similarity of triangles.

Problem 6. Let r be the radius of the circle inscribed to a triangle ABC and let
R be the radius of its circumscribed circle. Prove that R ≥ 2r.

Solution. The following proof has great similarity with the solution of the previous
problem. Without loss of generality we can assume that the angles A and B of the
triangle ABC are acute (i.e. less than π

2 radians) and that the vertices A, B and
the center I of the incircle have the coordinates (0, 0), (r(f + g), 0) and (fr, r) for
some real numbers f > 1, g > 1 and r > 0.

Our idea of the proof is first to determine the coordinates of the vertex C and
the center O of the circumcircle. This will make it possible to compute the radius
R of the circumcircle. Finally, we show that the difference R−2 r is always positive
except in the case of the equilateral triangle when it is zero.

Let Ja, Jb, Jc be projections of the center I of the incircle onto the sides
of the triangle ABC. The point Jc has the coordinates (f r, 0) while we get the
coordinates of the Ja from the following system of the equations
sys:=Solve[{distance[tB,{p, q}]==

distance[tB,tJc], distance[tI,{p, q}]==r},{p, q}];
where p and q are the wanted coordinates of the point Ja. This system has two

solutions: the coordinates of the point Jc and the coordinates (g2f+2 g+f)r

1+g2 and
2rg2

1+g2 of Ja. In a similar way we get the coordinates f(f2−1)r
f2+1 and 2 f2 r

f2+1 of the point
Jb.
tJa:={p,q} /. Extract[sys, 2]

tJb:={p,q} /. Extract[Solve[{distance[tA,{p, q}]==
distance[tA,tJc], distance[tI,{p, q}]==r},{p, q}], 2]

The vertex C is the intersection AJb ∩ BJa.
tC:=inter[line2[tA,tJb],line2[tB,tJa]];

The center O of the circumcircle and its radius R are given as the solutions of
the following system of equations:
tO:={p,q}; Solve[{distance[tA,tO]==R, distance[tB,tO]==R,

distance[tC,tO]==R},{p,q, R}];
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From the two solutions of the system only the one where

R =
r
(

1 + g2
) (

1 + f2
)

4(fg − 1)

is correct. In the second solution the radius R is negative which is not acceptable.
R:=r*(1+f^2)*(1+g^2)/4/(f*g-1);

M:=Collect[Extract[FS[R-2*r],2],f]; \[CapitalDelta]:=
FS[Coefficient[M,f,1]^2- 4*Coefficient[M,f,2]*Coefficient[M,f,0]]

The difference R− 2 r is equal to M r
4(fg−1) , where M is the quadratic trinomial

(g2 + 1)f2 − 8 g f + g2 + 9

in f . Its discriminant is −4
(

−3 + g2
)2

which is always negative (so that M > 0

because the leading coefficient g2 + 1 is positive) except when g = cot B
2 =

√
3 and

f =
√

3 (i.e. the triangle ABC is equilateral) when M = 0.
Next is the problem 312 from [6] which is in the second chapter on the

perimeter and the area of circles.

Problem 7. Let T be a point inside the triangle ABC and let A1, B1, C1 be
interior points of the sides BC, CA, AB. Let Ri for i = 1, 2, 3, 4, 5, 6 be radii
of the circumcircles of the triangles AC1T , C1BT , BA1T , A1CT , CB1T , B1AT .
Prove that R1 R3 R5 = R2 R4 R6.

