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ON SOME ARITHMETICAL PROPERTIES OF LUCAS

AND LEHMER NUMBERS, II.
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Dedicated to the memory of Professor Péter Kiss

Abstract. Denote by S the set of non-zero integers composed only of finitely many given

primes. We proved with Kiss and Schinzel [7] that if un is a Lucas or Lehmer number with n>6

and un∈S, then |un| can be estimated from above in terms of S. An explicit upper bound for |un|

was given later in our article [5]. In the present paper a significant improvement of this bound is

established which implies, among other things, that P (un)> 1
4 (log log |un|)1/2 if n>30 or if 30≥n>6

and |un| is sufficiently large.

AMS Classification Number: 11B39, 11D61

1. Introduction

The Lucas numbers un are defined by

un =
αn − βn

α − β
, n > 0,

where α + β and αβ are relatively prime non-zero rational integers and α/β is not
a root of unity, while the Lehmer numbers un satisfy

un =

{

αn−βn

α−β , if n is odd,
αn−βn

α2−β2 , if n is even,

where (α + β)2 and αβ are relatively prime non-zero rational integers and α/β is
not a root of unity. The Lucas and Lehmer numbers are non-zero rational integers.
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Let p1, . . . , ps be rational primes with max
i

pi = P , and denote by S the set

of non-zero rational integers not divisible by primes different from p1, . . . , ps. We
proved with Kiss and Schinzel [7] that if un is a Lucas number or a Lehmer number
with n > 6 and un ∈ S then

(1) n ≤ max{C1, P + 1}

with C1 = e452467 and

(2) max{|α|, |β|, |un|} < C2,

where C2 is an effectivelly computable positive number depending only on P and
s. The proof of (1) was based on a result of Stewart [15] which asserts that for
n > C1, the Lucas and Lehmer numbers un always have a primitive prime divisor.
To prove (2), we reduced the problem to Thue–Mahler equations and used the
bound available at that time for the solutions of such equations. Later, in [5], I
made C2 completely explicit by means of an explicit and improved bound from [4]
on the solutions of Thue–Mahler equations. As a consequence, I showed in [5] that
if un is a Lucas or Lehmer number with n > 6 and |un| > exp exp{4C3

1 log C1} then

(3) 4sP 2 log P > log log |un|

and

(4) P >
1

2
(log log |un|)

1/3,

where P = P (un) and s = ω(un). Here P (un) and ω(un) signify the greatest prime
factor and the number of distinct prime factors of un (with the convention that
P (±1) = 1, ω(±1) = 0).

As is known, there are various lower bounds for P (un) in terms of n, valid for
all or “almost all” n, see e.g. [3], [16], [12], [14], [13], [8], [17] and the references
given there. However, these estimates do not imply (3) and (4), because the lower
bounds in (3) and (4) depend on un and not on n. Theorem 2 of [8] gives also a
lower bound of the form

c(log log |un|)
2 log log log |un|, if |un| > c

′

.

for P (un). In contrast with (4), the constants c, c
′

depend, however, on α, β and S
as well.

Recently, Bilu, Hanrot and Voutier [1] significantly improved Stewart’s result
[15] by showing that for n > 30, un has a primitive prime divisor. This will enable
us to prove (1) with C1 replaced by 30. Furthermore, in 1998 I succeeded (cf. [6]) to
improve upon the previous bound of [4] on the solutions of Thue–Mahler equations,
that is, in another formulation, on the S-integral solutions of Thue equations. Using
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this improvement from [6] and following the arguments of [5], we shall derive (2)
with an explicit bound C2 which is much better than the previous one in [5]. As a
consequence, we obtain also some improvements of (3) and (4).

Keepeng the above notation, let ϕ(n) denote Eurler’s function.

Theorem. Let un be a Lucas number or a Lehmer number defined as above with

n > 6. If un ∈ S then

(5) n ≤ max{30, P + 1}.

Further,

max{|α|, |β|, |un|}

is bounded above by

(6) exp{(k(s + 1))9k(s+2)P k(log P )sk+2},

where k = ϕ(n)/2.

The inequality (5) is a significant improvement of (1), while (6) improves upon
considerably (3) of [5].

From (5) and (6) we deduce the following improvements of (3) and (4).

Corollary. Let un be a Lucas or a Lehmer number with n > 30, or with 30 ≥ n > 6
and |un| > exp exp{7040}. Then we have

(7) 9(s + 2)P log P > log log |un|

and

(8) P >
1

4
(log log |un|)

1/2,

where P = P (un) and s = ω(un).

