ON ADDITIVE FUNCTIONS SATISFYING CONGRUENCE PROPERTIES

Bui Minh Phong (Budapest, Hungary)

Dedicated to the memory of Professor Péter Kiss

Abstract

In this paper, we consider those integer-valued additive functions f_{1} and f_{2} for which the congruence $f_{1}(a n+b) \equiv f_{2}(c n)+d(\bmod n)$ is satisfied for all positive integers n and for some fixed integers $a \geq 1, b \geq 1, c \geq 1$ and d. Our result improve some earlier results of K. Kovács, I. Joó, I. Joó \& B. M. Phong and P. V. Chung concerning the above congruence.

1. Introduction

The problem concerning the characterization of some arithmetical functions by congruence properties initiated by Subbarao [10] was studied later by several authors. M. V. Subbarao proved that if an integer-valued multiplicative function $g(n)$ satisfies the congruence

$$
g(n+m) \equiv g(m) \quad(\bmod n)
$$

for all positive integers n and m, then there is a non-negative integer α such that

$$
g(n)=n^{\alpha}
$$

holds for all positive integers n. Recently some authors generalized and improved this result in a variety of ways. A. Iványi [3] obtained that the same result holds when m is a fixed positive integer and g is an integer-valued completely multiplicative function. For further results and generalizations of this problem we refer to the works of B. M. Phong [7]-[8], B. M. Phong \& J. Fehér [9], I. Joó [4] and I. Joó \& B. M. Phong [5]. For example, it follows from [8] that if an integer-valued multiplicative function $g(n)$ satisfies the congruence

$$
g(A n+B) \equiv C \quad(\bmod n)
$$

for all positive integers n and for some fixed integers $A \geq 1, B \geq 1$ and $C \neq 0$ with $(A, B)=1$, then there are a non-negative integer α and a real-valued Dirichlet character $\chi_{A} \quad(\bmod A)$ such that

$$
g(n)=\chi_{A}(n) n^{\alpha}
$$

holds for all positive integers n which are prime to A.
In the following let \mathcal{A} and \mathcal{A}^{*} denote the set of all integer-valued additive and completely additive functions, respectively. Let $I N$ denote the set of all positive integers. A similar problem concerning the characterization of a zero-function as an integer-valued additive function satisfying a congruence property have been studied by K. Kovács [6], P. V. Chung [1]-[2], I. Joó [4] and I. Joó \& B. M. Phong [5]. It was proved by K. Kovács [6] that if $f \in \mathcal{A}^{*}$ satisfies the congruence

$$
f(A n+B) \equiv C \quad(\bmod n)
$$

for some integers $A \geq 1, B \geq 1, C$ and for all $n \in I N$, then

$$
f(n)=0
$$

holds for all $n \in I N$ which are prime to A. This result was extended in [1], [2], [4] and [5] for integer-valued additive functions f. It follows from the results of [2] and [4] that for integers $A \geq 1, B \geq 1, C$ and functions $f_{1} \in \mathcal{A}, f_{2} \in \mathcal{A}^{*}$ the congruence

$$
f_{1}(A n+B) \equiv f_{2}(n)+C \quad(\bmod n) \quad(\forall n \in I N)
$$

implies that $f_{2}(n)=0$ for all $n \in I N$ and $f_{1}(n)=0$ for all $n \in I N$ which are prime to A.

Our purpose in this paper is to improve the above results by showing the following

Theorem 1. Assume that $a \geq 1, b \geq 1, c \geq 1$ and d are fixed integers and the functions f_{1}, f_{2} are additive. Then the congruence

$$
\begin{equation*}
f_{1}(a n+b) \equiv f_{2}(c n)+d \quad(\bmod n) \tag{1}
\end{equation*}
$$

is satisfied for all $n \in I N$ if and only if the equation

$$
\begin{equation*}
f_{1}(a n+b)=f_{2}(c n)+d \tag{2}
\end{equation*}
$$

holds for all $n \in I N$.
Theorem 2. Assume that $a \geq 1, b \geq 1, c \geq 1$ and d are fixed integers. Let $a_{1}=\frac{a}{(a, b)}, b_{1}=\frac{b}{(a, b)}$ and

$$
\mu:= \begin{cases}1 & \text { if } 2 \mid a_{1} b_{1} \\ 2 & \text { if } 2 \not \backslash a_{1} b_{1} .\end{cases}
$$

