REMARKS ON UNIFORM DENSITY OF SETS OF INTEGERS

Zuzana Gáliková \& Béla László (Nitra, Slovakia) Tibor Šalát (Bratislava, Slovakia)

Dedicated to the memory of Professor Péter Kiss

Abstract

The concept of the uniform density is introduced in papers [1], [2]. Some properties of this concept are studied in this paper. It is proved here that the uniform density has the Darboux property.

AMS Classification Number: 11B05

Keywords: asymptotic density, uniform density, almost convergence, Darboux property

Introduction

Let $A \subseteq N=\{1,2,3, \ldots\}$ and $m, n \in N, m<n$. Denote by $A(m, n)$ the cardinality of the set $A \cap[m, n]$. The numbers

$$
\underline{d}(A)=\varliminf_{n \rightarrow \infty} \frac{A(1, n)}{n}, \quad \bar{d}(A)=\varlimsup_{n \rightarrow \infty} \frac{A(1, n)}{n}
$$

are called the lower and the upper asymptotic density of the set A. If there exists

$$
d(A)=\lim _{n \rightarrow \infty} \frac{A(1, n)}{n}
$$

then it is called the asymptotic density of A.
According to [1], [2] we set

$$
\alpha_{s}=\min _{t \geq 0} A(t+1, t+s), \quad \alpha^{s}=\max _{t \geq 0} A(t+1, t+s) .
$$

Then there exist

$$
\underline{u}(A)=\lim _{s \rightarrow \infty} \frac{\alpha_{s}}{s}, \quad \bar{u}(A)=\lim _{s \rightarrow \infty} \frac{\alpha^{s}}{s}
$$

and they are called the lower and the upper uniform density of A, respectively.

It is obvious that for every $A \subseteq N$

$$
\underline{u}(A) \leq \underline{d}(A) \leq \bar{d}(A) \leq \bar{u}(A) .
$$

Hence if $u(A)$ exists then $d(A)$ exists as well and $u(A)=d(A)$. The converse is not true. For example put

$$
A=\bigcup_{k=1}^{\infty}\left\{10^{k}+1,10^{k}+2, \ldots, 10^{k}+k\right\}
$$

Then $d(A)=0$, but $\underline{u}(A)=0, \bar{u}(A)=1$.
Note that the numbers α_{s} and α^{s} can be replaced by the numbers β_{s} and β^{s}, respectively, where

$$
\beta_{s}=\varliminf_{t \rightarrow \infty} A(t+1, t+s), \quad \beta^{s}=\varlimsup_{t \rightarrow \infty} A(t+1, t+s)
$$

(cf. [1], [2]).
In this paper we introduce some elementary remarks, observations on the concept of the uniform density and prove that this density has the Darboux property.

1. Uniform density $u(A)$ and $\lim _{s \rightarrow \infty} \frac{A(t+1, t+s)}{s}$ (uniformly with respect to $t \geq 0$)

We introduce the following observation.
Theorem 1.1. If there exists

$$
\begin{equation*}
\lim _{s \rightarrow \infty} \frac{A(t+1, t+s)}{s}=L \tag{1}
\end{equation*}
$$

uniformly with respect to $t \geq 0$, then there exists $u(A)$ and $u(A)=L$.
Proof. Let $\varepsilon>0$. By the assumption there exists an $s_{0}=s_{0}(\varepsilon) \in N$ such that for each $s>s_{0}$ and each $t \geq 0$ we have

$$
(L-\varepsilon) s<A(t+1, t+s)<(L+\varepsilon) s
$$

By the definition of the numbers β_{s}, β^{s} we get from this for $s>s_{0}$

$$
L-\varepsilon \leq \frac{\beta_{s}}{s} \leq \frac{\beta^{s}}{s} \leq L+\varepsilon
$$

