ON ORBITS IN AMBIGUOUS IDEALS

Juraj Kostra (Ostrava, Czech Republic)

Dedicated to the memory of Professor Péter Kiss

Abstract. Let K be a tamely ramified algebraic number field. The paper deals with polynomial cycles for a polynomial $f\in Z[x]$ in ambiguous ideals of Z_K . A connection between the existence of "normal" and "power" basis and the existence of polynomial orbits is given.

AMS Classification Number: 11R18, 11C08, 12F05

1. Introduction

Let R be a ring. A finite subset $\{x_0, x_1, \ldots, x_{n-1}\}$ of the ring R is called a cycle, *n*-cycle or polynomial cycle for polynomial, $f \in R[x]$, if for $i = 0, 1, ..., n-2$ one has $f(x_i) = x_{i+1}$, $f(x_{n-1}) = x_0$ and $x_i \neq x_i$ for $i \neq j$. The number n is called the length of the cycle and the x_i 's are called cyclic elements of order n or fixpoints of f of order n .

We can introduce a similar definition for a polynomial cycle in the situation that S, R are rings and R is an S -module.

A finite subset $\{x_0, x_1, \ldots, x_{n-1}\}$ of an S-module R is called a cycle, n-cycle or polynomial cycle for polynomial $f \in S[x]$, if for $i = 0, 1, \ldots, n-2$ one has $f(x_i) = x_{i+1}$, $f(x_{n-1}) = x_0$ and $x_i \neq x_j$ for $i \neq j$.

A finite sequence $\{y_0, y_1, \ldots, y_m, y_{m+1}, \ldots, y_{m+n-1}\}$ is called an orbit of $f \in S[x]$ with the precycle $\{y_0, y_1, \ldots, y_{m-1}\}$ of length m and the cycle ${y_m, y_{m+1}, \ldots, y_{m+n-1}}$ of length n if $f(y_i) = y_{i+1}$, $f(y_{m+n-1}) = y_m$ for distinct elements $y_0, y_1, \ldots, y_{m+n-1}$ of R.

Let K be a Galois algebraic number field and let K/Q be a finite extension of rational numbers with a Galois group G. We will be interested in polynomial cycles generated by conjugated elements for polynomials from $Z[x]$ in the ring of integers Z_K of the field K and in ambiguous ideals of Z_K .

First we recall some general properties of ambiguous ideals according to Ullom [8]. Let K/F be a Galois extension of an algebraic number field F with the Galois group G and Z_K (resp. Z_F) be the ring of integers of K (resp. F).

This research was supported by GA ČR Grant 201/01/0471.

Definition 1. An ideal U of Z_K is G-ambiguous or simply ambiguous if U is invariant under action of the Galois group G.

Let \Im be a prime ideal of F whose decomposition into prime ideals in K is

$$
\Im Z_K = (\wp_1.\wp_2 \cdots \wp_g)^e.
$$

Let $\Psi(\Im) = \wp_1 \cdot \wp_2 \cdots \wp_q$. It is known that

- (i) $\Psi(\Im)$ is ambiguous and the set of all $\Psi(\Im)$ with \Im prime in F is a free basis for the group of ambiguous ideals of K.
- (ii) An ambiguous ideal U of Z_K may be written in the form U_0 . T where T is an ideal of Z_F and

$$
U_0 = \Psi(\Im_1)^{a_1} \dots \Psi(\Im_t)^{a_t}
$$

where $0 < a_i \leq e_i$ and $e_i > 1$ is the ramification index of a prime ideal of Z_K dividing \Im_i . The ideal U determines U_0 and T uniquely. The ambiguous ideal U_0 is called a primitive ambiguous ideal.

In our investigation we will focus a special attention to cyclic extensions K/Q of prime degree l. In this case ambiguous ideals with normal basis were characterized in papers [3], [4] and [8].

2. Results

Let K/Q be a finite normal extension of rational numbers with a Galois group G.

Theorem 1. Let $f \in Z[x]$ and $Y = \{y_0, y_1, \ldots\}$ be a sequence of elements of Z_K . Let $i < j$ such that y_i and y_j are conjugated over Z. Then Y is an orbit with the precycle of length $m \leq i$.

