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Abstract. In this paper, we consider those integer-valued additive functions f1 and f2 for

which the congruence f1(an+b)≡f2(cn)+d (mod n) is satisfied for all positive integers n and for

some fixed integers a≥1, b≥1, c≥1 and d. Our result improve some earlier results of K. Kovács, I.

Joó, I. Joó & B. M. Phong and P. V. Chung concerning the above congruence.

1. Introduction

The problem concerning the characterization of some arithmetical functions
by congruence properties initiated by Subbarao [10] was studied later by several
authors. M. V. Subbarao proved that if an integer-valued multiplicative function
g(n) satisfies the congruence

g(n + m) ≡ g(m) (mod n)

for all positive integers n and m, then there is a non-negative integer α such that

g(n) = nα

holds for all positive integers n. Recently some authors generalized and improved
this result in a variety of ways. A. Iványi [3] obtained that the same result
holds when m is a fixed positive integer and g is an integer-valued completely
multiplicative function. For further results and generalizations of this problem we
refer to the works of B. M. Phong [7]–[8], B. M. Phong & J. Fehér [9], I. Joó [4] and
I. Joó & B. M. Phong [5]. For example, it follows from [8] that if an integer-valued
multiplicative function g(n) satisfies the congruence

g(An + B) ≡ C (mod n)

for all positive integers n and for some fixed integers A ≥ 1, B ≥ 1 and C 6= 0 with
(A, B) = 1, then there are a non-negative integer α and a real-valued Dirichlet
character χA (mod A) such that

g(n) = χA(n)nα

It was financially supported by OTKA T 043657



124 Bui Minh Phong

holds for all positive integers n which are prime to A.

In the following let A and A∗ denote the set of all integer-valued additive and
completely additive functions, respectively. Let IN denote the set of all positive
integers. A similar problem concerning the characterization of a zero-function as
an integer-valued additive function satisfying a congruence property have been
studied by K. Kovács [6], P. V. Chung [1]–[2], I. Joó [4] and I. Joó & B. M. Phong
[5]. It was proved by K. Kovács [6] that if f ∈ A∗ satisfies the congruence

f(An + B) ≡ C (mod n)

for some integers A ≥ 1, B ≥ 1, C and for all n ∈ IN , then

f(n) = 0

holds for all n ∈ IN which are prime to A. This result was extended in [1], [2], [4]
and [5] for integer-valued additive functions f . It follows from the results of [2] and
[4] that for integers A ≥ 1, B ≥ 1, C and functions f1 ∈ A, f2 ∈ A∗ the congruence

f1(An + B) ≡ f2(n) + C (mod n) (∀n ∈ IN)

implies that f2(n) = 0 for all n ∈ IN and f1(n) = 0 for all n ∈ IN which are prime
to A.

Our purpose in this paper is to improve the above results by showing the
following

Theorem 1. Assume that a ≥ 1, b ≥ 1, c ≥ 1 and d are fixed integers and the
functions f1, f2 are additive. Then the congruence

(1) f1(an + b) ≡ f2(cn) + d (mod n)

is satisfied for all n ∈ IN if and only if the equation

(2) f1(an + b) = f2(cn) + d

holds for all n ∈ IN .

Theorem 2. Assume that a ≥ 1, b ≥ 1, c ≥ 1 and d are fixed integers. Let
a1 = a

(a, b) , b1 = b
(a, b) and

µ :=

{

1 if 2 | a1b1

2 if 2 6 | a1b1.

If the additive functions f1 and f2 satisfy the equation (2) for all n ∈ IN , then

f1 (n) = 0 for all n ∈ IN, (n, µab1) = 1
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and
f2(n) = 0 for all n ∈ IN, (n, µcb1) = 1.

2. Lemmas

Lemma 1. Assume that f∗ ∈ A∗ satisfies the congruence

f∗(An + B) ≡ f∗(n) + D (mod n)

for some fixed integers A ≥ 1, B ≥ 1 and D. Then f∗(n) = 0 holds for all n ∈ IN .

Proof. Lemma 1 follows from Theorem 2 of [4].

Lemma 2. Assume that f ∈ A satisfies the congruence

f(An + B) ≡ D (mod n)

for some fixed integers A ≥ 1, B ≥ 1 and D. Then f(n) = 0 holds for all n ∈ IN

which are prime to A.