2. Proofs

Proof of the Theorem. We follow the proof of Theorem 1 of [5]. Let un ∈ S be a
Lucas number or a Lehmer number with n > 6. Then (5) follows in the same way
as (1) was proved in [7] if we raplace Stewart’s result [15] by the above-mentioned
theorem of Bilu, Hanrot and Voutier [1] on primitive prime divisors.

To prove (6), we first introduce some notation. Put αβ = B and α +β = A or
(α+β)2 = A according as un is a Lucas or a Lehmer number. Setting α2 +β2 = E,
we get E = A2 − 2B or E = A − 2B and gcd(E, B) = 1.



70 K. Győry

Denote by Φd(x, y) the d-th cyclotomic polynomial in homogeneous form. Then
we have

un =
αn − βn

α − β
=

∏

d|n
d>1

Φd(α, β), if n > 0,

or

un =
αn − βn

α2 − β2
=

∏

d|n
d≥3

Φd(α, β), if n is even.

If ζ = e2πi/d and d ≥ 3, then

Φd(α, β) = Fd(E, B),

where

(9) Fd(z, 1) =
∏

gcd(t,d)=1
1≤t<d/2

(z − (ζt + ζ−t))

is an irreducibile polynomial of degree ϕ(d)/2 with coefficients from Z. We infer
now in both cases that there are non-negative integers z1, . . . , zs such that

(10) G(E, B) =
∏

d|n
d≥3

Fd(E, B) = ±pz1
1 · · · pzs

s .

Here G(x, y) is a homogeneous polynomial with coefficients from Z. Further, in
view of n > 6, the degree of G, denoted by g, satisfies

3 ≤ g ≤
n − 1

2
.

We note that G(x, y) is not irreducibile in general, but its linear factors over Q̄ are
pairwise linearly independent. Putting

zi = gz
′

i + z
′′

i with integers z
′

i ≥ 0, 0 ≤ z
′′

i < g, 1 ≤ i ≤ s,

and

D = p
z
′

1
1 · · · p

z
′

s
s , b = ±p

z
′′

1
1 · · · p

z
′′

s
s ,

(10) implies

(11) G

(

E

D
,
B

D

)

= b

which can be regarded as a Thue equation in the S-integers E
D , B

D .
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We apply *) now Theorem 1 of [6] with m = 2 to equation (11). Denote
by K = Kn the maximal real subfield of the n-th cyclotomic field. Its degree is
k = ϕ(n)/2. Let hK , RK , DK and RS be the class number, regulator, discriminant
and S−regulator (for its definition see e.g. [6]) of K. Further, we write log∗ α for
max{logα, 1}. Then using Theorem 1 of [6], one can deduce the estimate

(12)
max(|E|, |B|) < exp{c1P

kRS(log∗ RS).

(log∗(PRS)/ log∗ P )(RK + hK log Q + 2g + log |b|)},

where
c1 = n(k(s + 1))8ks+9k+11 .

As is known, (see e.g. [6])

log∗(PRS)/ log∗ P ≤ 2 log∗ RS and RS ≤ hKRK(ksW )k,

where W = (log p1) · · · (log ps). Further, we use as in [5] that

hKRK < 4|DK |1/2(log |DK |)k−1

and
RK ≥ 0.373, |DK | ≤ nk.

For n ≥ 3, we also have (cf. [10]),

n/ϕ(n) < eγ log log n + 5/(2 log log n),

where γ denotes Euler’s constant.

Finally, we have
log Q ≤ s log P and log |b| ≤ gs logP.

Now it is easy to verify that (12) gives the bound (6) for max{|α|, |β|, |un|}.

Proof of the Corollary. First suppose that k ≤ P/2. In view of k ≤ n−1
2 and

(5), this is always the case if n > 30. In this case (7) can be easily deduced from
(6) by using

(13) s ≤ 1.25506P/ logP for s ≥ 1

(cf. [10]). Further, one can easily check that

(14) s + 2 ≤ 1.777777P/ logP if 1 ≤ s ≤ 7.

*) We remark that in case of φ(n)/2≥3, i.e. except for the cases n=8,10,12,(10) could also be

reduced to an irreducibile Thue–Mahler equation to which a recent theorem of Bugeaud and the

author [2] also applies.
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Now using (13) if s ≥ 8 and (14) if 1 ≤ s ≤ 7, we get from (7) the estimate (8).

Next suppose that P/2 < k. Then, by (5), it follows that n ≤ 30 and hence
k ≤ 14. This gives P ≤ 23 and so s ≤ 9. Now we infer from (6) that log log |un| ≤
7040. Hence, if 6 < n ≤ 30 and

|un| > exp exp{7040},

then we must have k ≤ P/2 and, as was proved above, (7) and (8) follow.
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