If the additive functions f_{1} and f_{2} satisfy the equation (2) for all $n \in I N$, then

$$
f_{1}(n)=0 \quad \text { for all } \quad n \in I N,\left(n, \mu a b_{1}\right)=1
$$

and

$$
f_{2}(n)=0 \quad \text { for all } \quad n \in I N,\left(n, \mu c b_{1}\right)=1
$$

2. Lemmas

Lemma 1. Assume that $f^{*} \in \mathcal{A}^{*}$ satisfies the congruence

$$
f^{*}(A n+B) \equiv f^{*}(n)+D \quad(\bmod n)
$$

for some fixed integers $A \geq 1, B \geq 1$ and D. Then $f^{*}(n)=0$ holds for all $n \in I N$.

Proof. Lemma 1 follows from Theorem 2 of [4].
Lemma 2. Assume that $f \in \mathcal{A}$ satisfies the congruence

$$
f(A n+B) \equiv D \quad(\bmod n)
$$

for some fixed integers $A \geq 1, B \geq 1$ and D. Then $f(n)=0$ holds for all $n \in I N$ which are prime to A.

Proof. This is the result of [1].
Lemma 3. Assume that $f_{1}, f \in \mathcal{A}$ satisfy the congruence

$$
\begin{equation*}
f_{1}(A n+1) \equiv f(C n)+D \quad(\bmod n) \tag{3}
\end{equation*}
$$

holds for all $n \in I N$ with some integers $A \geq 1, C \geq 1$ and D. Then

$$
f(n)=f\left[\left(n, 6 C^{2}\right)\right] \quad \text { for all } \quad n \in I N
$$

and $f_{1}(m)=0$ holds for all $m \in I N$, which are prime to $6 A C$. Here (x, y) denotes the greatest common divisor of the integers x and y.

Proof. In the following we shall denote by n^{*} the product of all distinct prime divisors of positive integer n.

For each positive integer M let $P=P(M)$ be a positive integer for which

$$
\begin{equation*}
\left(M^{2}-1\right)^{*} \mid A C P \tag{4}
\end{equation*}
$$

It is obvious from (4) that

$$
\begin{gathered}
(A C M(M+1) P n+1, A C(M+1) P n+1)=1, \\
\left(C^{2}(M+1)^{2} P n, A C M P n+1\right)=1
\end{gathered}
$$

and
$(A C M(M+1) P n+1)(A C(M+1) P n+1)=A C(M+1)^{2} P n[A C M P n+1]+1$
hold for all $n \in I N$. Using these relations and appealing to the additive nature of the functions f_{1} and f, we can deduce from (3) that

$$
\begin{equation*}
f(A C M P n+1) \tag{5}
\end{equation*}
$$

$\equiv-f\left(C^{2}(M+1)^{2} P n\right)+f\left(C^{2} M(M+1) P n\right)+f\left(C^{2}(M+1) P n\right)+D(\bmod n)$
is satisfied for all $n, M \in I N$, where $P=P(M)$ satisfies the condition (4).
Let $M=2, P(2)=3$ and $M=3, P(3)=2$. In these cases (4) is true and so it follows from (5) that

$$
\begin{equation*}
f(6 A C n+1) \equiv-f\left(27 C^{2} n\right)+f\left(18 C^{2} n\right)+f\left(9 C^{2} n\right)+D \quad(\bmod n) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
f(6 A C n+1) \equiv-f\left(32 C^{2} n\right)+f\left(24 C^{2} n\right)+f\left(8 C^{2} n\right)+D \quad(\bmod n) \tag{7}
\end{equation*}
$$

are satisfied for all $n \in I N$. Let N and n be positive integers with the condition

$$
\begin{equation*}
(N(N+1), 6 A C n+1)=1 \tag{8}
\end{equation*}
$$

By using the relation

$$
(6 A C n+1)\left(6^{2} A^{2} C^{2} N n^{2}+1\right)=6 A C n[6 A C N n(6 A C n+1)+1]+1
$$

and that

$$
\begin{gathered}
\left(6 A C n+1,6^{2} A^{2} C^{2} N n^{2}+1\right)=(6 A C n+1, N+1)=1 \\
(6 A C N n, 6 A C n+1)=(6 A C n+1, N)=1
\end{gathered}
$$

