A NOTE ON THE CORRELATION COEFFICIENT OF ARITHMETIC FUNCTIONS

Milan Păstéka, Robert F. Tichy (Bratislava, Slovakia - Graz, Austria)

Dedicated to the memory of Professor Péter Kiss

1. Introduction

The statistical independence was studied by G. Rauzy [9], and later in the papers [3], [5]. We remark that two arithmetical functions F, G with values in $[0,1]$ are called statistically independent if and only if

$$
\frac{1}{N} \sum_{n=1}^{N} F(f(n)) G(g(n))-\frac{1}{N^{2}} \sum_{n=1}^{N} F(f(n)) \sum_{n=1}^{N} G(g(n)) \rightarrow 0
$$

as $N \rightarrow \infty$ for all continuous real valued functions f, g defined on [0, 1] (cf. [9]). In the papers [3], [5] a characterization of this type of independence is given in terms of the L^{p}-discrepancy.

The aim of the present note is to give a "statistical" condition of linear dependence of some type of functions. We consider two polyadically continuous functions f and g. Such functions can be uniformly approximated by the periodic functions (cf. [8]). Let Ω be the space of polyadic integers, constructed as a completion of positive integers with respect to the metric $d(x, y)=\sum_{n=1}^{\infty} \frac{\varphi_{n}(x-y)}{2^{n}}$, where $\varphi_{n}(z)=0$ if $n \mid z$ and $\varphi_{n}(z)=1$ otherwise, (see the paper [7]). For a survay on the properties of this metric ring we refer also to the monograph [8]. The functions f, g can be extended to uniformly continuous functions \tilde{f}, \tilde{g} defined on Ω. The space Ω is equipped with a Haar probability measure P, thus \tilde{f}, \tilde{g} can be considered as random variables on Ω. Put

$$
\tilde{\rho}=\frac{|E(\tilde{f} \cdot \tilde{g})-E(\tilde{f}) \cdot E(\tilde{g})|}{D^{2}(\tilde{f}) \cdot D^{2}(\tilde{g})}
$$

where $E(\cdot)$ is the mean value and $D^{2}(\cdot)$ is the dispersion (variance) (cf. [1], [10]). The value $\tilde{\rho}$ is called the correlation coefficient of \tilde{f}, \tilde{g}, thus if $\tilde{\rho}=1$ then $\tilde{g}=A \tilde{f}+B$ for some constants A, B. In the following we will prove a similar result for a greater class of functions.

2. Correlation on a set with valuation

Let \mathbf{M} be a set with valuation

$$
|\cdot|: \mathbf{M} \rightarrow[\mathbf{0}, \infty)
$$

such that
(i) The set $\mathbf{M}(\mathbf{x})=\{\mathbf{a} \in \mathbf{M}:|\mathbf{a}| \leq \mathbf{x}\}$ is finite for every $x \in[0, \infty)$,
(ii) If $N(x)=\operatorname{card} \mathbf{M}(\mathbf{x})$, then $N(x) \rightarrow \infty$ as $x \rightarrow \infty$.

Let $S \subseteq \mathbf{M}$ and put for $x>0$

$$
\gamma_{x}(S)=\frac{\operatorname{card}(S \cap \mathbf{M}(\mathbf{x}))}{N(x)}
$$

Then γ_{x} is an atomic probability measure with atoms $\mathbf{M}(\mathbf{x})$. If for some $S \subseteq \mathbf{M}$ there exists the limit

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \gamma_{x}(S):=\gamma(S) \tag{2.1}
\end{equation*}
$$

then the value $\gamma(S)$ will be called the asymptotic density of S.
If h is a real-valued function defined on \mathbf{M}, then it can be considered as a random variable with respect to γ_{x} for $x>0$ with mean value

$$
E_{x}(h):=\frac{1}{N(x)} \sum_{|a| \leq x} h(a)
$$

and dispersion

$$
D_{x}^{2}(h)=\frac{1}{N(x)} \sum_{|a| \leq x}\left(h(a)-E_{x}(h)\right)^{2}=\frac{1}{N(x)} \sum_{|a| \leq x} h^{2}(a)-\left(E_{x}(h)\right)^{2}
$$

(cf. [1]).
Remark. In the case $\mathbf{M}=\mathbf{N}$ (the set of positive integers) we obtain by (2.1) the well known asymptotic density. Various examples of such sets \mathbf{M} with valuations satisfying (i),(ii) are special arithmetical semigroups equipped with absolute value $|\cdot|$ in the sense of Knopfmacher [6].

