ON SOME ARITHMETICAL PROPERTIES OF LUCAS AND LEHMER NUMBERS, II.

Kálmán Győry* (Debrecen)

Dedicated to the memory of Professor Péter Kiss

Abstract

Denote by S the set of non-zero integers composed only of finitely many given primes. We proved with Kiss and Schinzel [7] that if u_{n} is a Lucas or Lehmer number with $n>6$ and $u_{n} \in S$, then $\left|u_{n}\right|$ can be estimated from above in terms of S. An explicit upper bound for $\left|u_{n}\right|$ was given later in our article [5]. In the present paper a significant improvement of this bound is established which implies, among other things, that $P\left(u_{n}\right)>\frac{1}{4}\left(\log \log \left|u_{n}\right|\right)^{1 / 2}$ if $n>30$ or if $30 \geq n>6$ and $\left|u_{n}\right|$ is sufficiently large.

AMS Classification Number: 11B39, 11D61

1. Introduction

The Lucas numbers u_{n} are defined by

$$
u_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, \quad n>0
$$

where $\alpha+\beta$ and $\alpha \beta$ are relatively prime non-zero rational integers and α / β is not a root of unity, while the Lehmer numbers u_{n} satisfy

$$
u_{n}= \begin{cases}\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, & \text { if } \mathrm{n} \text { is odd } \\ \frac{\alpha^{n}-\beta^{n}}{\alpha^{2}-\beta^{2}}, & \text { if } \mathrm{n} \text { is even },\end{cases}
$$

where $(\alpha+\beta)^{2}$ and $\alpha \beta$ are relatively prime non-zero rational integers and α / β is not a root of unity. The Lucas and Lehmer numbers are non-zero rational integers.

[^0]Let p_{1}, \ldots, p_{s} be rational primes with $\max _{i} p_{i}=P$, and denote by S the set of non-zero rational integers not divisible by primes different from p_{1}, \ldots, p_{s}. We proved with Kiss and Schinzel [7] that if u_{n} is a Lucas number or a Lehmer number with $n>6$ and $u_{n} \in S$ then

$$
\begin{equation*}
n \leq \max \left\{C_{1}, P+1\right\} \tag{1}
\end{equation*}
$$

with $C_{1}=e^{452} 4^{67}$ and

$$
\begin{equation*}
\max \left\{|\alpha|,|\beta|,\left|u_{n}\right|\right\}<C_{2}, \tag{2}
\end{equation*}
$$

where C_{2} is an effectivelly computable positive number depending only on P and s. The proof of (1) was based on a result of Stewart [15] which asserts that for $n>C_{1}$, the Lucas and Lehmer numbers u_{n} always have a primitive prime divisor. To prove (2), we reduced the problem to Thue-Mahler equations and used the bound available at that time for the solutions of such equations. Later, in [5], I made C_{2} completely explicit by means of an explicit and improved bound from [4] on the solutions of Thue-Mahler equations. As a consequence, I showed in [5] that if u_{n} is a Lucas or Lehmer number with $n>6$ and $\left|u_{n}\right|>\exp \exp \left\{4 C_{1}^{3} \log C_{1}\right\}$ then

$$
\begin{equation*}
4 s P^{2} \log P>\log \log \left|u_{n}\right| \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
P>\frac{1}{2}\left(\log \log \left|u_{n}\right|\right)^{1 / 3}, \tag{4}
\end{equation*}
$$

where $P=P\left(u_{n}\right)$ and $s=\omega\left(u_{n}\right)$. Here $P\left(u_{n}\right)$ and $\omega\left(u_{n}\right)$ signify the greatest prime factor and the number of distinct prime factors of u_{n} (with the convention that $P(\pm 1)=1, \omega(\pm 1)=0)$.

As is known, there are various lower bounds for $P\left(u_{n}\right)$ in terms of n, valid for all or "almost all" n, see e.g. [3], [16], [12], [14], [13], [8], [17] and the references given there. However, these estimates do not imply (3) and (4), because the lower bounds in (3) and (4) depend on u_{n} and not on n. Theorem 2 of [8] gives also a lower bound of the form

$$
c\left(\log \log \left|u_{n}\right|\right)^{2} \log \log \log \left|u_{n}\right| \text {, if }\left|u_{n}\right|>c^{\prime} .
$$

for $P\left(u_{n}\right)$. In contrast with (4), the constants c, c^{\prime} depend, however, on α, β and S as well.