it follows from (6) and (7) that
(9) $\quad-f\left(162 A C^{3} N n^{2}\right)+f\left(108 A C^{3} N n^{2}\right)+f\left(54 A C^{3} N n^{2}\right) \equiv-f\left(27 C^{2} N n\right)$
$+f\left(18 C^{2} N n\right)+f\left(9 C^{2} N n\right)-f\left(27 C^{2} n\right)+f\left(18 C^{2} n\right)+f\left(9 C^{2} n\right)+D(\bmod n)$ and

$$
\begin{equation*}
-f\left(192 A C^{3} N n^{2}\right)+f\left(144 A C^{3} N n^{2}\right)+f\left(48 A C^{3} N n^{2}\right) \equiv-f\left(32 C^{2} N n\right) \tag{10}
\end{equation*}
$$

$+f\left(24 C^{2} N n\right)+f\left(8 C^{2} N n\right)-f\left(32 C^{2} n\right)+f\left(24 C^{2} n\right)+f\left(8 C^{2} n\right)+D(\bmod n)$ hold for all $n, N \in I N$ satisfying (8).

Let Q be a fixed positive integer. First we apply (9) when $N=1, n=Q m$, (m, Q) $=1$ and $m \rightarrow \infty$. It is obvious that (8) holds, and so by (9) we have

$$
\begin{equation*}
f\left(Q^{2}\right)=2 f(Q) \quad \text { for } \quad Q \in I N,(Q, 6 A C)=1 \tag{11}
\end{equation*}
$$

Now let $N=Q$ and $n=Q^{k}(6 C Q m+1)$ with $k, m \in I N$. It is obvious that (8) holds for infinity many integers m, because $\left(36 A C^{2} Q^{k+1}, 6 A C Q^{k}+1\right)=1$. These with (9) show that

$$
\begin{equation*}
f\left(Q^{2 k+1}\right)=f\left(Q^{k}\right)+f\left(Q^{k+1}\right) \quad \text { for all } \quad Q \in I N,(Q, 6 A C)=1 \tag{12}
\end{equation*}
$$

From (11) and (12) we obtain that

$$
\begin{equation*}
f\left(Q^{k}\right)=k f(Q) \quad \text { for all } \quad Q \in I N,(Q, 6 A C)=1 \tag{13}
\end{equation*}
$$

Thus, by using the additivity of f it follows from (8) and (13) that (9) and (10) hold for all $N, n \in I N$, and they with $n=Q m,(m, 6 A C N Q)=1, m \rightarrow \infty$ imply that

$$
\begin{gathered}
-f\left(162 A C^{3} N Q^{2}\right)+f\left(108 A C^{3} N Q^{2}\right)+f\left(54 A C^{3} N Q^{2}\right)=-f\left(27 C^{2} N Q\right) \\
+f\left(18 C^{2} N Q\right)+f\left(9 C^{2} N Q\right)-f\left(27 C^{2} Q\right)+f\left(18 C^{2} Q\right)+f\left(9 C^{2} Q\right) D
\end{gathered}
$$

and

$$
\begin{aligned}
& -f\left(192 A C^{3} N Q^{2}\right)+f\left(144 A C^{3} N Q^{2}\right)+f\left(48 A C^{3} N Q^{2}\right)=-f\left(32 C^{2} N Q\right) \\
& +f\left(24 C^{2} N Q\right)+f\left(8 C^{2} N Q\right)-f\left(32 C^{2} Q\right)+f\left(24 C^{2} Q\right)+f\left(8 C^{2} Q\right)+D
\end{aligned}
$$

