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1. Introduction

The statistical independence was studied by G. Rauzy [9], and later in the
papers [3], [5]. We remark that two arithmetical functions F, G with values in [0, 1]
are called statistically independent if and only if
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as N → ∞ for all continuous real valued functions f, g defined on [0, 1] (cf. [9]). In
the papers [3], [5] a characterization of this type of independence is given in terms
of the Lp-discrepancy.

The aim of the present note is to give a “statistical” condition of linear
dependence of some type of functions. We consider two polyadically continuous
functions f and g. Such functions can be uniformly approximated by the periodic
functions (cf. [8]). Let Ω be the space of polyadic integers, constructed as a
completion of positive integers with respect to the metric d(x, y) =

∑∞
n=1

ϕn(x−y)
2n

,
where ϕn(z) = 0 if n|z and ϕn(z) = 1 otherwise, (see the paper [7]). For a survay on
the properties of this metric ring we refer also to the monograph [8]. The functions
f, g can be extended to uniformly continuous functions f̃ , g̃ defined on Ω. The space
Ω is equipped with a Haar probability measure P , thus f̃ , g̃ can be considered as
random variables on Ω. Put

ρ̃ =
|E(f̃ · g̃) − E(f̃) · E(g̃)|

D2(f̃) · D2(g̃)
,

where E(·) is the mean value and D2(·) is the dispersion (variance) (cf. [1], [10]).
The value ρ̃ is called the correlation coefficient of f̃ , g̃, thus if ρ̃ = 1 then g̃ = Af̃ +B

for some constants A, B. In the following we will prove a similar result for a greater
class of functions.
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2. Correlation on a set with valuation

Let M be a set with valuation

| · |:M → [0,∞)

such that
(i) The set M(x) = {a ∈ M : |a| ≤ x} is finite for every x ∈ [0,∞),
(ii) If N(x) = cardM(x), then N(x) → ∞ as x → ∞.

Let S ⊆ M and put for x > 0

γx(S) =
card(S ∩ M(x))

N(x)
.

Then γx is an atomic probability measure with atoms M(x). If for some S ⊆ M

there exists the limit

(2.1) lim
x→∞

γx(S) := γ(S),

then the value γ(S) will be called the asymptotic density of S.
If h is a real-valued function defined on M, then it can be considered as a

random variable with respect to γx for x > 0 with mean value

Ex(h) :=
1

N(x)

∑

|a|≤x

h(a)

and dispersion

D2
x(h) =

1

N(x)

∑

|a|≤x

(h(a) − Ex(h))2 =
1

N(x)

∑

|a|≤x

h2(a) − (Ex(h))2

(cf. [1]).

Remark. In the case M = N (the set of positive integers) we obtain by (2.1) the
well known asymptotic density. Various examples of such sets M with valuations
satisfying (i),(ii) are special arithmetical semigroups equipped with absolute value
| · | in the sense of Knopfmacher [6].

Let f, g be two real-valued functions defined on M and D2
x(f) > 0, D2

x(g) > 0
for sufficiently large x. Consider their correlation coefficient with respect to γx

given as follows

(2.2) ρx = ρx(f, g) =
|Ex(f · g) − Ex(f)Ex(g)|

Dx(f) · Dx(g)
.
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Clearly, if ρx = 1, then for every α ∈ M(x) we have

g(α) = Axf(α) + Bx,

where

Ax =
Ex(f · g) − Ex(f)Ex(g)

D2
x(f)

,

and
Bx = Ex(g) − AxEx(f)

(cf. [1], [10]).
Note that if M = N and f, g are statistically independent arithmetic functions,

then
ρx(f, g) → 0, x → ∞.

The line β = Axα+Bx is well known as the regression line of f, g on M(x) (cf. [1],
[10]). Consider now the function g − Axf . By some calculations we derive

Ex(g − Axf) = Bx,

and
D2

x(g − Axf) = (1 − ρ2
x)D2

x(g),

where ρx is given by (2.2). Thus from Tchebyschev’s inequality we get

(2.3) γx ({a : |g(a) − Axf(a) − Bx| ≥ ε}) ≤
(1 − ρ2

x)D2
x(g)

ε2
.

Suppose now that there exist some A, B such that Ax → A, Bx → B.
We have

|g(a) − Af(a) − B| ≤ |g(a) − Axf(a) − Bx| + |f(a)||Ax − A| + |Bx − B|.

Thus if f is bounded we obtain for ε > 0 and sufficiently large x

|g(a) − Af(a) − B| ≥ ε ⇒ |g(a) − Axf(a) − Bx| ≥
ε

2
,

and so (2.3) yields

(2.4) γx({a : |g(a) − Af(a) − B| ≥ ε}) ≤
4(1 − ρ2

x)D2
x(g)

ε2
.

Now we can state our main result.

