NOTE ON RAMANUJAN SUMS

Aleksander Grytczuk (Zielona Góra, Poland)

Dedicated to the memory of Professor Péter Kiss

Abstract. Let $S=\sum_{1 \leq a \leq q}\left|\sum_{\substack{1 \leq n \leq q \\(n, q)=1}} b_{n} \exp \left(2 \pi i \frac{a n}{q}\right)\right|^{r}$, where $r \geq 1$ is a real number, $\left(b_{n}\right)$ is a sequence of complex numbers. Then we obtain a lower and upper bound for S and moreover, we give an application of the Ramanujan sum to produce some identities given in the formulae ($\star \star$) and (C).

AMS Classification Number: 11L03

Keywords and phrases: Ramanujan sums, arithmetical functions

1. Introduction

Let $f: \mathbf{N} \rightarrow \mathbf{C}$ be an arithmetic function and let $f^{*}=\mu * f$ be the Dirichlet convolution of the Möbius function μ and the function f, i.e. $f^{*}(n)=\sum_{d \mid n} \mu(d) f\left(\frac{n}{d}\right)$. Moreover, let $c_{q}(n)=\sum_{\substack{1 \leq h \leq q \\(h, q)=1}} \exp \left(2 \pi i \frac{h n}{q}\right)$ be the Ramanujan sum. Then the series of the form: $\sum_{q} a_{q} c_{q}(n)$, where $a_{q}=\sum_{m} \frac{f^{*}(m q)}{m q}$, are called as Ramanujan series. Important result concerning Ramanujan's expansions of certain arithmetic function has been obtained by Delange [3]. Namely, he proved that, if $\sum_{n} \frac{2^{\omega(n)}}{n}\left|f^{*}(n)\right|<\infty$ then $\sum_{q}\left|a_{q} c_{q}(n)\right|<\infty$ for every positive integer n and $\sum_{q} a_{q} c_{q}(n)=f(n)$. In the proof of this result Delange used of the following inequality:

$$
\begin{equation*}
\sum_{d \mid k}\left|c_{d}(n)\right| \leq 2^{\omega(k)} n \tag{D}
\end{equation*}
$$

where $\omega(n)$ is the number of distinct prime divisors of n. Delange conjectured (see [3]) Lemma, p. 263) that the inequality (D) is the best possible. However, we proved in [4] that for all positive integers k and n the following identity is true

$$
\sum_{d \mid k}\left|c_{d}(n)\right|=2^{\omega\left(\frac{k}{\left(\frac{k}{k, n}\right)}\right)}(k, n)
$$

where (k, n) is the greatest common divisor of k and n.
Redmond [10] generalized (\star) for larger class of arithmetic functions and Johnson [7] evaluated the left hand side of (\star) for second variable of the Ramanujan sums. Further investigations connected with (\star) have been given by Johnson [8], Chidambaraswamy and Krishnaiah [2], Redmond [11] and Haukkanen [6]. Some patrial converse to Delange result and an evaluation of the Ramanujan sums defined on the arithmetical semigroups has been given in our paper [5].

In the present note we give further applications of (\star). Namely, we prove the following:

Theorem 1. Let $S(k, n)=\sum_{d \mid k} 2^{\omega\left(\frac{d}{(d, n)}\right)} \mu\left(\frac{k}{d}\right)(d, n)$, then we have

$$
\begin{align*}
& S(k, n)=\frac{\varphi(k)}{\varphi\left(\frac{k}{(k, n)}\right)}, \text { if } p^{2} \nmid \frac{k}{(k, n)} \text { for a prime } p \\
& S(k, n)=o \text { otherwise }
\end{align*}
$$

where φ is the Euler function.
Now, we denote by S the following sum:

$$
(\star \star \star) \quad S=S_{q}\left(b_{n}, r\right)=\sum_{1 \leq a \leq q}\left|\sum_{\substack{1 \leq n \leq q \\(n, q)=1}} b_{n} \exp \left(2 \pi i \frac{a n}{q}\right)\right|^{r},
$$

where $r \geq 1$ is a real number and $\left(b_{n}\right)$ is a sequence of complex numbers.
In the paper [1] Bachman proved a very interesting inequality for the sum S defined by $(\star \star \star)$, namely

$$
\begin{equation*}
S \geq(\varphi(q))^{-r}\left(\left|\sum_{n}^{\prime} b_{n}\right|\right)^{r} \sum_{1 \leq k \leq q}\left|c_{q}(k)\right|^{r} \tag{B}
\end{equation*}
$$

where $\sum_{n}^{\prime} b_{n}$ denotes the summation over all natural numbers n such that $1 \leq n \leq q$ and $(n, q)=1$. Using (B) and Hölder inequality we prove the following estimation for the sum S.