Recently, Bilu, Hanrot and Voutier [1] significantly improved Stewart's result [15] by showing that for $n>30, u_{n}$ has a primitive prime divisor. This will enable us to prove (1) with C_{1} replaced by 30 . Furthermore, in 1998 I succeeded (cf. [6]) to improve upon the previous bound of [4] on the solutions of Thue-Mahler equations, that is, in another formulation, on the S-integral solutions of Thue equations. Using
this improvement from [6] and following the arguments of [5], we shall derive (2) with an explicit bound C_{2} which is much better than the previous one in [5]. As a consequence, we obtain also some improvements of (3) and (4).

Keepeng the above notation, let $\varphi(n)$ denote Eurler's function.
Theorem. Let u_{n} be a Lucas number or a Lehmer number defined as above with $n>6$. If $u_{n} \in S$ then

$$
\begin{equation*}
n \leq \max \{30, P+1\} \tag{5}
\end{equation*}
$$

Further,

$$
\max \left\{|\alpha|,|\beta|,\left|u_{n}\right|\right\}
$$

is bounded above by

$$
\begin{equation*}
\exp \left\{(k(s+1))^{9 k(s+2)} P^{k}(\log P)^{s k+2}\right\} \tag{6}
\end{equation*}
$$

where $k=\varphi(n) / 2$.
The inequality (5) is a significant improvement of (1), while (6) improves upon considerably (3) of [5].

From (5) and (6) we deduce the following improvements of (3) and (4).
Corollary. Let u_{n} be a Lucas or a Lehmer number with $n>30$, or with $30 \geq n>6$ and $\left|u_{n}\right|>\exp \exp \{7040\}$. Then we have

$$
\begin{equation*}
9(s+2) P \log P>\log \log \left|u_{n}\right| \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
P>\frac{1}{4}\left(\log \log \left|u_{n}\right|\right)^{1 / 2} \tag{8}
\end{equation*}
$$

where $P=P\left(u_{n}\right)$ and $s=\omega\left(u_{n}\right)$.

2. Proofs

Proof of the Theorem. We follow the proof of Theorem 1 of [5]. Let $u_{n} \in S$ be a Lucas number or a Lehmer number with $n>6$. Then (5) follows in the same way as (1) was proved in [7] if we raplace Stewart's result [15] by the above-mentioned theorem of Bilu, Hanrot and Voutier [1] on primitive prime divisors.

To prove (6), we first introduce some notation. Put $\alpha \beta=B$ and $\alpha+\beta=A$ or $(\alpha+\beta)^{2}=A$ according as u_{n} is a Lucas or a Lehmer number. Setting $\alpha^{2}+\beta^{2}=E$, we get $E=A^{2}-2 B$ or $E=A-2 B$ and $\operatorname{gcd}(E, B)=1$.

Denote by $\Phi_{d}(x, y)$ the d-th cyclotomic polynomial in homogeneous form. Then we have

$$
u_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}=\prod_{\substack{d \mid n \\ d>1}} \Phi_{d}(\alpha, \beta), \text { if } n>0
$$

or

$$
u_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha^{2}-\beta^{2}}=\prod_{\substack{d \backslash n \\ d \geq 3}} \Phi_{d}(\alpha, \beta), \text { if } n \text { is even. }
$$

If $\zeta=e^{2 \pi i / d}$ and $d \geq 3$, then

$$
\Phi_{d}(\alpha, \beta)=F_{d}(E, B)
$$

where

$$
\begin{equation*}
F_{d}(z, 1)=\prod_{\substack{\operatorname{gcd}(t, d)=1 \\ 1 \leq t<d / 2}}\left(z-\left(\zeta^{t}+\zeta^{-t}\right)\right) \tag{9}
\end{equation*}
$$

is an irreducibile polynomial of degree $\varphi(d) / 2$ with coefficients from \mathbf{Z}. We infer now in both cases that there are non-negative integers z_{1}, \ldots, z_{s} such that

$$
\begin{equation*}
G(E, B)=\prod_{\substack{d \mid n \\ d \geq 3}} F_{d}(E, B)= \pm p_{1}^{z_{1}} \cdots p_{s}^{z_{s}} \tag{10}
\end{equation*}
$$