Proof. This is the result of [1].

Lemma 3. Assume that f1, f ∈ A satisfy the congruence

(3) f1(An + 1) ≡ f(Cn) + D (mod n)

holds for all n ∈ IN with some integers A ≥ 1, C ≥ 1 and D. Then

f(n) = f [(n, 6C2)] for all n ∈ IN

and f1(m) = 0 holds for all m ∈ IN , which are prime to 6AC. Here (x, y) denotes
the greatest common divisor of the integers x and y.

Proof. In the following we shall denote by n∗ the product of all distinct prime
divisors of positive integer n.

For each positive integer M let P = P (M) be a positive integer for which

(4) (M2 − 1)∗|ACP.

It is obvious from (4) that

(ACM(M + 1)Pn + 1, AC(M + 1)Pn + 1) = 1,

(

C2(M + 1)2Pn, ACMPn + 1
)

= 1
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and

(ACM(M + 1)Pn + 1) (AC(M + 1)Pn + 1) = AC(M + 1)2Pn[ACMPn + 1] + 1

hold for all n ∈ IN . Using these relations and appealing to the additive nature of
the functions f1 and f , we can deduce from (3) that

(5) f(ACMPn + 1)

≡ −f
(

C2(M + 1)2Pn
)

+ f
(

C2M(M + 1)Pn
)

+ f
(

C2(M + 1)Pn
)

+ D (mod n)

is satisfied for all n, M ∈ IN , where P = P (M) satisfies the condition (4).

Let M = 2, P (2) = 3 and M = 3, P (3) = 2. In these cases (4) is true and so
it follows from (5) that

(6) f(6ACn + 1) ≡ −f(27C2n) + f(18C2n) + f(9C2n) + D (mod n)

and

(7) f(6ACn + 1) ≡ −f(32C2n) + f(24C2n) + f(8C2n) + D (mod n)

are satisfied for all n ∈ IN . Let N and n be positive integers with the condition

(8) (N(N + 1), 6ACn + 1) = 1.

By using the relation

(6ACn + 1)(62A2C2Nn2 + 1) = 6ACn [6ACNn(6ACn + 1) + 1] + 1

and that

(

6ACn + 1, 62A2C2Nn2 + 1
)

= (6ACn + 1, N + 1) = 1,

(6ACNn, 6ACn + 1) = (6ACn + 1, N) = 1,

it follows from (6) and (7) that

(9) −f
(

162AC3Nn2
)

+ f
(

108AC3Nn2
)

+ f
(

54AC3Nn2
)

≡ −f
(

27C2Nn
)

+f
(

18C2Nn
)

+ f
(

9C2Nn
)

− f
(

27C2n
)

+ f
(

18C2n
)

+ f
(

9C2n
)

+ D (mod n)

and

(10) −f
(

192AC3Nn2
)

+ f
(

144AC3Nn2
)

+ f
(

48AC3Nn2
)

≡ −f
(

32C2Nn
)

+f
(

24C2Nn
)

+ f
(

8C2Nn
)

− f
(

32C2n
)

+ f
(

24C2n
)

+ f
(

8C2n
)

+ D (mod n)

hold for all n, N ∈ IN satisfying (8).
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Let Q be a fixed positive integer. First we apply (9) when N = 1, n = Qm,
(m, Q) = 1 and m → ∞. It is obvious that (8) holds, and so by (9) we have

(11) f
(

Q2
)

= 2f(Q) for Q ∈ IN, (Q, 6AC) = 1.

Now let N = Q and n = Qk(6CQm + 1) with k, m ∈ IN . It is obvious that (8)

holds for infinity many integers m, because
(

36AC2Qk+1, 6ACQk + 1
)

= 1. These
with (9) show that

(12) f
(

Q2k+1
)

= f
(

Qk
)

+ f
(

Qk+1
)

for all Q ∈ IN, (Q, 6AC) = 1.

From (11) and (12) we obtain that

(13) f
(

Qk
)

= kf(Q) for all Q ∈ IN, (Q, 6AC) = 1.