Let f, g be two real-valued functions defined on \mathbf{M} and $D_{x}^{2}(f)>0, D_{x}^{2}(g)>0$ for sufficiently large x. Consider their correlation coefficient with respect to γ_{x} given as follows

$$
\begin{equation*}
\rho_{x}=\rho_{x}(f, g)=\frac{\left|E_{x}(f \cdot g)-E_{x}(f) E_{x}(g)\right|}{D_{x}(f) \cdot D_{x}(g)} . \tag{2.2}
\end{equation*}
$$

Clearly, if $\rho_{x}=1$, then for every $\alpha \in \mathbf{M}(\mathbf{x})$ we have

$$
g(\alpha)=A_{x} f(\alpha)+B_{x}
$$

where

$$
A_{x}=\frac{E_{x}(f \cdot g)-E_{x}(f) E_{x}(g)}{D_{x}^{2}(f)}
$$

and

$$
B_{x}=E_{x}(g)-A_{x} E_{x}(f)
$$

(cf. [1], [10]).
Note that if $\mathbf{M}=\mathbf{N}$ and f, g are statistically independent arithmetic functions, then

$$
\rho_{x}(f, g) \rightarrow 0, x \rightarrow \infty
$$

The line $\beta=A_{x} \alpha+B_{x}$ is well known as the regression line of f, g on $\mathbf{M}(\mathbf{x})$ (cf. [1], [10]). Consider now the function $g-A_{x} f$. By some calculations we derive

$$
E_{x}\left(g-A_{x} f\right)=B_{x}
$$

and

$$
D_{x}^{2}\left(g-A_{x} f\right)=\left(1-\rho_{x}^{2}\right) D_{x}^{2}(g),
$$

where ρ_{x} is given by (2.2). Thus from Tchebyschev's inequality we get

$$
\begin{equation*}
\gamma_{x}\left(\left\{a:\left|g(a)-A_{x} f(a)-B_{x}\right| \geq \varepsilon\right\}\right) \leq \frac{\left(1-\rho_{x}^{2}\right) D_{x}^{2}(g)}{\varepsilon^{2}} \tag{2.3}
\end{equation*}
$$

Suppose now that there exist some A, B such that $A_{x} \rightarrow A, B_{x} \rightarrow B$.
We have

$$
|g(a)-A f(a)-B| \leq\left|g(a)-A_{x} f(a)-B_{x}\right|+|f(a)|\left|A_{x}-A\right|+\left|B_{x}-B\right|
$$

Thus if f is bounded we obtain for $\varepsilon>0$ and sufficiently large x

$$
|g(a)-A f(a)-B| \geq \varepsilon \Rightarrow\left|g(a)-A_{x} f(a)-B_{x}\right| \geq \frac{\varepsilon}{2}
$$

and so (2.3) yields

$$
\begin{equation*}
\gamma_{x}(\{a:|g(a)-A f(a)-B| \geq \varepsilon\}) \leq \frac{4\left(1-\rho_{x}^{2}\right) D_{x}^{2}(g)}{\varepsilon^{2}} \tag{2.4}
\end{equation*}
$$

Now we can state our main result.
Theorem 1. Let f, g be two bounded real-valued functions on \mathbf{M}.
(1) Suppose that $D_{x}^{2}(f)>0, D_{x}^{2}(g)>0$ for sufficiently large x and $A_{x} \rightarrow A, B_{x} \rightarrow$ B and $\rho_{x} \rightarrow 1$ (as $x \rightarrow \infty$). Then for every $\varepsilon>0$

$$
\begin{equation*}
\gamma(\{a:|g(a)-A f(a)-B| \geq \varepsilon\})=0 . \tag{2.5}
\end{equation*}
$$

(2) Let $D_{x}^{2}(g)>K>0$ for some K and assume (2.5) for every $\varepsilon>0$ and suitable constants A, B. Then $\rho_{x} \rightarrow 1$ (as $x \rightarrow \infty$).

