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Abstract. The paper deals with a generalized ratio set of positive integers defined as

Rn(A)={a1a2...an/(b1b2...bn);a1,a2,...,an,b1,b2,...,bn∈A}, where A⊂N.

There are characterized the accumulation points of Rn(A). Further it is proved that if A⊂N has

positive lower asymptotic density then for sufficiently large positive integer n the set Rn(A) is

dense in R
+.
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1. Introduction

Denote by R (R+) the set of all real (positive real) numbers and by N the
set of all positive integer numbers, respectively. The ratio set of A ⊂ N is denoted
by R(A) = {a

b ; a, b ∈ A} (see [3], [5]). The symbol Xd will stand for the set of all
accumulation points of X ⊂ R

+. It is easy to see that for any infinite subset A
of positive integers {0, +∞} ⊂ R(A)d. The set R(A) is everywhere dense in R

+ if
R(A)d = [0, +∞].

It is known that if limn→∞
an+1

an
= 1 for the set A = {a1 < a2 < · · ·} ⊂ N then

R(A) is dense in R
+ [5], on the other hand if limn→∞

an+1

an
= c > 1 then R(A) is

not dense in R
+, moreover R(A)d ∩

(

1
c , c

)

= ∅ [6].

The lower and upper asymptotic density of A, denoted by d(A) and d(A)
respectively, are defined as

d(A) = limx→∞

A(x)

x
, d(A) = limx→∞

A(x)

x
,
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where A(x) = #{a ≤ x : a ∈ A}. If d(A) = d(A) = d(A) then the number d(A) is
called the asymptotic density of the set A.

We mention some known results on the topics density of ratio sets. Šalát [5]
showed that d(A) = d(A) > 0 or d(A) = 1 implies that R(A) is everywhere dense
in R

+ and for every sufficiently small ε > 0 there exists a subset of A ⊂ N such
that d(A) = 1 − ε and R(A) is not everywhere dense in R

+. He gave an example
of A ⊂ N for which d(A) = 1

4 and R(A) is not everywhere dense in R
+. Strauch

and Tóth [4] proved that 1
2 is the lower bound of γ’s for which d(A) ≥ γ implies

that R(A) is everywhere dense in R
+.

We define the generalized ratio set

Rn(A) = {
a1a2 . . . an

b1b2 . . . bn
; a1, a2, . . . , an, b1, b2, . . . , bn ∈ A}.

Clearly, R1(A) = R(A) and Rn(A) ⊂ Rm(A) for m ≥ n.
In [2] was asked: For which sets B ⊂ R does there exist a set A ⊂ N such that

R(A)d = B? It is evident that B 6= ∅ provided A is infinite. On the other hand,
{0, +∞} ⊂ R(A)d for any infinite A ⊂ N. Further, if some positive t ∈ R(A)d, then
1
t ∈ R(A)d, since a

b ∈ R(A) always implies that b
a ∈ R(A). Notice also, that the

accumulation points of any linear set constitute a closed set in R. Consequently,
the nonempty set B must be a closed subset of [0, +∞] = R

+ ∪ {0, +∞}, it must
contain 0 and +∞, and if b ∈ B (b ∈ R

+) then 1
b ∈ B. In [1] was proved that these

conditions are also sufficient for the existence of an A ⊂ N for that R(A)d = B.
We show that the same assertion is valid if we consider the generalized ratio set
Rn(A) instead of the ratio set R(A).

2. Theorems and proofs

Theorem 1. Let ∅ 6= B ⊂ [0, +∞] and n be a positive integer. The followings are
equivalent:

(i) There exists an A ⊂ N such that Rn(A)d = B;

(ii) B ∩R is closed in R, {0, +∞} ⊂ B and b ∈ B implies 1
b ∈ B.

Proof. As the implication (i) ⇒ (ii) is trivial it suffices to prove only (ii) ⇒ (i). The
case n = 1 was considered in [1]. Let us suppose that n > 1 and suppose ∅ 6= B ⊂

[0, +∞] satisfies (ii). Let S stand for the system of intervals (1+ i−1
n , 1+ i+1

n ) where
n ∈ N and i = 1, 2, . . . , n2. The length of intervals tends to zero with increasing n
and every real number greater than 1 can be covered with infinitely many elements
of S. Denote by ((ck − δk, ck + δk))∞k=1 the sequence of those intervals from S which
meet B (i.e. which contain at least one element from B).
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Define the set A = {a0 < a1 < a2 < . . .} ⊂ N as follows:
Let a0 = 1, a1 = 2, a2 = 3, further

a3k = ⌊(a3k−1)
n2

.(ck + 1)⌋, a3k+1 = (a3k)n2

, a3k+2 =

⌈

ck.(a3k+1)
n

(a3k)n−1

⌉

for k = 1, 2, . . .