Theorem 1. Let f, g be two bounded real-valued functions on M.
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(1) Suppose that D2
x(f) > 0, D2

x(g) > 0 for sufficiently large x and Ax → A, Bx →
B and ρx → 1 (as x → ∞). Then for every ε > 0

(2.5) γ({a : |g(a) − Af(a) − B| ≥ ε}) = 0.

(2) Let D2
x(g) > K > 0 for some K and assume (2.5) for every ε > 0 and suitable

constants A, B. Then ρx → 1 (as x → ∞).

Proof. If g is bounded, then also D2
x(g) is bounded and the assertion (1) follows

directly from (2.4).
Put g1 := Af + B. The assumptions of (2) imply that A 6= 0 and D2

x(f) >

K1 > 0, D2
x(g1) > K2 > 0 for some constants K1, K2. Then we have

(2.6) ρx(g1, f) = 1

for each x.
Denote for two bounded real-valued functions h1, h2:

h1 ∼ h2 ⇐⇒ γ({a : |h1(a) − h2(a)| ≥ ε}) = 0.

It can be verified easily that ∼ is an equivalence relation compatible with addition
and multiplication, moreover for each uniformly continuous function F it follows
from (ii)

h1 ∼ h2 ⇒ Ex(F (h1)) − Ex(F (h2)) → 0

as x → ∞. In the case (2) we have g ∼ g1. This yields

(2.7) D2
x(g) − D2

x(g1) → 0, x → ∞,

but (2.6) gives
Dx(g1)Dx(f) = |Ex(g1f) − Ex(g1)Ex(f)|.

Hence, observing that Dx(f) is bounded we obtain from (2.7).

Dx(g)Dx(f) − |Ex(g1f) − Ex(g1)Ex(f)| → 0, x → ∞ .

Therefore
Dx(g)Dx(f) − |Ex(gf) − Ex(g)Ex(f)| → 0, x → ∞ ,

and the assertion follows.

The Besicovitch functions. Consider now the case M = N. An arithmetic
function h is called almost periodic if for each ε > 0 there exists a periodic function
hε such that

lim
N→∞

1

N

∑

n≤N

|h(n) − hε(n)| < ε.
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(These functions are also called Besicovitch functions). The class of all such
arithmetic functions will be denoted by B1. For a survey of the properties of B1

we refer to [8] or [2]. For each h ∈ B1 there exist the limits

lim
N→∞

EN (h) := E(h)

and
lim

N→∞
D2

N (h) := D2(h).

If f, g ∈ B1 are bounded then also f + g, f · g ∈ B1.
Thus, if D2(f), D2(g) > 0 then the limits lim

x→∞
Ax, lim

x→∞
Bx and lim

x→∞
ρx always

exist.
The relation h ∼ L for an arithmetic function h and some constant L, used in

the proof of Theorem 1, is defined in [4] as the statistical convergence of h to L.
Šalát [11] gives the following characterisation of the statistical convergence:

Theorem 2. Let h be an arithmetic function, and L a constant. Then h ∼ L if
and only if there exists a subset K ⊂ N such that the asymptotic density of K is
1 and limn→∞,n∈K h(n) = L.

Denote by B2 the set of all Besicovitch functions of h, such that h is bonded
and D2(h) > 0. Thus for two functions f, g ∈ B2 there exists the limit ρ(f, g) :=
limn→∞ ρN (f, g). Theorem 1 and Theorem 2 immediately imply:

Theorem 3. Let f, g ∈ B2. Then ρ(f, g) = 1 if and only if there exist some
constants A, B and a set K ⊂ N of asymptotic density 1 such that

lim
n→∞,n∈K

f(n) − Ag(n) − B = 0.

Let us conclude this note by the remarking that the statistical convergence of
the real valued function on M can be characterized analogously as in the paper
[11], using the same ideas. Let h be a real valued function on M and L a real
constant. Consider K ⊂ M, then we write

lim
a∈K

h(a) = L ⇔ ∀ε > 0∃x0∀a ∈ K : |a| > x0 =⇒ |h(a) − L| < ε.

Theorem 4. Let h be a real valued function on M and L a constant. Then h ∼ L

if and only if there exists a set K ⊂ M such that γ(K) = 1 and lima∈K h(a) = L.

Sketch of proof. Put Kn = {a ∈ M : |h(a)−L| < 1
n
} for n ∈ N. Clearly it holds

that γ(Kn) = 1, n = 1, 2, . . .. Thus it can be selected such an increasing sequence
of positive integers {xn} that for x > xn we have

γx(Kn) >
(

1 −
1

n

)

, n = 1, 2, . . . .
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Put

K =
∞
⋃

n=1

Kn ∩
(

M(xn+1) \ M(xn)
)

.

Using the fact that the sequence of sets Kn is non increasing it can be proved that
γ(K) = 1, and lima∈K h(a) = L, by a similary way as in [11].
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