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Abstract. Let K be a tamely ramified algebraic number field. The paper deals with

polynomial cycles for a polynomial f∈Z[x] in ambiguous ideals of ZK . A connection between the

existence of “normal” and “power” basis and the existence of polynomial orbits is given.
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1. Introduction

Let R be a ring. A finite subset {x0, x1, . . . , xn−1} of the ring R is called a
cycle, n-cycle or polynomial cycle for polynomial, f ∈ R[x], if for i = 0, 1, . . . , n−2
one has f(xi) = xi+1, f(xn−1) = x0 and xi 6= xj for i 6= j. The number n is called
the length of the cycle and the xi’s are called cyclic elements of order n or fixpoints
of f of order n.

We can introduce a similar definition for a polynomial cycle in the situation
that S, R are rings and R is an S-module.

A finite subset {x0, x1, . . . , xn−1} of an S-module R is called a cycle, n-cycle
or polynomial cycle for polynomial f ∈ S[x], if for i = 0, 1, . . . , n − 2 one has
f(xi) = xi+1 , f(xn−1) = x0 and xi 6= xj for i 6= j.

A finite sequence {y0, y1, . . . , ym, ym+1, . . . , ym+n−1} is called an orbit of
f ∈ S[x] with the precycle {y0, y1, . . . , ym−1} of length m and the cycle
{ym, ym+1, . . . , ym+n−1} of length n if f(yi) = yi+1 , f(ym+n−1) = ym for distinct
elements y0, y1, . . . , ym+n−1 of R.

Let K be a Galois algebraic number field and let K/Q be a finite extension
of rational numbers with a Galois group G. We will be interested in polynomial
cycles generated by conjugated elements for polynomials from Z[x] in the ring of
integers ZK of the field K and in ambiguous ideals of ZK .

First we recall some general properties of ambiguous ideals according to Ullom
[8]. Let K/F be a Galois extension of an algebraic number field F with the Galois
group G and ZK (resp. ZF ) be the ring of integers of K (resp. F ).
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Definition 1. An ideal U of ZK is G-ambiguous or simply ambiguous if U is
invariant under action of the Galois group G.

Let ℑ be a prime ideal of F whose decomposition into prime ideals in K is

ℑZK = (℘1.℘2 · · ·℘g)
e.

Let Ψ(ℑ) = ℘1.℘2 · · ·℘g. It is known that

(i) Ψ(ℑ) is ambiguous and the set of all Ψ(ℑ) with ℑ prime in F is a free basis
for the group of ambiguous ideals of K.

(ii) An ambiguous ideal U of ZK may be written in the form U0.T where T is an
ideal of ZF and

U0 = Ψ(ℑ1)
a1 . . .Ψ(ℑt)

at

where 0 < ai ≤ ei and ei > 1 is the ramification index of a prime ideal of ZK

dividing ℑi. The ideal U determines U0 and T uniquely. The ambiguous ideal
U0 is called a primitive ambiguous ideal.

In our investigation we will focus a special attention to cyclic extensions K/Q
of prime degree l. In this case ambiguous ideals with normal basis were characterized
in papers [3], [4] and [8].

2. Results

Let K/Q be a finite normal extension of rational numbers with a Galois group
G.

Theorem 1. Let f ∈ Z[x] and Y = {y0, y1, . . .} be a sequence of elements of ZK .

Let i < j such that yi and yj are conjugated over Z. Then Y is an orbit with the

precycle of length m ≤ i.

Proof of Theorem 1. We denote by fk the k-iteration of polynomial f . Then

fj−i(yi) = yj .

The elements yi and yj are conjugated over Z and there is such an automorphism
φ ∈ G that φ(yi) = yj . Coefficients of f are from Z and it immediately follows that

φs(yi) = φs−1(f(yi)) = f(φs−1(yi)).

By induction it follows that

φs(yi) = yi+s(j−i).

The automorphism φ is of a finite order and so there is such an s0 that φs0(yi) = yi.
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Corollary 1. Let K/Q be a cyclic extension of a prime degree l. Let x0, x1, . . . , xl−1

be a polynomial cycle of the length l for f ∈ Z[x] in ZK . Then either all xi are

conjugated or xi are pairwise not conjugated.

Corollary 2. Let K/Q be a cyclic extension of a prime degree l. Let x0, x1, . . . , xn−1

be a polynomial cycle of the length n for f ∈ Z[x] in ZK . Then either l divides n
or xi are pairwise not conjugated.

Now we will consider polynomial cycles of conjugated cyclic elements for
polynomials f ∈ Z[x] in ambiguous ideals of ZK , where K/Q is a tamely ramified
extension with Galois group G.

The following theorem gives a connection between the existence of a power
basis for ambiguous ideals and the existence of a polynomial cycle consisting of
elements of normal basis.