Proof. If g is bounded, then also $D_{x}^{2}(g)$ is bounded and the assertion (1) follows directly from (2.4).

Put $g_{1}:=A f+B$. The assumptions of (2) imply that $A \neq 0$ and $D_{x}^{2}(f)>$ $K_{1}>0, D_{x}^{2}\left(g_{1}\right)>K_{2}>0$ for some constants K_{1}, K_{2}. Then we have

$$
\begin{equation*}
\rho_{x}\left(g_{1}, f\right)=1 \tag{2.6}
\end{equation*}
$$

for each x.
Denote for two bounded real-valued functions h_{1}, h_{2} :

$$
h_{1} \sim h_{2} \Longleftrightarrow \gamma\left(\left\{a:\left|h_{1}(a)-h_{2}(a)\right| \geq \varepsilon\right\}\right)=0 .
$$

It can be verified easily that \sim is an equivalence relation compatible with addition and multiplication, moreover for each uniformly continuous function F it follows from (ii)

$$
h_{1} \sim h_{2} \Rightarrow E_{x}\left(F\left(h_{1}\right)\right)-E_{x}\left(F\left(h_{2}\right)\right) \rightarrow 0
$$

as $x \rightarrow \infty$. In the case (2) we have $g \sim g_{1}$. This yields

$$
\begin{equation*}
D_{x}^{2}(g)-D_{x}^{2}\left(g_{1}\right) \rightarrow 0, x \rightarrow \infty, \tag{2.7}
\end{equation*}
$$

but (2.6) gives

$$
D_{x}\left(g_{1}\right) D_{x}(f)=\left|E_{x}\left(g_{1} f\right)-E_{x}\left(g_{1}\right) E_{x}(f)\right| .
$$

Hence, observing that $D_{x}(f)$ is bounded we obtain from (2.7).

$$
D_{x}(g) D_{x}(f)-\left|E_{x}\left(g_{1} f\right)-E_{x}\left(g_{1}\right) E_{x}(f)\right| \rightarrow 0, x \rightarrow \infty .
$$

Therefore

$$
D_{x}(g) D_{x}(f)-\left|E_{x}(g f)-E_{x}(g) E_{x}(f)\right| \rightarrow 0, x \rightarrow \infty,
$$

and the assertion follows.
The Besicovitch functions. Consider now the case $\mathrm{M}=\mathrm{N}$. An arithmetic function h is called almost periodic if for each $\varepsilon>0$ there exists a periodic function h_{ε} such that

$$
\overline{\lim }_{N \rightarrow \infty} \frac{1}{N} \sum_{n \leq N}\left|h(n)-h_{\varepsilon}(n)\right|<\varepsilon
$$

(These functions are also called Besicovitch functions). The class of all such arithmetic functions will be denoted by B^{1}. For a survey of the properties of B^{1} we refer to [8] or [2]. For each $h \in B^{1}$ there exist the limits

$$
\lim _{N \rightarrow \infty} E_{N}(h):=E(h)
$$

and

$$
\lim _{N \rightarrow \infty} D_{N}^{2}(h):=D^{2}(h) .
$$

If $f, g \in B^{1}$ are bounded then also $f+g, f \cdot g \in B^{1}$.
Thus, if $D^{2}(f), D^{2}(g)>0$ then the limits $\lim _{x \rightarrow \infty} A_{x}, \lim _{x \rightarrow \infty} B_{x}$ and $\lim _{x \rightarrow \infty} \rho_{x}$ always exist.

The relation $h \sim L$ for an arithmetic function h and some constant L, used in the proof of Theorem 1, is defined in [4] as the statistical convergence of h to L. Šalát [11] gives the following characterisation of the statistical convergence:

Theorem 2. Let h be an arithmetic function, and L a constant. Then $h \sim L$ if and only if there exists a subset $K \subset \mathbf{N}$ such that the asymptotic density of K is 1 and $\lim _{n \rightarrow \infty, n \in K} h(n)=L$.