Theorem 2. Let $r \geq 1$ be a real number. Then for any sequence $\left(b_{n}\right)$ of complex numbers we have.

$$
\begin{equation*}
\left(2^{\omega(q)}\left|\sum_{\substack{1 \leq n \leq q \\(n, q)=1}} b_{n}\right|\right)^{r} q^{1-r} \leq S \leq q(\varphi(q))^{r-1} \sum_{\substack{1 \leq n \leq q \\(n, q)=1}}\left|b_{n}\right|^{r} . \tag{1}
\end{equation*}
$$

Remark. We note that in general the estimation (1) is the best possible. Indeed, putting in (1) $b_{n}=i$ for all natural number $n, q=2^{\alpha}$ with $\alpha=1$ and $r=1$, we get $2 \leq S \leq 2$.

Proof of Theorem 1. In the proof of Theorem 1 we use the following well-known Hölder identity (see, [9]):

$$
\begin{equation*}
c_{k}(n)=\frac{\varphi(k)}{\varphi\left(\frac{k}{(k, n)}\right)} \mu\left(\frac{k}{(k, n)}\right), \tag{HI}
\end{equation*}
$$

where $c_{k}(n)$ is the Ramanujan sum, φ and μ is the Euler and Möbius function, respectively. Let us denote by

$$
\begin{equation*}
F(k)=2^{\omega\left(\frac{k}{(k, n)}\right)}(k, n) . \tag{2}
\end{equation*}
$$

Then, if f and F are given multiplicative arithmetical functions then by Möbius inversion formula we have

$$
\begin{equation*}
\sum_{d \mid k} f(d)=F(k) \text { if and only if } f(k)=\sum_{d \mid k} \mu\left(\frac{k}{d}\right) F(d) \tag{3}
\end{equation*}
$$

Using (2) we can represent the identity (\star) in the form:

$$
\begin{equation*}
F(k)=\sum_{d \mid k}\left|c_{d}(n)\right| \tag{4}
\end{equation*}
$$

Hence, by (4), (3) and (*) we obtain

$$
\begin{equation*}
\left|c_{k}(n)\right|=\sum_{d \mid k} 2^{\omega\left(\frac{d}{(d, n)}\right)} \mu\left(\frac{k}{d}\right)(d, n) \tag{5}
\end{equation*}
$$

On the other hand by (HI) we have

$$
\begin{equation*}
\left|c_{k}(n)\right|=\frac{\varphi(k)}{\varphi\left(\frac{k}{(k, n)}\right)}\left|\mu\left(\frac{k}{(k, n)}\right)\right| . \tag{6}
\end{equation*}
$$

Comparing (5) to (6) we get

$$
\begin{equation*}
\sum_{d \mid k} 2^{\omega\left(\frac{d}{(d, n)}\right)} \mu\left(\frac{k}{d}\right)(d, n)=\frac{\varphi(k)}{\varphi\left(\frac{k}{(k, n)}\right)}\left|\mu\left(\frac{k}{(k, n)}\right)\right| . \tag{7}
\end{equation*}
$$

Now, we remark that by the definition of the Möbius function it follows that, with a prime p if $p^{2} \left\lvert\, \frac{k}{(k, n)}\right.$ then $\left|\mu\left(\frac{k}{(k, n)}\right)\right|=1$ and $\left|\mu\left(\frac{k}{(k, n)}\right)\right|=0$ if $p^{2} \backslash \frac{k}{(k, n)}$. Hence, the proof of Theorem 1 is complete.

From the Theorem 1 immediately follows the following.
Corollary 1. Let μ denote the Mbius function and let $\omega(d)$ is the number distinct prime divisors of d. Then we have

$$
\begin{equation*}
S(k)=\sum_{d \mid k} 2^{\omega(d)} \mu\left(\frac{k}{d}\right)=1, \text { if } p^{2} \nmid k \text { and } S(k)=0, \text { if } p^{2} \mid k . \tag{C}
\end{equation*}
$$

Proof of Theorem 2. In the proof of Theorem 2 we use of the following
Lemma 1. Let $a_{k} \geq 0$ and $r \geq 1$ be real numbers. Then we have

$$
\begin{equation*}
q^{r-1} \sum_{1 \leq k \leq q} a_{k}^{r} \geq\left(\sum_{1 \leq k \leq q} a_{k}\right)^{r} \tag{8}
\end{equation*}
$$

Proof of Lemma 1. Let $r>1$ and $a_{k} \geq 0, b_{k} \geq 0$ be real numbers and $\frac{1}{r}+\frac{1}{s}=1$. Then by the well-known Hölder's inequality we have

$$
\begin{equation*}
\left(\sum_{1 \leq k \leq q} a_{k}^{r}\right)^{\frac{1}{r}}\left(\sum_{1 \leq k \leq q} b_{k}^{s}\right)^{\frac{1}{s}} \geq \sum_{1 \leq k \leq q} a_{k} b_{k} \tag{H}
\end{equation*}
$$

Putting in the inequality (H) $b_{k}=1$ in virtue of $\frac{1}{s}=1-\frac{1}{r}$ we obtain (8). For $r=1$, (8) follows immediately.