Solution. Let us first define in Mathematica the function which associates to a
given triple of points the radius of the circumcircle of the triangle whose vertices
are these points.
bisector[a , b ]:=perpen[midpoint[a,b],line2[a,b]];

CC[a , b , c ]:=inter[bisector[a,b],bisector[a,c]];

RC[a , b , c ]:=distance[a,CC[a,b, c]];

Let us now input the points A, B, C and T .
tA:={0,0}; tB:={c,0}; tC:={s,t}; tT:={p,q};

If s 6= c then the position of a point A1 on the line BC can be described by

a real number u and the coordinates of this point are
(

u,
t(c−u)

c−s

)

. We get this by

requiring that the point with the coordinates (u, z) lies on the line BC and then
solve the condition with respect to z.
tA1:={u,z} /. Solve[onlineQ[{u,z}, line2[tB,tC]]==0, z];

Similarly, if s 6= 0, then any point B1 on the line CA has the coordinates
(

v, t v
s

)

and any point C1 on the line AB has the coordinates (w, 0) for some real
numbers v and w.
tA1:={u,t*(c-u)/(c-s)}; tB1:={v,t*v/s}; tC1:={w,0};
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If s = c then any point A2 on the line BC has the coordinates (c, u) for some
real number u. If s = 0 then any point B2 on the line CA has the coordinates (0, v)
for some real number v.
tA2:={c,u}; tB2:={0,v};

Let us now define a function which computes the difference of the squares of
the products of radii of the circumcircles for seven points in the plane.
FR[a , b , c , d , e , f ,g ]:= FS[(RC[a,f,g]*RC[b,d,g]*RC[c,e,g])^2-

(RC[f,b,g]*RC[d,c,g]*RC[e,a,g])^2];

It is now easy to check that the following values are zero:
FR[tA,tB, tC, tA1, tB1,tC1, tT]

s:=c; FR[tA,tB, tC, tA2, tB1, tC1, tT]

s:=0, FR[tA,tB, tC, tA1, tB2, tC1, tT]

This completes the solution of the Problem 312 from [6] in the program
Mathematica.

Remark. It is clear from the above proof that we have never used the assumption
that the point T is inside of the triangle ABC nor the assumption that the points
A1, B1, C1 are interior points of the sides BC, CA, AB. In this way, using the
computer, we succeeded to prove a more general statement.

The following example is the Problem 644 from the collection [6] which is in
the section on the volume of the cylinder, cone, and ball.

Problem 8. On the bottom of the cylindrical container whose base has the
diameter 15 cm there is a ball with the diameter 12 cm. The water is poured
into the container up to the highest point of the ball. For how many cm will drop
the level of the water when the ball is taken out?

Solution. Recall the formulas VB = 4
3

(

D
2

)3
π for the volume of the ball with the

diameter D and VC =
(

d
2

)2
h π for the volume of the cylinder of the height h whose

base is a circle with the diameter d.
In the program Mathematica these volume functions are defined as follows:

VB[d ]:=d^3*Pi/6; VC[d , h ]:=d^2*h*Pi/4;

The volume of the water in the container is the difference of the volume of the
cylinder (with the height equal to the diameter of the ball) and the volume of the
ball:
Vwater:=VC[15, 12]-VB[12];

After the removal of the ball the water will fill in the cylindrical container
whose base is the circle with the diameter of 15 cm and its height will be 12−p cm
where p is the required drop in the level of the water in the container. This drop p

is found in the program Mathematica as follows:
Solve[Vwater==VC[15,12-p],p]

The solution is p = 5.12 cm.
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Another nice example is the Problem 963 from [6]. We assume again the
knowledge of trigonometric functions.

Problem 9. A trapezium is circumscribed about the circle with the radius R. The
chord that joins the touching points of the lateral sides has the length b and is
parallel to the bases. Prove that the area of the trapezium is 8R3

b
.

Solution. Select the rectangular coordinate system so that the circle k with the
radius R inscribed to the trapezium ACEG has the center in the origin and its
parallel sides (bases) AC and EG touch k in the points B(0, −R) and F (0, R).
Let the lateral sides CE and AG touch k in the points D(R cos θ, R sin θ) and
H(R cosσ, R sinσ) for some angles θ and σ.