Thus, by using the additivity of f it follows from (8) and (13) that (9) and (10)
hold for all N , n ∈ IN , and they with n = Qm, (m, 6ACNQ) = 1, m → ∞ imply
that

−f
(

162AC3NQ2
)

+ f
(

108AC3NQ2
)

+ f
(

54AC3NQ2
)

= −f
(

27C2NQ
)

+f
(

18C2NQ
)

+ f
(

9C2NQ
)

− f
(

27C2Q
)

+ f
(

18C2Q
)

+ f
(

9C2Q
)

D

and

−f
(

192AC3NQ2
)

+ f
(

144AC3NQ2
)

+ f
(

48AC3NQ2
)

= −f
(

32C2NQ
)

+f
(

24C2NQ
)

+ f
(

8C2NQ
)

− f
(

32C2Q
)

+ f
(

24C2Q
)

+ f
(

8C2Q
)

+ D

hold for all N , Q ∈ IN . Consequently
(14)

−f
(

27C2NQ
)

+f
(

18C2NQ
)

+f
(

9C2NQ
)

−f
(

27C2Q
)

+f
(

18C2Q
)

+f
(

9C2Q
)

−f
(

27C2NQ2
)

+ f
(

18C2NQ2
)

+ f
(

9C2NQ2
)

− f
(

27C2
)

+ f
(

18C2
)

+ f
(

9C2
)

and
(15)

−f
(

32C2NQ
)

+f
(

24C2NQ
)

+f
(

8C2NQ
)

−f
(

32C2Q
)

+f
(

24C2Q
)

+f
(

8C2Q
)

= −f
(

32C2NQ2
)

+f
(

24C2NQ2
)

+f
(

8C2NQ2
)

−f
(

32C2
)

+f
(

24C2
)

+f
(

8C2
)

are satisfied for all N , Q ∈ IN .

For each prime p let e = e(p) be a non-negative integer for which pe ‖ C2.
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First we consider the case when (p, 6) = 1. By applying (14) with Q = p,
N = pl (l ≥ 0), we have

f
(

pl+e(p)+2
)

− f
(

pl+e(p)+1
)

= f
(

pe(p)+1
)

− f
(

pe(p)
)

for all l ≥ 0,

which shows that for all integers β ≥ e(p)

(16) f
(

pβ+1
)

− f
(

pβ
)

= f
(

pe(p)+1
)

− f
(

pe(p)
)

.

Now we consider the case p = 2. Applying (14) with Q = 2 and n = 2l, (l ≥ 0) one
can check as above that

(17) f
(

2β+1
)

− f
(

2β
)

= f
(

2e(2)+2
)

− f
(

2e(2)+1
)

.

Finally, we consider the case p = 3. Applying (15) with Q = 3 and N = 3l, l ≥ 0
we also get

(18) f
(

3β+1
)

− f
(

3β
)

= f
(

3e(3)+2
)

− f
(

3e(3)+1
)

.

Now we write
f(n) = f∗(n) + F (n),

where f∗ is a completely additive function defined as follows:

(19) f∗(p) :=







f
(

pe(p)+1
)

− f
(

pe(p)
)

for (p, 6) = 1

f
(

pe(p)+2
)

− f
(

pe(p)+1
)

for p = 2 or p = 3
.

Then, from (16)-(19) it follows that

F
(

pk
)

= F
[

(pk, 6C2)
]

for (k = 0, 1, . . .).

Thus, we have proved that

(20) F (n) = F
[

(n, 6C2)
]

is satisfied for all n ∈ IN .

We shall prove that f∗(n) = 0 for all n ∈ IN and f1(m) = 0 for all m ∈ IN

which are prime to 6AC.

We note that, by considering n = 2m and taking into account (6), we have

f(12ACm + 1) ≡ −f(54C2m) + f(36C2m) + f(18C2m) + D (mod m)
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Since f = f∗ + F , from the last relation and (20) we get

f∗(12ACm + 1) ≡ f∗(m) + [f∗(12C2) + F (6C2) + D] (mod m),

which with Lemma 1 shows that f∗(n) = 0 for all n ∈ IN . This shows that f ≡ F ,
i.e.

f(n) = f [(n, 6C2)]

holds for all n ∈ IN . Now, by applying (3) with n = 6Cm and using the last relation
and Lemma 2, we have that f1(n) = 0 holds for all n ∈ IN which are prime to
6AC.