If $s \rightarrow \infty$ we get

$$
L-\varepsilon \leq \underline{u}(A) \leq \bar{u}(A) \leq L+\varepsilon
$$

Since $\varepsilon>0$ is an arbitrary positive number, we get $u(A)=L$.
The foregoing theorem can be conversed.
Theorem 1.2. If there exists $u(A)$ then

$$
\lim _{s \rightarrow \infty} \frac{A(t+1, t+s)}{s}=u(A)
$$

uniformly with respect to $t \geq 0$.
Proof. Put $u(A)=L$. Since

$$
L=\lim _{p \rightarrow \infty} \frac{\alpha_{p}}{p}=\lim _{p \rightarrow \infty} \frac{\alpha^{p}}{p}
$$

for every $\varepsilon>0$, there exists a p_{0} such that for each $p>p_{0}$ we have

$$
(L-\varepsilon) p<\alpha_{p} \leq \alpha^{p}<(L+\varepsilon) p .
$$

So we get

$$
(L-\varepsilon) p<\min _{t \geq 0} A(t+1, t+p) \leq \max _{t \geq 0} A(t+1, t+p)<(L+\varepsilon) p
$$

By the definition of $A(t+1, t+p)$ we get from this

$$
\left|\frac{A(t+1, t+p)}{p}-L\right| \leq \varepsilon
$$

for each $p>p_{0}$ and each $t \geq 0$. Hence

$$
\lim _{p \rightarrow \infty} \frac{A(t+1, t+p)}{p}=L \quad(=u(A))
$$

uniformly with respect to $t \geq 0$.

2. Uniform density and almost convergence

The concept of almost convergence was introduced in [5] (see also [10], p. 60). A sequence $\left(x_{n}\right)_{1}^{\infty}$ of real numbers almost converges to L if

$$
\lim _{p \rightarrow \infty} \frac{x_{n+1}+x_{n+2}+\cdots+x_{n+p}}{p}=L
$$

uniformly with respect to $n \geq 0$. If $\left(x_{n}\right)_{1}^{\infty}$ almost converges to L, we write

$$
F-\lim x_{n}=L
$$

One can conjecture that there is a relationship between the uniform density of a set $A \subseteq N$ and the characteristic function χ_{A} of this set $\left(\chi_{A}(n)=1\right.$ if $n \in A$, $\chi_{A}(n)=0$ if $\left.n \in N \backslash A\right)$.

Theorem 2.1. Let $A \subseteq N$. Then $u(A)=v$ if and only if $F-\lim \chi_{A}(n)=v$.
Proof. Let $t \geq 0, s \in N$. By the definition of the sequence $\left(\chi_{A}(n)\right)_{1}^{\infty}$ we see that

$$
\frac{A(t+1, t+s)}{s}=\frac{\chi_{A}(t+1)+\chi_{A}(t+2)+\cdots+\chi_{A}(t+s)-t}{s}
$$

The assertion follows from this equality by Theorem 1.1 and 1.2.

3. Another way for defining the uniform density of sets

If $A=\left\{a_{1}<a_{2}<\cdots<a_{n}<\cdots\right\} \subseteq N$ is an infinite set then it is well-known that

$$
\underline{d}(A)=\underline{\lim }_{n \rightarrow \infty} \frac{n}{a_{n}}, \quad \bar{d}(A)=\varlimsup_{n \rightarrow \infty} \frac{n}{a_{n}}
$$

and

$$
d(A)=\lim _{n \rightarrow \infty} \frac{n}{a_{n}}
$$

(if $d(A)$ exists) (cf. [8], p. 247). A similar result can be stated also for the uniform density.

Theorem 3.1. Let $A=\left\{a_{1}<a_{2}<\cdots<a_{n}<\cdots\right\} \subseteq N$ be an infinite set. Then $u(A)=L$ if and only if

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \frac{p}{a_{k+p}-a_{k+1}}=L \tag{2}
\end{equation*}
$$

uniformly with respect to $k \geq 0$.
Proof. 1. Let $u(A)=L$. Consider that for $p \geq 2$

$$
\frac{p}{a_{k+p}-a_{k+1}}=\frac{A\left(a_{k+1}, a_{k+p}\right)}{a_{k+p}-a_{k+1}}
$$