Let us first input into the program Mathematica the points O, B, F , D, H

and the lines AC, EG.
tO:={0, 0}; tB:={0, -R}; tF:={0, R};
tD:={RCos[\[Theta]], R Sin[\[Theta]]};
tH:={RCos[\[Sigma]], R Sin[\[Sigma]]};
pAC:={0, 1, R}; pEG:={0, 1, -R};

Then we ask when will the chord DH joining the touching points D and H of
the lateral sides be parallel with the bases.
parallelQ[line2[tD, tH], pAC]

The condition is R(sin θ − sin σ) = 0 so that we must have σ = π − θ. Hence,
the trapezium ACEG is equilateral and symmetrical with respect to the line BF .
It suffices therefore to find the area only of the right half BCEF .

The line CE is the perpendicular in the point D to the line OD (the property
of the tangent to the circle) and the points C and E are the intersections of the
line CE with the lines AC and EG.
pCE:=perpen[tD, line2[tO, tD]];

tC:=inter[pAC, pCE]; tE:=inter[pEG, pCE];

The area of the right half BCEF is the sum of the areas of the triangles BCE

and BEF .
FS[area[tB, tC, tE]+area[tB, tE, tF]]

The program Mathematica will compute that this sum has the value 2R2

cos θ
.

Since b = 2 R cos θ, we conclude that the wanted area of the trapezium ACEG is
indeed 8 R3

b
.

Remark. In the book [6] there is the incorrect claim that the area of the trapezium
is 4R3

b
. Using the approach from the solution of the Problem 13 (i.e., the Problem

1112 from [6]) it is possible to completely avoid the trigonometric functions. This
solution we leave to the readers as an exercise.

We continue with the solution of the Problem 1026 from [6].
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Problem 10. Prove that in every regular heptagon A1A2A3A4A5A6A7 the follow-
ing equality holds:

1

|A1A2|
=

1

|A1A3|
+

1

|A1A4|
.

Solution. Choose the coordinate system so that the circle k with the center at the
origin and with the radius R is circumscribed to the heptagon A1A2A3A4A5A6A7.
We can assume that the vertex A1 has the coordinates (R, 0). The other rele-
vant vertices have the coordinates A2

(

R cos 2π
7 , R sin 2π

7

)

, A3

(

R cos 4π
7 , R sin 4π

7

)

,
A4

(

R cos 6π
7 , R sin 6π

7

)

.
Let us input these points into the program Mathematica:

tA1:={R, 0}; tA2:={RCos[2 Pi/7], R Sin[2 Pi/7]};
tA3:={RCos[4 Pi/7], R Sin[4 Pi/7]};
tA4:={RCos[6 Pi/7], R Sin[6 Pi/7]};

In order to check the above relation among the reciprocal values we must type
into the program Mathematica the following:
FullSimplify[Numerator[Together[1/distance[tA1,tA2]-

1/distance[tA1,tA3]-1/distance[tA1,tA4]]],R>0]

For few seconds the computer will output the value zero which proves that the
statement in the problem holds.

Remark. Several other interesting properties of the regular heptagon proved in
the program Maple V are described in the article [5].

Next is the Problem 1084 from the section eight of the collection [6].

Problem 11. The projections of the legs of the right triangle onto the hypothenuse
have lengths 18

5 , 32
5 . Find the radius of the circle inscribed into this triangle?

Solution. Select the rectangular coordinate system so that its origin is the vertex
C of the right triangle and its legs are on the coordinate axes. We can assume that
the remaining vertices A and B have the coordinates (0, b) and (a, 0), for some
positive real numbers a and b.

In the program Mathematica these points are input as follows:
tC:={0, 0}; tA:={0, b}; tB:={a, 0};

Then we find the projection D of the vertex C onto the hypotenuse AB.
tD:=project[tC, line2[tA, tB]];

The values for the variables a and b can be determined from the information
that |AD| = 18

5 and |BD| = 32
5 .

Solve[{distance[tA,tD]==18/5, distance[tB,tD]==32/5},{a, b}];
There are eight solutions (four real and four complex) but only one when a = 8

and b = 6 is acceptable. Hence, this right triangle has sides 8, 6, 10 (that are twice
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as long as the sides of the standard (Egyptian) right triangle with sided 4, 3, 5) so
that its inscribed circle has the radius r = 2.