We will show that Rn(A)d = B.

(1) B ⊂ Rn(A)d: Let t ∈ B be a positive real number. We may suppose that
t > 1. Let ((cmk

−δmk
, cmk

+δmk
))∞k=1 be a sequence of intervals containing t. Then

lim
k→∞

cmk
= t since lim

k→∞
δmk

= 0. Accordingly the sequence

(1)
a3mk+2 · (a3mk

)n−1

(a3mk+1)n
=

⌈

cmk
· (a3mk+1)

n

(a3mk
)n−1

⌉

·
(a3mk

)n−1

(a3mk+1)n
(k = 1, 2, . . .)

converges to t; thus, t ∈ R(A)d.

(2) Rn(A)d ⊂ B: Let us consider the fraction

r =
ai1ai2 . . . aim

aj1aj2 . . . ajm

∈ Rn(A),

where m ≤ n, ai1 , . . . , aim
, aj1 , . . . , ajm

∈ A further ai1 ≥ ai2 ≥ · · · ≥ aim
, ai1 >

aj1 ≥ aj2 ≥ · · · ≥ ajm
and the fraction r cannot be simplified. Our aim is to show

that only a sequence like (1) from Rn(A) can have finite limit. To prove this we
consider the following possibilities:

(a) i1 = 3k or i1 = 3k + 1. In this case we have

r ≥
ai1

(ai1−1)n
≥ (ai1−1)

n2−n.

(b) m < n, i1 = 3k + 2, j1, . . . , jm ≤ 3k + 1 or m = n, j1, . . . , jn−1 ≤ 3k + 1,
jn ≤ 3k. Now we have

r ≥
a3k+2

(a3k+1)n−1 · a3k
=

⌈ ck·(a3k+1)
n

(a3k)n−1

⌉

(a3k+1)n−1 · a3k
≥

a3k+1

(a3k)n
= (a3k)n2−n.

(c) i1 = 3k + 2, i2, . . . , in−1 ≤ 3k, in ≤ 3k − 1, j1 = j2 = · · · = jn = 3k + 1.
Then we have the following estimation

r≤
a3k+2 · (a3k)n−2 · a3k−1

(a3k+1)n
<

(ck + 1) · (a3k+1)
n

(a3k)n−1
·
(a3k)n−2 · a3k−1

(a3k+1)n
·
(ck + 1)·a3k−1

a3k
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≤(a3k−1)
1−n2

.

The last case we have to consider is related to (1)

(d) i1 = 3k + 2, i2 = · · · = in = 3k, j1 = · · · = jn = 3k + 1.
Let now t ∈ R(A)d and t > 1. Then there exist sequences (si,l)

∞
l=1 and (ri,l)

∞
l=1,

i = 1, 2, . . . , n of positive integers such that

(2) lim
l→∞

as1,l
· as2,l

· · · asn,l

ar1,l
· ar2,l

· · ·arn,l

= t.

Observe that if the fractions in (2) are of the form (a) and (b) then their limit
is +∞ and if these fractions are of the form (c) then their limit is 0. So (2) can
hold only if for sufficiently large numbers we have the case (d). Therefore for some
subsequence (mk)∞k=1 of positive integers we have

lim
k→+∞

cmk
= t.

Taking into account that every interval (cmk
−δmk

, cmk
+δmk

) contains some tk ∈ B,
therefore lim

k→∞
tk = t. Finally, the closedness of B ∩ R in R ensures that t ∈ B.

Remark. As a consequence of the theorem we immediately have that for each
n ≥ 1 there exists a set A ⊂ N such that Rn(A) is not dense in R

+, but Rn+1 is
already dense in R

+. Indeed, there is a set A such that the set of all accumulation
points of Rn(A) is equal to B = {n, 1

n ; n = 1, 2, . . .}. Obviously, then Rn+1(A) is
dense in R

+.

Strauch and Tóth [4] have proved that for any A ⊂ N and the interval (α, β),
0 ≤ α < β ≤ 1 if (α, β) ∩ R(A) = ∅ then d(A) ≤ 1− (β − α). The following lemma
generalizes this result and it is basic for the proof of the theorem below.