Theorem 2. Let K/Q be a tamely ramified cyclic algebraic number field of

prime degree l over Q. Let ℑ be a ambiguous ideal of ZK with a normal basis

{α0, α1, . . . , αl−1} over Z. There exists a polynomial f ∈ Z[x] of degree k ≤ l with

the polynomial cycle {α0, α1, . . . , αl−1} if and only if there are 0 ≤ i 6= j < l that

αi = atα
t
j + at−1α

t−1
j + · · · + a0,

where ai ∈ z.

Proof of Theorem 2. Let {α0, α1, . . . , αl−1} be a polynomial cycle for f ∈ Z[x]
of degree k ≤ l

f(x) = akxk + ak−1x
k−1 + · · · + a0.

Then for example

α1 = f(α0) = akαk
0 + ak−1α

k−1
0 + · · · + a0.

Let there are 0 ≤ i 6= j < l such that

αi = atα
t
j + at−1α

t−1
j + · · · + a0.

Then by Theorem 1 there is a polynomial cycle for g(x) = atx
t +at−1x

t−1+ · · ·+a0

which started with conjugated elements αj , αi. It is obvious that all elements of this
cycle are conjugated and by Corollary 2 it follows that the polynomial cycle consists
of elements α0, α1, . . . , αl−1. Because all the elements are conjugated and they have
the same minimal polynomial over Z of degree l, there exists a polynomial f ∈ Z[x]
of degree k ≤ l with the polynomial cycle consisting of elements α0, α1, . . . , αl−1.

Remark. In the above Theorem 2 let f ∈ Z[x] be a polynomial with the normal
basis

{α0, α1, . . . , αl−1}
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as a polynomial cycle. Let

fα(x) = xt + ct−1x
t−1 + · · · + c0

be a minimal polynomial for αi. Then for any i ∈ {0, 1, . . . , l − 1} the set

{c0, αi, α
2
i , . . . , α

l−1
i }

is a “power” basis of ℑ. For example let Q(ζ7) be the 7-th cyclotomic field. The
ideal ℘7 lying over 7 in maximal real subfield K of Q(ζ7) has a normal basis

α0 = 2 − ζ7 − ζ6
7 , α1 = 2 − ζ2

7 − ζ5
7 , α2 = 2 − ζ3

7 − ζ4
7 .

The polynomial f(x) = x2 + 4x has the polynomial cycle α0, α1, α2. The minimal
polynomial of αi is

fα(x) = x3 − 7x2 − 2x − 7 = (x − α0)(x − α1)(x − α2).

For example a “power” basis for ℘7 over Z is {7, 2 − ζ7 − ζ6
7 , (2 − ζ7 − ζ6

7 )2}.

Some of previous properties hold more generally.

Theorem 3. Let K/Q be a tamely ramified cyclic algebraic number field of prime

degree l with the conductor m = p1.p2 . . . ps. Let ℑ = ℘t1
1 .℘t2

2 . . . ℘ts

s with 0 ≤
tj < l for j = 1, 2, . . . , s be an ideal of ZK lying over conductor of K and let

{x0, x1, . . . , xn−1} be a polynomial cycle in ℑ for

f(x) = anxn + an−1x
n−1 + · · · + a1x + a0, ai ∈ Z,

such that ℑ is a minimal product of ideals ℘j which contains x1. Then ℑ is a

minimal product of ideals ℘j which contains xi for i = 0, 1, . . . , n−1 and m divides

a0.

Proof of Theorem 3. Let f ∈ Z[x] and {x0, x1, . . . , xn−1} be a polynomial cycle
for f in an ideal ℑ ⊂ ZK . Then for all i ∈ {0, 1, . . . , n − 1} we have f(xi) = xi+1

where indices are taken mod n. Both xi, xi+1 ∈ ℑ and so from

xi+1 = f(xi) = anxn
i + an−1x

n−1
i + · · · + a1xi + a0 ∈ ℑ,

it follows that

a0 = xi+1 − (anxn
i + an−1x

n−1
i + · · · + a1xi) ∈ ℑ.

Let vj be a valuation coresponding to the ideal ℘j for j = 1, 2, . . . , s. We have
vj(x1) = tj and vj(xi) ≥ tj . Hence

vj(a0) ≥ min{vj(x2), vj(anxn
1 ), vj(an−1x

n−1
1 ), . . . , vj(a1x1)}
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and so m divides a0. From this it follows that

vj(a0) ≥ l > tj .

Let vj(xi) > tj , then

vj(xi+1) ≥ min{vj(a0), vj(anxn
i ), vj(an−1x

n−1
i ), . . . , vj(a1xi)} > tj .

But it is impossible, since f(xn−1) = x1. Theorem 3 is proved.
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