This could also be seen by asking that the center I of the inscribed circle with
the coordinates (r, r) is at the distance r from the line AB.
a:=8; b:=6; tI:={r, r};
Solve[distance[tI, project[tI, line2[tA,tB]]==r, r];

>From the two solutions r = 2 and r = 12 only the first satisfies the conditions
of the problem. The second solution gives the radius of the corresponding excircle.

Now we consider the Problem 1103 again from the collection [6].

Problem 12. Two sides of the triangle have the length 6 cm and 8 cm. The medians
of these sides are perpendicular. Find the third side of this triangle.

Solution. Let the triangle ABC be embedded into the rectangular coordinate
system so that A(0, 0), B(c, 0), and C(u, v) for positive real numbers c and v and
for a real number u.

In the program Mathematica these points and the centroid T are input as
follows:
tA:={0,0}; tB:={c,0}; tC:={u,v}; tT:=centroid[tA,tB,tC];

Since the medians of the vertices A and B are perpendicular, ABT is the right
triangle and c2 = |AB|2 = |AT |2 + |BT |2 by the Pythagorean theorem. On the
other hand |BC| = 6 and |AC| = 8. If we ask the program Mathematica to solve
this system of three equations in the variables c, u, and v with the input
Solve[{distance[tB,tC]==6, distance[tA,tC]==8,

c^2==distance[tA,tT]^2+distance[tB,tT]^2},{c,u, v}]
it will respond with two solutions. Only the one where c = 2

√
5 cm is correct.

Our next example is the Problem 1112 from [6].

Problem 13. A circle is inscribed into a trapezium. Prove that the ratio of the
areas of the circle and the trapezium is equal to the ratio of their perimeters.

Solution. Choose the rectangular coordinate system so that the circle k with the
radius R which is inscribed to the trapezium ACEG has the center in the origin
while its parallel sides (bases) AC and EG touch k in the points B(0, −R) and
F (0, R). Let the vertices A and C have the coordinates (−u, −R) and (v, −R) for
positive real numbers u and v. Let the lateral sides CE and AG touch k in the
points D and H . Our first goal is to find the coordinates of these points and then
the coordinates of the vertices E and G.

Let us first input into the program Mathematica the points O, B, F , A, C

and the lines AC, EG.
tO:={0, 0}; tB:={0, -R}; tF:={0, R}; tA:={-u, -R};
tC:={v, -R}; pAC:={0, 1, R}; pEG:={0, 1, -R};
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Assume that the point H has the coordinates (p, q). They must satisfy two
conditions. The first is p2 + q2 = R2 i.e. that the point H lies on the circle k. The
second condition is that the distance from A to H is equal to u because the lines
AB and AH are tangents through the point A onto the circle k.
H:=Solve[{p^2+q^2==R^2, distance[{p,q},tA]==u},{p, q}]
tH:={p,q} /. H

In a similar way we can determine the coordinates of the point D.
K:=Solve[{p^2+q^2==R^2, distance[{p,q},tC]==v},{p, q}]
tD:={p,q} /. K

The vertices E and G are the intersections of the line EG with the lines CD

and AH , respectively.
pAH:=line2[tA,tH]; pCD:=line2[tC,tD];

tE:=inter[pEG,pCD]; tG:=inter[pEG,pAH];

The first coordinates of the points E and G are R2

v
and −R2

u
. Hence, the

perimeter OACEG of the trapezium ACEG is 2(u + v + R2

u
+ R2

v
). Its area PACEG

is
FS[area[tA, tC, tE]+area[tA, tE, tG]]

equal to R(u+v)(u v+R2)
u v

. Now it is easy to check that

2 R π

OACEG

=
R2 π

PACEG

.

Remark. In [6] there are no solutions for the Problem 1112.
The next example is the Problem 1139 from [6].