hold for all $N, Q \in I N$. Consequently
$-f\left(27 C^{2} N Q\right)+f\left(18 C^{2} N Q\right)+f\left(9 C^{2} N Q\right)-f\left(27 C^{2} Q\right)+f\left(18 C^{2} Q\right)+f\left(9 C^{2} Q\right)$
$-f\left(27 C^{2} N Q^{2}\right)+f\left(18 C^{2} N Q^{2}\right)+f\left(9 C^{2} N Q^{2}\right)-f\left(27 C^{2}\right)+f\left(18 C^{2}\right)+f\left(9 C^{2}\right)$ and
$-f\left(32 C^{2} N Q\right)+f\left(24 C^{2} N Q\right)+f\left(8 C^{2} N Q\right)-f\left(32 C^{2} Q\right)+f\left(24 C^{2} Q\right)+f\left(8 C^{2} Q\right)$
$=-f\left(32 C^{2} N Q^{2}\right)+f\left(24 C^{2} N Q^{2}\right)+f\left(8 C^{2} N Q^{2}\right)-f\left(32 C^{2}\right)+f\left(24 C^{2}\right)+f\left(8 C^{2}\right)$
are satisfied for all $N, Q \in I N$.
For each prime p let $e=e(p)$ be a non-negative integer for which $p^{e} \| C^{2}$.

First we consider the case when $(p, 6)=1$. By applying (14) with $Q=p$, $N=p^{l}(l \geq 0)$, we have

$$
f\left(p^{l+e(p)+2}\right)-f\left(p^{l+e(p)+1}\right)=f\left(p^{e(p)+1}\right)-f\left(p^{e(p)}\right) \quad \text { for all } \quad l \geq 0
$$

which shows that for all integers $\beta \geq e(p)$

$$
\begin{equation*}
f\left(p^{\beta+1}\right)-f\left(p^{\beta}\right)=f\left(p^{e(p)+1}\right)-f\left(p^{e(p)}\right) \tag{16}
\end{equation*}
$$

Now we consider the case $p=2$. Applying (14) with $Q=2$ and $n=2^{l},(l \geq 0)$ one can check as above that

$$
\begin{equation*}
f\left(2^{\beta+1}\right)-f\left(2^{\beta}\right)=f\left(2^{e(2)+2}\right)-f\left(2^{e(2)+1}\right) \tag{17}
\end{equation*}
$$

Finally, we consider the case $p=3$. Applying (15) with $Q=3$ and $N=3^{l}, l \geq 0$ we also get

$$
\begin{equation*}
f\left(3^{\beta+1}\right)-f\left(3^{\beta}\right)=f\left(3^{e(3)+2}\right)-f\left(3^{e(3)+1}\right) \tag{18}
\end{equation*}
$$

Now we write

$$
f(n)=f^{*}(n)+F(n)
$$

where f^{*} is a completely additive function defined as follows:

$$
f^{*}(p):=\left\{\begin{array}{ll}
f\left(p^{e(p)+1}\right)-f\left(p^{e(p)}\right) & \text { for }(p, 6)=1 \tag{19}\\
f\left(p^{e(p)+2}\right)-f\left(p^{e(p)+1}\right) & \text { for } p=2 \text { or } p=3
\end{array} .\right.
$$

Then, from (16)-(19) it follows that

$$
F\left(p^{k}\right)=F\left[\left(p^{k}, 6 C^{2}\right)\right] \quad \text { for } \quad(k=0,1, \ldots)
$$

Thus, we have proved that

$$
\begin{equation*}
F(n)=F\left[\left(n, 6 C^{2}\right)\right] \tag{20}
\end{equation*}
$$

is satisfied for all $n \in I N$.
We shall prove that $f^{*}(n)=0$ for all $n \in I N$ and $f_{1}(m)=0$ for all $m \in I N$ which are prime to $6 A C$.

We note that, by considering $n=2 m$ and taking into account (6), we have

$$
f(12 A C m+1) \equiv-f\left(54 C^{2} m\right)+f\left(36 C^{2} m\right)+f\left(18 C^{2} m\right)+D \quad(\bmod m)
$$

Since $f=f^{*}+F$, from the last relation and (20) we get

$$
f^{*}(12 A C m+1) \equiv f^{*}(m)+\left[f^{*}\left(12 C^{2}\right)+F\left(6 C^{2}\right)+D\right] \quad(\bmod m)
$$

which with Lemma 1 shows that $f^{*}(n)=0$ for all $n \in I N$. This shows that $f \equiv F$, i.e.

$$
f(n)=f\left[\left(n, 6 C^{2}\right)\right]
$$

holds for all $n \in I N$. Now, by applying (3) with $n=6 C m$ and using the last relation and Lemma 2, we have that $f_{1}(n)=0$ holds for all $n \in I N$ which are prime to $6 A C$.