Proof of Theorem 1. We denote by f_k the k-iteration of polynomial f. Then

$$
f_{j-i}(y_i)=y_j.
$$

The elements y_i and y_j are conjugated over Z and there is such an automorphism $\phi \in G$ that $\phi(y_i) = y_j$. Coefficients of f are from Z and it immediately follows that

$$
\phi^s(y_i) = \phi^{s-1}(f(y_i)) = f(\phi^{s-1}(y_i)).
$$

By induction it follows that

$$
\phi^s(y_i) = y_{i+s(j-i)}.
$$

The automorphism ϕ is of a finite order and so there is such an s_0 that $\phi^{s_0}(y_i) = y_i$.

Corollary 1. Let K/Q be a cyclic extension of a prime degree l. Let $x_0, x_1, \ldots, x_{l-1}$ be a polynomial cycle of the length l for $f \in Z[x]$ in Z_K . Then either all x_i are conjugated or x_i are pairwise not conjugated.

Corollary 2. Let K/Q be a cyclic extension of a prime degree l. Let $x_0, x_1, \ldots, x_{n-1}$ be a polynomial cycle of the length n for $f \in Z[x]$ in Z_K . Then either l divides n or x_i are pairwise not conjugated.

Now we will consider polynomial cycles of conjugated cyclic elements for polynomials $f \in Z[x]$ in ambiguous ideals of Z_K , where K/Q is a tamely ramified extension with Galois group G.

The following theorem gives a connection between the existence of a power basis for ambiguous ideals and the existence of a polynomial cycle consisting of elements of normal basis.

Theorem 2. Let K/Q be a tamely ramified cyclic algebraic number field of prime degree l over Q. Let \Im be a ambiguous ideal of Z_K with a normal basis $\{\alpha_0, \alpha_1, \ldots, \alpha_{l-1}\}\$ over Z. There exists a polynomial $f \in Z[x]$ of degree $k \leq l$ with the polynomial cycle $\{\alpha_0, \alpha_1, \ldots, \alpha_{l-1}\}$ if and only if there are $0 \leq i \neq j < l$ that

$$
\alpha_i = a_t \alpha_j^t + a_{t-1} \alpha_j^{t-1} + \dots + a_0,
$$

where $a_i \in \mathcal{z}$.

Proof of Theorem 2. Let $\{\alpha_0, \alpha_1, \ldots, \alpha_{l-1}\}\)$ be a polynomial cycle for $f \in \mathbb{Z}[x]$ of degree $k \leq l$

$$
f(x) = a_k x^k + a_{k-1} x^{k-1} + \dots + a_0.
$$

Then for example

$$
\alpha_1 = f(\alpha_0) = a_k \alpha_0^k + a_{k-1} \alpha_0^{k-1} + \dots + a_0.
$$

Let there are $0 \leq i \neq j < l$ such that

$$
\alpha_i = a_t \alpha_j^t + a_{t-1} \alpha_j^{t-1} + \dots + a_0.
$$

Then by Theorem 1 there is a polynomial cycle for $g(x) = a_t x^t + a_{t-1} x^{t-1} + \cdots + a_0$ which started with conjugated elements α_j, α_i . It is obvious that all elements of this cycle are conjugated and by Corollary 2 it follows that the polynomial cycle consists of elements $\alpha_0, \alpha_1, \ldots, \alpha_{l-1}$. Because all the elements are conjugated and they have the same minimal polynomial over Z of degree l, there exists a polynomial $f \in Z[x]$ of degree $k \leq l$ with the polynomial cycle consisting of elements $\alpha_0, \alpha_1, \ldots, \alpha_{l-1}$.

Remark. In the above Theorem 2 let $f \in Z[x]$ be a polynomial with the normal basis

$$
\{\alpha_0,\alpha_1,\ldots,\alpha_{l-1}\}
$$

as a polynomial cycle. Let

$$
f_{\alpha}(x) = x^{t} + c_{t-1}x^{t-1} + \dots + c_{0}
$$

be a minimal polynomial for α_i . Then for any $i \in \{0, 1, \ldots, l-1\}$ the set

$$
\{c_0, \alpha_i, \alpha_i^2, \ldots, \alpha_i^{l-1}\}
$$

is a "power" basis of \Im . For example let $Q(\zeta_7)$ be the 7-th cyclotomic field. The ideal \wp_7 lying over 7 in maximal real subfield K of $Q(\zeta_7)$ has a normal basis

$$
\alpha_0 = 2 - \zeta_7 - \zeta_7^6, \alpha_1 = 2 - \zeta_7^2 - \zeta_7^5, \alpha_2 = 2 - \zeta_7^3 - \zeta_7^4.
$$

The polynomial $f(x) = x^2 + 4x$ has the polynomial cycle $\alpha_0, \alpha_1, \alpha_2$. The minimal polynomial of α_i is

$$
f_{\alpha}(x) = x^3 - 7x^2 - 2x - 7 = (x - \alpha_0)(x - \alpha_1)(x - \alpha_2).
$$

For example a "power" basis for \wp_7 over Z is $\{7, 2 - \zeta_7 - \zeta_7^6, (2 - \zeta_7 - \zeta_7^6)^2\}.$

Some of previous properties hold more generally.