Problem 14. Prove that if the angle bisector of a triangle is also the bisector of
the angle determined by the altitude and the median, then this triangle is right.

Solution. Let us choose the rectangular coordinate system so that the points

A(0, 0), B((f + g)r, 0), C

(

rg(f2−1)
fg−1 , 2fgr

fg−1

)

are the vertices of the triangle and

the center of its inscribed circle is the point I(fr, r), where f and g are cotangents
of A

2 and B
2 and r is the radius of the incircle.

We shall first input into the program Mathematica the points A, B, the
midpoint Cg of the segment AB, the points C, I and the feet Ch of the altitude of
the vertex C on the line AB.
tA:={0, 0}; tB:={r*(f+g), 0}; tCg:=midpoint[tA,tB];

tC:={r*g*(f^2-1)/(f*g-1), 2*f*g*r/(f*g-1)}; tI:={f*r,r};
tCh:=project[tC,line2[tA,tB]];

In order that the bisector of the angle C (i.e. the line CI) is the bisector of the
angle between the altitude (i.e. the line CCh) and the median (i.e. the line CCg)
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it is necessary and sufficient that the segments IIh and IIg have the same length,
where Ih and Ig are the projections of the point I onto the lines CCh and CCg.
tIh:=project[tI,line2[tC,tCh]]; tIg:=project[tI,line2[tC,tCg]];

IZ:=FS[distance[tI,tIg]^2-distance[tI,tIh]^2]

The program Mathematica reports that the expression IZ is equal

r2 (f − g)
2
(fg + g + f − 1) (fg − g − f − 1) (fg + 1)

2

(12 f2g2 + g2f4 − 2 f3g3 + g4f2 + 2 f3g + 2 fg3 + f2 − 2 fg + g2) (fg − 1)
2 .

Hence, it will be zero if and only if f = g (i.e. |BC| = |CA| so that the triangle
ABC is isosceles) or

(fg + g + f − 1)(fg − g − f − 1) = 0

which is the condition for the lines BC and CA to be perpendicular (i.e. that the
angle C has 90 degrees and the triangle ABC is right).
perpenQ[line2[tB,tC],line2[tC,tA]]

Remark. In the collection [6] the possibility that the triangle ABC is isosceles is
absent.

Our final example is the Problem 1152 from [6].

Problem 15. Let different points A and B be given and let the point T be outside
the line AB. Through the point T construct the line m so that the ratio of the
distances of the points A and B to the line m is 2 : 3.

Solution. Choose the rectangular coordinate system so that the given points are
A(0, 0), B(c, 0), and T (p, q) for real numbers c, p, q. Let the line m has the equation
u x + v y + w = 0 for some real numbers u, v, w. In order that it goes through the
point T the free term w must be equal to −u p− v q.

Let us input into the program Mathematica the points A, B, T and the line
m.
tA:={0, 0}; tB:={c, 0}; tT:={p, q}; pm:={u, v, -u*p-v*q};

Let Am and Bm be the projections of the points A and B onto the line m.
tAm:=project[tA, pm]; tBm:=project[tB, pm];

By the requirement of the problem the quotient |AAm|
|BBm| is equal to 2

3 . Notice
that the expression
IZ:=FS[distance[tA,tAm]^2/distance[tB,tBm]^2-4/9]

has as the numerator the product (5 up + 5 vq − 2 uc) (up + vq + 2 uc). Hence, there
are two possibilities q = −u(2c+p)

q
and q = u(2c−5p)

q
. They give lines q x−(2c+p)y+

2qc = 0 and 5q x+(2c−5p)y−2qc = 0 as solutions of the problem. Even though we
know the solutions the question remains how to construct them. But, it is simple
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to see that they intersect the line AB in the points C(−2c, 0) and D(2
5c, 0) and

these are easily constructed.

Remark. In the collection [6] there are no solutions for the problem 1152.

Remark. A longer version of this paper with figures is available on the Internet
at the home page of the second author: http://www.math.hr/∼cerin
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