The proof of Lemma 3 is completed.

3. Proof of Theorem 1

It is obvious that (1) follows from (2). We shall prove that if (1) is true, then (2) holds.

Assume that the functions f_{1} and $f_{2} \in \mathcal{A}$ satisfy the congruence (1) for some integers $a \geq 1, b \geq 1, c \geq 1$ and d. It is obvious that (1) implies the fulfilment of

$$
f_{1}(a b n+1) \equiv f_{2}\left(b^{2} c n\right)+d-f_{1}(b) \quad(\bmod n)
$$

for all $n \in I N$. By Lemma 3,

$$
\begin{equation*}
f_{2}(n)=f_{2}\left[\left(n, 6 b^{4} c^{2}\right)\right] \quad \text { for all } \quad n \in I N \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{1}(n)=0 \tag{22}
\end{equation*}
$$

for all $n \in I N$ which are prime to $6 a b c$.
We shall prove that

$$
\begin{equation*}
f_{1}(a n+b)=f_{2}(c n)+d \tag{23}
\end{equation*}
$$

is true for all $n \in I N$.
Let K be a positive integer. By (21) and (22), we have

$$
\begin{gathered}
f_{1}\left(6 a b^{4} c t+1\right)=0, \\
f_{2}\left[6 b^{4} c^{2}(a K+b) t+c K\right]=f_{2}(c K)
\end{gathered}
$$

hold for all positive integers t, consequently

$$
\begin{aligned}
& f_{1}(a K+b)-f_{2}(c K)-d=f_{1}(a K+b)+f_{1}\left(6 a b^{4} c t+1\right)-f_{2}(c K)-d \\
& =f_{1}\left[a\left(6 b^{4} c(a K+b) t+K\right)+b\right]-f_{2}\left[6 b^{4} c^{2}(a K+b) t+c K\right]-d
\end{aligned}
$$

holds for every positive integer t. Thus, by applying (1) with $n=6 b^{4} c(a K+b) t+K$, the last relation proves that (23) holds for $n=K$.

This completes the proof of Theorem 1.

4. Proof of Theorem 2

As we have shown in the proof of Theorem 1 , if the functions $f_{1}, f_{2} \in \mathcal{A}$ satisfy (2), then (21) and (22) imply

$$
\begin{equation*}
f_{1}(m)=0 \quad \text { for all } \quad m \in I N,(m, 6 a b c)=1 \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2}(n)=0 \quad \text { for all } \quad n \in I N,(m, 6 b c)=1 \tag{25}
\end{equation*}
$$

Let $D=(a, b), a_{1}=\frac{a}{D}, b_{1}=\frac{b}{D}$. It is clear that for each positive integer $M,\left(M, a_{1}\right)=1$ there are $m_{0}, n_{0} \in I N$ such that

$$
\begin{equation*}
M m_{0}=a_{1} n_{0}+b_{1}, \quad\left(m_{0}, a_{1}\right)=1 \quad \text { and } \quad\left(M, n_{0}\right)=\left(M, b_{1}\right) \tag{26}
\end{equation*}
$$

Let

$$
u(M):= \begin{cases}1, & \text { if } 2 \left\lvert\, a_{1} \frac{M}{\left(M, b_{1}\right)} \frac{b_{1}}{\left(M, b_{1}\right)}\right., \tag{27}\\ 2, & \text { if } 2 \nmid a_{1} \frac{M}{\left(M, b_{1}\right)} \frac{b_{1}}{\left(M, b_{1}\right)} .\end{cases}
$$

By applying the Chinese Remainder Theorem and using (26)-(27), we can choose a positive integer t_{1} such that $m_{1}=a_{1} t_{1}+m_{0}, n_{1}=M t_{1}+n_{0}$ satisfy the following conditions:

$$
\begin{gathered}
M m_{1}=a_{1} n_{1}+b_{1} \\
\frac{n_{1}}{u(M)\left(M, b_{1}\right)} \text { is an integer, }
\end{gathered}
$$

and

$$
\left(m_{1}, 6 a b c\right)=\left(\frac{n_{1}}{u(M)\left(M, b_{1}\right)}, 6 b c\right)=1
$$