Theorem 3. Let K/Q be a tamely ramified cyclic algebraic number field of prime degree l with the conductor $m = p_1 \cdot p_2 \ldots p_s$. Let $\Im = \wp_1^{t_1} \cdot \wp_2^{t_2} \ldots \wp_s^{t_s}$ with $0 \leq$ $t_j < l$ for $j = 1, 2, \ldots, s$ be an ideal of Z_K lying over conductor of K and let ${x_0, x_1, \ldots, x_{n-1}}$ be a polynomial cycle in \Im for

$$
f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \quad a_i \in Z,
$$

such that \Im is a minimal product of ideals \wp_i which contains x_1 . Then \Im is a minimal product of ideals \wp_i which contains x_i for $i = 0, 1, \ldots, n-1$ and m divides a_0 .

Proof of Theorem 3. Let $f \in Z[x]$ and $\{x_0, x_1, \ldots, x_{n-1}\}$ be a polynomial cycle for f in an ideal $\Im \subset Z_K$. Then for all $i \in \{0,1,\ldots,n-1\}$ we have $f(x_i) = x_{i+1}$ where indices are taken $mod\ n$. Both $x_i, x_{i+1} \in \Im$ and so from

$$
x_{i+1} = f(x_i) = a_n x_i^n + a_{n-1} x_i^{n-1} + \dots + a_1 x_i + a_0 \in \mathfrak{S},
$$

it follows that

$$
a_0 = x_{i+1} - (a_n x_i^n + a_{n-1} x_i^{n-1} + \dots + a_1 x_i) \in \mathfrak{S}.
$$

Let v_j be a valuation coresponding to the ideal \wp_j for $j = 1, 2, \ldots, s$. We have $v_j(x_1) = t_j$ and $v_j(x_i) \geq t_j$. Hence

$$
v_j(a_0) \geq min\{v_j(x_2), v_j(a_n x_1^n), v_j(a_{n-1} x_1^{n-1}), \dots, v_j(a_1 x_1)\}\
$$

and so m divides a_0 . From this it follows that

$$
v_j(a_0) \ge l > t_j.
$$

Let $v_i(x_i) > t_i$, then

$$
v_j(x_{i+1}) \geq min\{v_j(a_0), v_j(a_n x_i^n), v_j(a_{n-1} x_i^{n-1}), \dots, v_j(a_1 x_i)\} > t_j.
$$

But it is impossible, since $f(x_{n-1}) = x_1$. Theorem 3 is proved.

References

- [1] Divišová, Z., On cycles of polynomials with integral rational coefficients, submitted.
- [2] Halter-Koch, F. and Narkiewicz, W., Scarcity of finite polynomial orbits, Pub. Math., 56, No.3-4 (2000) .
- [3] Jakubec, S. and Kostra, J., A note on normal bases of ideals, Math. Slovaca, **42, No.5** (1992), 677–684.
- [4] Jakubec, S. and Kostra, J., On the existence of a normal basis for an ambiguous ideal, Atti Semin. Mat. Fis. Univ. Modena, 46, No.1 (1998), 125– 129.
- [5] Kostra, J., A note on Lenstra constant, polynomial cycles and power basis in prime power cyclotomic fields, submitted.
- [6] Narkiewicz, W., Polynomial cycles in algebraic number field, Colloquium Mathematicum, 58 (1989), 151–155.
- [7] Narkiewicz, W., Polynomial Mappings, Lecture Notes in Mathematics 1600, Springer-Verlag, 1995.
- [8] ULLOM, S., Normal basis in Galois extensions of number fields, Nagoya Math. $J., 34, (1969), 153-167.$

Juraj Kostra

Department of Mathematics of the Faculty of Sciences University of Ostrava 30.dubna 22 701 03 Ostrava, Czech Republic