Lemma. Let A ⊂ N and the pairwise disjoint intervals (αi, βi), 0 ≤ αi < βi ≤ 1
are such that (αi, βi) ∩ R(A) = ∅, i = 1, 2, . . . , m. Then

d(A) ≤ 1 −
m

∑

i=1

(βi − αi)

Proof. In the cases d(A) = 0 or d(A) = 1 the assertion is trivial (it was proved by
Šalát [5] that d(A) = 1 implies that R(A) is everywhere dense in R

+), so we can
suppose that the set A is infinite and A has infinite complement in N. Thus A can
be expressed as the set of integer points lying in the intervals

[b1, c1], [b2, c2], . . . , [bn, cn], . . . ,
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whose endpoints are ordered as

b1 ≤ c1 < b2 ≤ c2 < · · · < bn ≤ cn < · · ·

Obviously,

d(A) = limn→+∞
1

cn

n
∑

i=1

(ci − bi + 1).

Let us consider the fractions a
cn

, where a ∈ A, a ≤ cn. All these fractions are
contained in the union of the intervals

(3)

[

b1

cn
,
c1

cn

]

,

[

b2

cn
,
c2

cn

]

, · · · ,

[

bn

cn
,
cn

cn

]

.

The distance of any two neighbouring fractions lying in the same interval of (3) is
1
bn

→ 0 as n → +∞. Therefore, for sufficiently large n, each interval (αi, βi) ⊂ [0, 1],
i = 1, 2, . . . , m must lie in the complement of

[

bk

cn
,
ck

cn

]

, k = 1, 2, . . . , n.

This complement is formed by the pairwise disjoint intervals

(

ck

cn
,
bk+1

cn

)

, k = 1, 2, . . . , n − 1.

Hence

∪m
i=1(αi, βi) ⊂ ∪n

k=1

(

ck

cn
,
bk+1

cn

)

and therefore
m

∑

i=1

(βi − αi) ≤
n

∑

k=1

bk+1 − ck

cn
.

The upper asymptotic density of the set A we can write as

d(A) = limn→+∞

(

cn − b1

cn
+

n

cn
−

1

cn
[(b2 − c1) + (b3 − c2) + · · · + (bn − cn−1)]

)

whence

d(A) − d(C) ≤ 1 −
m

∑

i=1

(βi − αi),

where C is the range of cn. Now, for a positive integer t, transform [bn, cn] →
[tbn, tcn+t−1] and denote by At the set of all integer points lying in [tbn, tcn+t−1],
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n = 1, 2, . . .. Analogously, Ct is the set of all tcn +t−1. Then we have d(At) = d(A)

and d(Ct) = d(C)/t, which gives

d(A) −
d(C)

t
≤ 1 −

m
∑

i=1

(βi − αi)

and the assertion of the lemma follows.

Theorem 2. For arbitrary A = {a1 < a2 < · · ·} ⊂ N having positive lower
asymptotic density (d(A) > 0) there exists a positive integer n such that the set
Rn(A) is dense in R

+.

Proof. First, we claim that d(A) > 0 implies that for some interval [γ, δ], 1 ≤
γ < δ the set R(A) is dense in [γ, δ]. Indeed, if such interval γ, δ] does not exist,
then there exist pairwise disjoint intervals (αi, βi), 0 ≤ αi < βi ≤ 1 such that
(αi, βi) ∩ R(A) = ∅, i = 1, 2, . . . , m and the sum of the length of these intervals
can be arbitrary near to 1, i.e.

m
∑

i=1

(βi − αi) > 1 − d(A)

which is a contradiction with the lemma.

From the condition d(A) > 0 follows that for sufficiently large K we have

ak+1

ak
< K, k = 1, 2, . . .

If R(A) is dense in [γ, δ], (1 ≤ γ < δ) then R2(A) is dense in [1, δ
γ ] and R4(A) is

dense in [1, ( δ
γ )2], . . .. To see this, we remark that

R2n+1(A) = R(R2n(A)), n = 1, 2, . . .

Evidently ( δ
γ )n → +∞ for n → +∞, therefore for sufficiently large n we have that

Rn−1(A) is dense in [1, K]. Using this fact we have that the set

{

t ·
ak

a1
; t ∈ Rn−1(A)

}

⊂ Rn(A)

is dense in each [ak

a1
,

ak+1

a1
], k = 1, 2, . . ., hence Rn(A) is dense in R

+.

To conclude this paper, let us describe some open problems associated with
this topic.

Let γ(n) be the least value of γ for which d(A) ≥ γ implies that Rn(A) is
dense in R

+, n = 1, 2, . . .. It is known that γ(1) = 1/2. Determine the exact value
of γ(2). What can be said about the function γ(n)?
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