Here $G(x, y)$ is a homogeneous polynomial with coefficients from Z. Further, in view of $n>6$, the degree of G, denoted by g, satisfies

$$
3 \leq g \leq \frac{n-1}{2}
$$

We note that $G(x, y)$ is not irreducibile in general, but its linear factors over $\overline{\mathbf{Q}}$ are pairwise linearly independent. Putting

$$
z_{i}=g z_{i}^{\prime}+z_{i}^{\prime \prime} \text { with integers } z_{i}^{\prime} \geq 0,0 \leq z_{i}^{\prime \prime}<g, 1 \leq i \leq s
$$

and

$$
D=p_{1}^{z_{1}^{\prime}} \cdots p_{s}^{z_{s}^{\prime}}, b= \pm p_{1}^{z_{1}^{\prime \prime}} \cdots p_{s}^{z_{s}^{\prime \prime}}
$$

(10) implies

$$
\begin{equation*}
G\left(\frac{E}{D}, \frac{B}{D}\right)=b \tag{11}
\end{equation*}
$$

which can be regarded as a Thue equation in the S-integers $\frac{E}{D}, \frac{B}{D}$.

We apply ${ }^{*}$) now Theorem 1 of [6] with $m=2$ to equation (11). Denote by $K=K_{n}$ the maximal real subfield of the n-th cyclotomic field. Its degree is $k=\varphi(n) / 2$. Let h_{K}, R_{K}, D_{K} and R_{S} be the class number, regulator, discriminant and S-regulator (for its definition see e.g. [6]) of K. Further, we write $\log ^{*} \alpha$ for $\max \{\log \alpha, 1\}$. Then using Theorem 1 of [6], one can deduce the estimate

$$
\begin{align*}
& \max (|E|,|B|)<\exp \left\{c_{1} P^{k} R_{S}\left(\log ^{*} R_{S}\right)\right. \tag{12}\\
& \left.\left(\log ^{*}\left(P R_{S}\right) / \log ^{*} P\right)\left(R_{K}+h_{K} \log Q+2 g+\log |b|\right)\right\}
\end{align*}
$$

where

$$
c_{1}=n(k(s+1))^{8 k s+9 k+11} .
$$

As is known, (see e.g. [6])

$$
\log ^{*}\left(P R_{S}\right) / \log ^{*} P \leq 2 \log ^{*} R_{S} \text { and } R_{S} \leq h_{K} R_{K}\left(k^{s} W\right)^{k}
$$

where $W=\left(\log p_{1}\right) \cdots\left(\log p_{s}\right)$. Further, we use as in [5] that

$$
h_{K} R_{K}<4\left|D_{K}\right|^{1 / 2}\left(\log \left|D_{K}\right|\right)^{k-1}
$$

and

$$
R_{K} \geq 0.373, \quad\left|D_{K}\right| \leq n^{k}
$$

For $n \geq 3$, we also have (cf. [10]),

$$
n / \varphi(n)<e^{\gamma} \log \log n+5 /(2 \log \log n)
$$

where γ denotes Euler's constant.
Finally, we have

$$
\log Q \leq s \log P \text { and } \log |b| \leq g s \log P
$$

Now it is easy to verify that (12) gives the bound (6) for $\max \left\{|\alpha|,|\beta|,\left|u_{n}\right|\right\}$.
Proof of the Corollary. First suppose that $k \leq P / 2$. In view of $k \leq \frac{n-1}{2}$ and (5), this is always the case if $n>30$. In this case (7) can be easily deduced from (6) by using

$$
\begin{equation*}
s \leq 1.25506 P / \log P \text { for } s \geq 1 \tag{13}
\end{equation*}
$$

(cf. [10]). Further, one can easily check that

$$
\begin{equation*}
s+2 \leq 1.777777 P / \log P \text { if } 1 \leq s \leq 7 \tag{14}
\end{equation*}
$$