By Theorem 1.2 (see (1)) the right-hand side converges by $p \rightarrow \infty$ (uniformly with respect to $k \geq 0$) to $u(A)=L$. Hence (2) holds.
2. Suppose that (2) holds (uniformly with respect to $k \geq 0$). By Theorem 1.1 it suffices to prove that

$$
\lim _{p \rightarrow \infty} \frac{A(t+1, t+p)}{p}=L
$$

uniformly with respect to $t \geq 0$.
We shall show it. Suppose in the first place that $t \geq a_{1}$. Then there exist $k, s \in N$ such that

$$
a_{k}<t+1 \leq a_{k+1}<\cdots<a_{k+s} \leq t+p<a_{k+s+1} .
$$

Then $A(t+1, t+p)$ equals to s and so

$$
\frac{A(t+1, t+p)}{p}=\frac{s}{p} .
$$

Further on the basis of choice of the numbers k, s we get

$$
a_{k+s}-a_{k+1} \leq p-1<a_{k+s+1}-a_{k} .
$$

Therefore

$$
\frac{s}{a_{k+s+1}-a_{k}+1}<\frac{A(t+1, t+p)}{p}<\frac{s}{a_{k+s}-a_{k+1}} .
$$

But $-a_{k}+1 \leq-a_{k-1}$, so that

$$
\begin{aligned}
\frac{s}{a_{k+s+1}-a_{k}+1} & \geq \frac{s}{a_{k+s+1}-a_{k-1}}=\frac{s+3}{a_{k+s+1}-a_{k-1}} \frac{s}{s+3} \\
& =\frac{s+3}{a_{k+s+1}-a_{k-1}}\left(1-\frac{3}{s+3}\right) .
\end{aligned}
$$

So we get wholly

$$
\begin{equation*}
\frac{s+3}{a_{k+s+1}-a_{k-1}}\left(1-\frac{3}{s+3}\right)<\frac{A(t+1, t+p)}{p}<\frac{s}{a_{k+s}-a_{k+1}} . \tag{3}
\end{equation*}
$$

Let $\gamma>0$. Then by assumption (see (2)) there exists a v_{0} such that for each $v>v_{0}$ we have

$$
\begin{equation*}
-\gamma<\frac{v}{a_{k+v}-a_{k+1}}-L<\gamma \tag{4}
\end{equation*}
$$

for all $k \geq 0$.
Using (4) we get from (3)
(5) $\frac{s+3}{a_{k+s+1}-a_{k-1}}-L-\frac{3}{a_{k+s+1}-a_{k-1}}<\frac{A(t+1, t+p)}{p}-L<\frac{s}{a_{k+s}-a_{k+1}}-L$.

Let $s>v_{0}$. Then by (4) the right-hand side of (5) is less than γ. On the left-hand side we get

$$
\frac{s+3}{a_{k+s+1}-a_{k-1}}-L>-\gamma .
$$

Further

$$
\frac{-3}{a_{k+s+1}-a_{k-1}} \geq \frac{-3}{s+2}
$$

since

$$
a_{k+s+1}-a_{k-1}=\left(a_{k}-a_{k-1}\right)+\left(a_{k+1}-a_{k}\right)+\cdots+\left(a_{k+s+1}-a_{k+s}\right)
$$

and each summand on the right-hand side is ≥ 1.
Hence for every $t \geq a_{1}$ we get from (5) $\left(s>v_{0}\right)$

$$
\begin{equation*}
-\gamma-\frac{3}{s+2}<\frac{A(t+1, t+p)}{p}-L<\gamma \tag{6}
\end{equation*}
$$

From this

$$
\lim _{p \rightarrow \infty} \frac{A(t+1, t+p)}{p}=L
$$

uniformly with respect to $t \geq a_{1}$.
It remains the case if $0 \leq t<a_{1}$. Since there is only a finite number of such t^{\prime} s, it suffices to show that for each fixed $t, 0 \leq t<a_{1}$, we have

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \frac{A(t+1, t+p)}{p}=L \tag{7}
\end{equation*}
$$