Denote by B^{2} the set of all Besicovitch functions of h, such that h is bonded and $D^{2}(h)>0$. Thus for two functions $f, g \in B^{2}$ there exists the limit $\rho(f, g):=$ $\lim _{n \rightarrow \infty} \rho_{N}(f, g)$. Theorem 1 and Theorem 2 immediately imply:

Theorem 3. Let $f, g \in B^{2}$. Then $\rho(f, g)=1$ if and only if there exist some constants A, B and a set $K \subset \mathbf{N}$ of asymptotic density 1 such that

$$
\lim _{n \rightarrow \infty, n \in K} f(n)-A g(n)-B=0
$$

Let us conclude this note by the remarking that the statistical convergence of the real valued function on \mathbf{M} can be characterized analogously as in the paper [11], using the same ideas. Let h be a real valued function on \mathbf{M} and L a real constant. Consider $K \subset \mathbf{M}$, then we write

$$
\lim _{a \in K} h(a)=L \Leftrightarrow \forall \varepsilon>0 \exists x_{0} \forall a \in K:|a|>x_{0} \Longrightarrow|h(a)-L|<\varepsilon .
$$

Theorem 4. Let h be a real valued function on \mathbf{M} and L a constant. Then $h \sim L$ if and only if there exists a set $K \subset \mathbf{M}$ such that $\gamma(K)=1$ and $\lim _{a \in K} h(a)=L$.

Sketch of proof. Put $K_{n}=\left\{a \in \mathbf{M}:|h(a)-L|<\frac{1}{n}\right\}$ for $n \in \mathbf{N}$. Clearly it holds that $\gamma\left(K_{n}\right)=1, n=1,2, \ldots$. Thus it can be selected such an increasing sequence of positive integers $\left\{x_{n}\right\}$ that for $x>x_{n}$ we have

$$
\gamma_{x}\left(K_{n}\right)>\left(1-\frac{1}{n}\right), \quad n=1,2, \ldots
$$

Put

$$
K=\bigcup_{n=1}^{\infty} K_{n} \cap\left(M\left(x_{n+1}\right) \backslash M\left(x_{n}\right)\right)
$$

Using the fact that the sequence of sets K_{n} is non increasing it can be proved that $\gamma(K)=1$, and $\lim _{a \in K} h(a)=L$, by a similary way as in [11].

References

[1] Billingsley, P., Measure and Probability, John Willey.
[2] Besicovitch, A. S., Almost periodic functions, Dover, New York, 1954.
[3] Grabner, P. J. and Tichy, R. F., Remarks on statistical independence of sequences, Math. Slovaca, 44, No. 1, (1994), 91-94.
[4] Fast, H., Sur la convergence statistique, Coll. Math., 2 (1951), 241-244.
[5] Grabner, P. J., Strauch, O. and Tichy, R. F., L^{p}-discrepancy and statistical independence of sequences, Czech. Math. Journal, 49, (124), (1999), 97-110.
[6] Knopfmacher, J., Abstract analytic number theory, Dover Publications, INC, New York, 1975.
[7] Novoselov, E. V., Topological theory of divisibility, (Russian), Uchen. Zap. Elabuz. PI 8 (1960), 3-23.
[8] Postnikov, R. G., Introduction to analytic number theory, Nauka, Moscow, 1971, (in Russian), english translation Amer. Math. Soc., Providence, R. I., 1988.
[9] Rauzy, G., Propriétés statistiques de suites arithmetiques, Le Mathematicien, 15, Collection SVP, Presses Universitaires de France, Paris, 1976.
[10] RÉnyi, A., Wahrscheinlichkeitstheorie, Teubner Verlag, VEB, Berlin.
[11] Šalát, T., On statistically convergent sequences of real numbers, Math. Slovaca, 30, (1980), No. 2, 139-150.
[12] Waerden, V. D. B. L., Mathematische Statistik, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957.

Milan Păstéka

Slovac Academy of Sciences
Stefanikova 49, SK-814 73 Bratislava
Slovakia
e-mail: pasteka@mat.savba.sk

Robert F. Tichy

Institut für Mathematik TU Graz
Steyrergasse 30, A-801 Graz
Austria
e-mail: tichy@tugraz.at