The proof of Lemma 3 is completed.

3. Proof of Theorem 1

It is obvious that (1) follows from (2). We shall prove that if (1) is true, then
(2) holds.

Assume that the functions f1 and f2 ∈ A satisfy the congruence (1) for some
integers a ≥ 1, b ≥ 1, c ≥ 1 and d. It is obvious that (1) implies the fulfilment of

f1(abn + 1) ≡ f2(b
2cn) + d − f1(b) (mod n)

for all n ∈ IN . By Lemma 3,

(21) f2(n) = f2[(n, 6b4c2)] for all n ∈ IN

and

(22) f1(n) = 0

for all n ∈ IN which are prime to 6abc.

We shall prove that

(23) f1(an + b) = f2(cn) + d

is true for all n ∈ IN .

Let K be a positive integer. By (21) and (22), we have

f1(6ab4ct + 1) = 0,

f2[6b4c2(aK + b)t + cK] = f2(cK)
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hold for all positive integers t, consequently

f1(aK + b) − f2(cK) − d = f1(aK + b) + f1(6ab4ct + 1) − f2(cK) − d

= f1[a(6b4c(aK + b)t + K) + b] − f2[6b4c2(aK + b)t + cK] − d

holds for every positive integer t. Thus, by applying (1) with n = 6b4c(aK+b)t+K,
the last relation proves that (23) holds for n = K.

This completes the proof of Theorem 1.

4. Proof of Theorem 2

As we have shown in the proof of Theorem 1, if the functions f1, f2 ∈ A
satisfy (2), then (21) and (22) imply

(24) f1(m) = 0 for all m ∈ IN, (m, 6abc) = 1

and

(25) f2(n) = 0 for all n ∈ IN, (m, 6bc) = 1.

Let D = (a, b), a1 = a
D

, b1 = b
D

. It is clear that for each positive integer
M, (M, a1) = 1 there are m0, n0 ∈ IN such that

(26) Mm0 = a1n0 + b1, (m0, a1) = 1 and (M, n0) = (M, b1).

Let

(27) u(M) :=

{

1, if 2 | a1
M

(M, b1)
b1

(M, b1) ,

2, if 2 6 | a1
M

(M, b1)
b1

(M, b1)
.

By applying the Chinese Remainder Theorem and using (26)–(27), we can choose a
positive integer t1 such that m1 = a1t1 + m0, n1 = Mt1 + n0 satisfy the following
conditions:

Mm1 = a1n1 + b1 ,

n1

u(M)(M, b1)
is an integer,

and

(m1, 6abc) =

(

n1

u(M)(M, b1)
, 6bc

)

= 1.

Hence, we infer from (2) and (24)-(25) that

f1(DM) = f1(DMm1) = f1(an1 + b) = f2(cn1) + d = f2 [cu(M)(M, b1)] + d,
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consequently

(28) f1 [DM ] = f2 [cu(M)(M, b1)] + d

hold for all M ∈ IN, (M, a1) = 1. This implies that

(29) f1(n) = 0 for all n ∈ IN, (n, µab1) = 1,

where µ ∈ {1, 2} such that 2| µa1b1.

Now we prove that

(30) f2(n) = 0 for all n ∈ IN, (n, µcb1) = 1.

For each positive integer n, let M(n) := a1n + b1 and U(n) := u(a1n + b1).
Since (M(n), b1) = (n, b1) and

a1
M(n)

(M(n), b1)

b1

(M(n), b1)
≡ a1

b1

(n, b1)

[

n

(n, b1)
+ 1

]

(mod 2),

we have

U(n) :=







1, if 2 | a1
b1

(n, b1)

[

n
(n, b1) + 1

]

,

2, if 2 6 | a1
b1

(n, b1)

[

n
(n, b1) + 1

]

.

Hence, (2) and (28) show that

f2(cn) = f1(an + b) − d = f1 [DM(n)] − d = f2 [cU(n)(n, b1)]

is satisfied for all n ∈ IN , which implies (29). Thus, (29) is proved.

By (29) and (30), the proof of Theorem 2 is completed.
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