If t is fixed, $0 \leq t<a_{1}$ and p is sufficiently large we can determine a k such that $a_{k} \leq t+p<a_{k+1}$. Then

$$
0 \leq t<a_{1}<a_{2}<\cdots<a_{k} \leq t+p<a_{k+1}
$$

and

$$
\begin{equation*}
A(t+1, t+p)=A\left(t+1, a_{1}\right)+A\left(a_{2}, a_{k}\right) \tag{8}
\end{equation*}
$$

From this

$$
p<a_{k+1}, \quad p>a_{k}-a_{1}
$$

and so from $(8),\left(8^{\prime}\right)$ we obtain

$$
\begin{align*}
\frac{A\left(t+1, a_{1}\right)}{p} & +\frac{A\left(a_{2}, a_{k+1}\right)-1}{a_{k+1}} \leq \frac{A(t+1, t+p)}{p} \\
& \leq \frac{A\left(t+1, a_{1}\right)}{p}+\frac{k-1}{a_{k}-a_{1}} \tag{9}
\end{align*}
$$

Obviously we have $A\left(t+1, a_{1}\right) \leq a_{1}$ and so

$$
\frac{A\left(t+1, a_{1}\right)}{p}=o(1) \quad(p \rightarrow \infty)
$$

We arrange the left-hand side of (9). We get

$$
\frac{A\left(a_{2}, a_{k+1}\right)-1}{a_{k+1}}=-\frac{1}{a_{k+1}}+\frac{k}{a_{k+1}-a_{2}} \frac{a_{k+1}-a_{2}}{a_{k+1}}=o(1)+\frac{k}{a_{k+1}-a_{2}}
$$

(if $p \rightarrow \infty$ then $k \rightarrow \infty$, as well).
Wholly we have

$$
\frac{k}{a_{k+1}-a_{2}}+o(1) \leq \frac{A(t+1, t+p)}{p} \leq \frac{k-1}{a_{k}-a_{1}}+o(1) .
$$

If $p \rightarrow \infty$, then $k \rightarrow \infty$ and by assumption (cf (2)) the terms

$$
\frac{k-1}{a_{k}-a_{1}}-L, \quad \frac{k}{a_{k+1}-a_{2}}-L
$$

converge to zero. But then (9) yields

$$
\lim _{p \rightarrow \infty} \frac{A(t+1, t+p)}{p}=L
$$

uniformly with respect to $t \geq 0$. So $u(A)=L$.
The following theorem is a simple consequence of Theorem 3.1
Theorem 3.2. Let $A=\left\{a_{1}<a_{2}<\cdots\right\} \subseteq N$ be a lacunary set, i.e.

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=+\infty \tag{10}
\end{equation*}
$$

Then $u(A)=0$.
Proof. Let $\varepsilon>0$. Choose $M \in N$ such that $M^{-1}<\varepsilon$. By the assumption there exists an n_{0} such that for each $n>n_{0}$ we get $a_{n+1}-a_{n}>M$.

Let $k>n_{0}, s \in N, s>1$. Then
$a_{k+s}-a_{k+1}=\left(a_{k+2}-a_{k+1}\right)+\left(a_{k+3}-a_{k+2}\right)+\cdots+\left(a_{k+s}-a_{k+s-1}\right)>(s-1) M$ and so

$$
\frac{s}{a_{k+s}-a_{k+1}}<\frac{s}{(s-1) M}<2 \varepsilon
$$

Hence for each $k>n_{0}$ and $s \geq 2$ we have

$$
\frac{s}{a_{k+s}-a_{k+1}}<2 \varepsilon
$$

If $0 \leq k \leq n_{0}, k$ is fixed, then

$$
\begin{equation*}
\lim _{s \rightarrow \infty} \frac{s}{a_{k+s}-a_{k+1}}=0 \tag{11}
\end{equation*}
$$

since, for sufficiently large s

$$
\begin{aligned}
a_{k+s}-a_{k+1} & =\left[\left(a_{k+2}-a_{k+1}\right)+\cdots+\left(a_{n_{0}+1}-a_{n_{0}}\right)\right] \\
& +\left[\left(a_{n_{0}+2}-a_{n_{0}+1}\right)+\cdots+\left(a_{k+s}-a_{k+s-1}\right)\right]>M\left(k+s-n_{0}-1\right) \\
& \geq M\left(s-\left(n_{0}+1\right)\right) .
\end{aligned}
$$