Hence, we infer from (2) and (24)-(25) that

$$
f_{1}(D M)=f_{1}\left(D M m_{1}\right)=f_{1}\left(a n_{1}+b\right)=f_{2}\left(c n_{1}\right)+d=f_{2}\left[c u(M)\left(M, b_{1}\right)\right]+d
$$

consequently

$$
\begin{equation*}
f_{1}[D M]=f_{2}\left[c u(M)\left(M, b_{1}\right)\right]+d \tag{28}
\end{equation*}
$$

hold for all $M \in I N, \quad\left(M, a_{1}\right)=1$. This implies that

$$
\begin{equation*}
f_{1}(n)=0 \quad \text { for all } \quad n \in I N, \quad\left(n, \mu a b_{1}\right)=1 \tag{29}
\end{equation*}
$$

where $\mu \in\{1,2\}$ such that $2 \mid \mu a_{1} b_{1}$.
Now we prove that

$$
\begin{equation*}
f_{2}(n)=0 \quad \text { for all } \quad n \in I N, \quad\left(n, \mu c b_{1}\right)=1 \tag{30}
\end{equation*}
$$

For each positive integer n, let $M(n):=a_{1} n+b_{1}$ and $U(n):=u\left(a_{1} n+b_{1}\right)$. Since $\left(M(n), b_{1}\right)=\left(n, b_{1}\right)$ and

$$
a_{1} \frac{M(n)}{\left(M(n), b_{1}\right)} \frac{b_{1}}{\left(M(n), b_{1}\right)} \equiv a_{1} \frac{b_{1}}{\left(n, b_{1}\right)}\left[\frac{n}{\left(n, b_{1}\right)}+1\right] \quad(\bmod 2)
$$

we have

$$
U(n):= \begin{cases}1, & \text { if } 2 \left\lvert\, a_{1} \frac{b_{1}}{\left(n, b_{1}\right)}\left[\frac{n}{\left(n, b_{1}\right)}+1\right]\right. \\ 2, & \text { if } 2 \nless a_{1} \frac{b_{1}}{\left(n, b_{1}\right)}\left[\frac{n}{\left(n, b_{1}\right)}+1\right]\end{cases}
$$

Hence, (2) and (28) show that

$$
f_{2}(c n)=f_{1}(a n+b)-d=f_{1}[D M(n)]-d=f_{2}\left[c U(n)\left(n, b_{1}\right)\right]
$$

is satisfied for all $n \in I N$, which implies (29). Thus, (29) is proved.
By (29) and (30), the proof of Theorem 2 is completed.

References

[1] Chung, P. V., Note on additive functions satisfying some congruence properties I.-II., Studia Math. Hungar., 28 (1993), 359-362, 427-429.
[2] Chung, P. V., Note on additive functions satisfying some congruence properties III., Ann. Univ. Sci. Budapest. Eötvös, Sect. Math., 37 (1994), 263-266.
[3] Iványi, A., On multiplicative functions with congruence property, Ann. Univ. Sci. Budapest. Eötvös, Sect. Math., 5 (1972), 151-155.
[4] Joó, I., Arithmetical functions satisfying a congruence property, Acta Math. Hungar., 63 (1994), 1-21.
[5] Joó, I. and Phong, B. M., Arithmetical functions with congruence properties, Ann. Univ. Sci. Budapest. Eötvös, Sect. Math., 35 (1992), 151-155.
[6] Kovács, K., On additive functions satisfying some congruence properties, Periodica Math. Hungar., 23 (3) (1991), 227-231.
[7] Phong, B. M., Multiplicative functions satisfying a congruence property, Studia Sci. Math. Hungar., 26 (1991), 123-128.
[8] Phong, B. M., Multiplicative functions satisfying a congruence property V., Acta Math. Hungar., 62 (1-2)(1993), 81-87.
[9] Phong, B. M. and Fehér, J., Note on multiplicative functions satisfying congruence property, Ann. Univ. Sci. Budapest. Eötvös, Sec. Math., 33 (1990), 261-265.
[10] Subbarao, M. V., Arithmetic functions satisfying congruence property, Canad. Math. Bull., 9 (1966), 143-146.

Bui Minh Phong

Eötvös Loránd University
Department of Computer Algebra
Pázmány Péter sét. I/C
H-1117 Budapest
Hungary
e-mail: bui@compalg.inf.elte.hu