[^1]Now using (13) if $s \geq 8$ and (14) if $1 \leq s \leq 7$, we get from (7) the estimate (8).
Next suppose that $P / 2<k$. Then, by (5), it follows that $n \leq 30$ and hence $k \leq 14$. This gives $P \leq 23$ and so $s \leq 9$. Now we infer from (6) that $\log \log \left|u_{n}\right| \leq$ 7040. Hence, if $6<n \leq 30$ and

$$
\left|u_{n}\right|>\exp \exp \{7040\}
$$

then we must have $k \leq P / 2$ and, as was proved above, (7) and (8) follow.

References

[1] Bilu, Yu., Hanrot, G. and Voutier, P. M., Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math., 539, (2001), 75-122.
[2] Bugeaud, Y. and Gyôry, K., Bounds for the solutions of Thue-Mahler equations and norm form equations, Acta Arithmetica, 74, (1996), 273-292.
[3] Carmichael, R. D., On the numerical factors of the arithmetic forms $\alpha^{n} \pm \beta^{n}$, Annals of Math. (2), 15, (1913), 30-70.
[4] Gyôry, K., Explicit upper bounds for the solutions of some diophantine equations, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 5, (1980), 3-12.
[5] Gyôry, K., On some arithmetical properties of Lucas and Lehmer numbers, Acta Arithmetica, 40, (1982), 369-373.
[6] Gyôry, K., Bounds for the solutions of decomposable form equations, Publ. Math. Debrecen, 52, (1998), 1-31.
[7] Gyôry, K., Kiss, P. and Schinzel, A., On Lucas and Lehmer sequences and their applications to diophantine equations, Colloqu. Math., 45, (1981), 75-80.
[8] Gyôry, K., Mignotte, M. and Shorey, T. N., On some arithmetical properties of weighted sums of S-units, Math. Pannonica, 1/2, (1990), 2543.
[9] Robin, G., Estimation de la fonction de Tchebycheff Θ sur le k-ième nombre premier et grandes valeurs de la fonction $\omega(n)$, nombre de diviseurs premiers de n, Acta Arithmetica, 42, (1983), 367-389.
[10] Rosser, J. B. and Schoenfeld, L., Approximate formulas for some functions of prime numbers, Illinois J. Math., 6, (1962), 64-94.
[11] Rosser, J. B. and Schoenfeld, L., Sharper bounds for the Chebyshev functions $\Theta(x)$ and $\Psi(x)$, Math. Comp., 29, (1975), 243-296.
[12] Schinzel, A., The intrinsic divisors of Lehmer numbers in the case of negative discriminant, Arkiv Mat., 4, (1962), 413-416.
[13] Shorey, T. N. and Stewart, C. L., On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers II., J. London Math. Soc., 23, (1981), 17-23.
[14] Stewart, C. L., On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers, Proc. London Math. Soc., 24, (1977), 425-447.
[15] Stewart, C. L., Primitive divisors of Lucas and Lehmer numbers, In: Transcendence theory: Advances and applications, Acad. Press, London, New York, San Francisco, 1977, 79-92.
[16] Ward, M., The intrinsic divisors of Lehmer numbers, Annals of Math., (2), 62, (1955), 230-236.
[17] Kunrui, Yu. and Ling-Kei Hung., On binary recurrence sequences, Indag. Math. N. S., 6 (3), (1995), 341-354.

Kálmán Győry

Number Theory Research Group of the
Hungarian Academy of Sciences,
Institute of Mathematics
University of Debrecen
H-4010 Debrecen P.O. Box 12.
Hungary
e-mail: gyory@math.klte.hu

[^0]: *Supported in part by the Netherlands Organization for Scientific Research, the Hungarian Academy of Sciences and by grants 29330, 38225 and 42985 of the Hungarian National Foundation for Scientific Research.

[^1]: *) We remark that in case of $\phi(n) / 2 \geq 3$, i.e. except for the cases $n=8,10,12,(10)$ could also be reduced to an irreducibile Thue-Mahler equation to which a recent theorem of Bugeaud and the author [2] also applies.