There exists only a finite number of k^{\prime} s with $0 \leq k \leq n_{0}$, so we see that (11) holds uniformly with respect to $k, 0 \leq k \leq n_{0}$. So we get wholly

$$
\lim _{s \rightarrow \infty} \frac{s}{a_{k+s}-a_{k+1}}=0
$$

uniformly with respect to $k \geq 0$. So according to Theorem 3.1, $u(A)=0$.
Remark. The assumption (10) in Theorem 3.2 cannot be replaced by the weaker assumption

$$
\varlimsup_{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=+\infty
$$

This can be shown by the following example:

$$
A=\bigcup_{k=1}^{\infty}\{k!+1, k!+2, \ldots, k!+k\}=\left\{a_{1}<a_{2}<\cdots<a_{n}<\cdots\right\}
$$

Here we have $\underline{u}(A)=0, \bar{u}(A)=1$ and $\left(10^{\prime}\right)$ is satisfied.
Example 3.1 Let $\alpha \in R, \alpha>1$. Put $a_{k}=[k \alpha],(k=1,2, \ldots)$, where $[v]$ denotes the integer part of v. We show that the uniform density of the set A is $\frac{1}{\alpha}$. This follows from Theorem 3.1, since

$$
\lim _{p \rightarrow \infty} \frac{p}{a_{k+p}-a_{k+1}}=\frac{1}{\alpha}
$$

uniformly with respect to $k \geq 0$. This uniform convergence can be shown by a simple calculation which gives the estimates $(p \geq 2)$

$$
\frac{p}{(p-1) \alpha+1} \leq \frac{p}{a_{k+p}-a_{k+1}} \leq \frac{p}{(p-1) \alpha-1}
$$

4. Darboux property of the uniform density

For every $A \subseteq N$ having the uniform density the number $u(A)$ belongs to $[0,1]$. The natural question arises whether also conversely for every $t \in[0,1]$ there is a set $A \subseteq N$ such that $u(A)=t$. The answer to this question is positive.

Theorem 4.1.

If $t \in[0,1]$ then there is a set $A \subseteq N$ with $u(A)=t$.
Proof. We can already suppose that $0<t<1$. Construct the set

$$
A=\left\{\left[\frac{1}{t}\right],\left[\frac{2}{t}\right], \ldots,\left[\frac{k}{t}\right], \ldots\right\}=\left\{a_{1}<a_{2}<\cdots\right\} .
$$

Put $a_{k}=\left[\frac{k}{t}\right](k=1,2, \ldots)$ and set in Example $3.1 \alpha=\frac{1}{t}>1$. So we get

$$
\lim _{p \rightarrow \infty} \frac{p}{a_{k+p}-a_{k+1}}=\frac{1}{\alpha}=t
$$

uniformly with respect to $k \geq 0$. The assertion follows by Theorem 3.1.
Let v be a non-negative set function defined on a class $S \subseteq 2^{N}$. The function v is said to have the Darboux property provided that if $v(A)>0$ for $A \in S$ and $0<t<v(A)$, then there is a set $B \subseteq A, B \in S$ such that $v(B)=t$ (cf. [6], [7], [9]).

Theorem 4.2. The uniform density has the Darboux property.
Proof. Let $u(A)=\delta>0$,

$$
A=\left\{a_{1}<a_{2}<\cdots<a_{k}<\cdots\right\}
$$

and $0<t<\delta$. Construct the set

$$
B=\left\{b_{1}<b_{2}<\cdots<b_{k}<\cdots\right\}
$$

in such a way that we set

$$
b_{k}=a_{\left[k \frac{\delta}{t}\right]} \quad(k=1,2, \ldots) .
$$

Put $n_{k}=\left[k \frac{\delta}{t}\right] \quad(k=1,2, \ldots)$. Then $n_{1}<n_{2}<\cdots<n_{k}<\cdots$,

$$
B=\left\{a_{n_{1}}<a_{n_{2}}<\cdots<a_{n_{k}}<\cdots\right\}, \quad B \subseteq A
$$

We prove that $u(B)=t$.
By Theorem 3.1 it suffices to show that

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \frac{p}{b_{m+p}-b_{m+1}}=t \tag{12}
\end{equation*}
$$

uniformly with respect to $m \geq 0$.
We have $(p>1)$

$$
\frac{p}{b_{m+p}-b_{m+1}}=\frac{p}{a_{n_{m+p}}-a_{n_{m+1}}}
$$

By a simple arrangement we get

$$
\begin{equation*}
\frac{p}{b_{m+p}-b_{m+1}}=\frac{n_{m+p}-n_{m+1}+1}{a_{n_{m+p}}-a_{n_{m+1}}} \frac{p}{n_{m+p}-n_{m+1}+1} . \tag{13}
\end{equation*}
$$

A simple estimation gives

$$
(p-1) \frac{\delta}{t}-1<n_{m+p}-n_{m+1}<(p-1) \frac{\delta}{t}+1
$$

Using this in (13) we get

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \frac{p}{n_{m+p}-n_{m+1}+1}=\frac{t}{\delta} \tag{14}
\end{equation*}
$$

uniformly with respect to $m \geq 0$.
Further by assumption

$$
\lim _{p \rightarrow \infty} \frac{p}{a_{s+p}-a_{s+1}}=\delta
$$

uniformly with respect to $s \geq 0$ (Theorem 3.1).
So we get

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \frac{n_{m+p}-n_{m+1}+1}{a_{n_{m+p}}-a_{n_{m+1}}}=\delta \tag{15}
\end{equation*}
$$

uniformly with respect to $m \geq 0$ since the sequence

$$
\left(\frac{n_{m+p}-n_{m+1}+1}{a_{n_{m+p}}-a_{n_{m+1}}}\right)_{p=2}^{\infty}
$$

is a subsequence of the sequence

$$
\left(\frac{p}{a_{s+p}-a_{s+1}}\right)_{p=1}^{\infty}
$$

By (13), (14), (15) we get (12) uniformly with respect to $m \geq 0$.

References

[1] Brown, T. C. and Freedman, A. R., Arithmetic progressions in lacunary sets, Rocky Mountains J. Math 17 (1987), 587-596.
[2] Brown, T. C. and Freedman, A. R., The uniform density of sets of integers and Fermat's Last Theorem, C. R. Math. Rep. Acad. Sci. Canada XII (1990), 1-6.
[3] Grekos, G., Šalát, T. and Tomanová, J., Gaps and densities, (to appear).
[4] Gerkos, G. and Volkmann, B., On densities and gaps, J. Number Theory 26 (1987), 129-148.
[5] Lorentz, G., A contribution to the theory of divergent sequences, Acta Math. 80 (1848), 167-190.
[6] Marcus, S., Atomic measures and Darboux property, Rev. Math. Pures et Appl., VII (1962), 327-332.
[7] Marcus, S., On the Darboux property for atomic measures and for series with positive terms, Rev. Roum. Math. Pures et Appl., XI (1966), 647-652.
[8] Niven, I. and Zuckerman, H. S., An Introduction to the Theory of Numbers, John Wiley, New York, London, Sydney, 1967.
[9] Olejçek, V., Darboux property of finitely additive measure on δ-ring, Math. Slov. 27 (1977), 195-201.
[10] Petersen, G. M., Regular Matrix Transformations, Mc Graw-Hill, London, New York, Toronto, Sydney, 1966.

Zuzana Gáliková and

Béla László

Constantine Philosopher University
Department of Algebra and Number Theory
Tr. A. Hlinku 1
94974 Nitra
Slovakia
E-mail: katc@ukf.sk

Tibor Šalát

Department of Algebra
and Number Theory
Mlynská dolina
84215 Bratislava
Slovakia