Now, we denote by $a_{k}=\left|c_{q}(k)\right|$, then from (8) we get

$$
\begin{equation*}
q^{r-1} \sum_{1 \leq k \leq q}\left|c_{q}(k)\right|^{r} \geq\left(\sum_{1 \leq k \leq q}\left|c_{q}(k)\right|\right)^{r} \tag{9}
\end{equation*}
$$

On the other hand we can calculate that

$$
\begin{equation*}
\sum_{1 \leq k \leq q}\left|c_{q}(k)\right|=2^{\omega(q)} \varphi(q) \tag{10}
\end{equation*}
$$

Hence, by (10) and Bachman's inequality (B), we obtain

$$
\begin{equation*}
S \geq\left(2^{\omega(q)}\left|\sum_{\substack{1 \leq n \leq q \\(n, q)=1}} b_{n}\right|\right)^{r} q^{1-r} \tag{11}
\end{equation*}
$$

It remains to prove the right hand side of (1). In this purpose denote by

$$
S_{k}^{\prime}=\left|\sum_{\substack{1 \leq n \leq q \\(n, q)=1}} b_{n} \exp \left(2 \pi i \frac{k n}{q}\right)\right| .
$$

Then we have
and consequently we obtain

$$
\begin{equation*}
S_{k}^{\prime} \leq \sum_{\substack{1 \leq n \leq q \\(n, q)=1}}\left|b_{n}\right| \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\left(S_{k}^{\prime}\right)^{r} \leq\left(\sum_{\substack{1 \leq n \leq q \\(n, q)=1}}\left|b_{n}\right|\right)^{r} \tag{13}
\end{equation*}
$$

In the same way as in Lemma 1 we can deduce the following inequality

$$
\begin{equation*}
\left(\sum_{\substack{1 \leq n \leq q \\(n, q)=1}}\left|b_{n}\right|\right)^{r} \leq(\varphi(q))^{r-1} \sum_{\substack{1 \leq n \leq q \\(n, q)=1}}\left|b_{n}\right|^{r} \tag{14}
\end{equation*}
$$

From (13), (14) and ($\star \star \star$) we obtain

$$
\begin{equation*}
S=\sum_{1 \leq k \leq q}\left(S_{k}^{\prime}\right)^{r} \leq \sum_{1 \leq k \leq q}(\varphi(q))^{r-1} \sum_{\substack{1 \leq n \leq q \\(n, q)=1}}\left|b_{n}\right|^{r}=q(\varphi(q))^{r-1} \sum_{\substack{1 \leq n \leq q \\(n, q)=1}}\left|b_{n}\right|^{r}, \tag{15}
\end{equation*}
$$

that is the proof of Theorem 2 is complete.

References

[1] Bachman, G., On an optimality property of Ramanujan sums, Proc. Amer. Math. Soc. 125, No 4 (1997), 1001-1003.
[2] Chidambaraswamy, J. and Krishnaiah, P. V., An identity for a class of arithmetical functions of two variables, Internat. J. Math. \& Math. Sci. 11 (1988), 351-354.
[3] Delange, H., On Ramanujan expansions of certain arithmetical functions, Acta Arith. 31 (1976), 259-270.
[4] Grytczuk, A., An identity involving Ramanujan's sum, Elem. Math. 36 (1981), 16-17.
[5] Grytczuk, A., On Ramanujan sums on arithmetical semigoups, Tsukuba J. Math. 16 (1992), 315-319.
[6] Haukkanen, P., An identity for a class of arithmetical functions of several variables, Internat. J. Math. \& Mat. Sci. 16 (1993), 355-358.
[7] Johnson, K. R., A result for other variable Ramanujan's sum, Elem. Math. 38 (1983), 122-124.
[8] Johnson, K. R., Explicit formula for sums of Ramanujan type sums, Indian J. Pure Appl. Math. 18 (1987), 675-677.
[9] Knopfmacher, J., Abstract Analytic Number Theory, North-Holland Publ., 1975.
[10] Redmond, D., A remark on a paper by A. Grytczuk, Elem. Math. 32 (1983), 17-20.
[11] Redmond, D., A generalization of a result of K. R. Johnson, Tsukuba J. Math. 13 (1989), 99-105.

Aleksander Grytczuk

Institute of Mathematics
Department of Algebra and Number Theory
University of Zielona Góra
65-069 Zielona Gora, Poland
E-mail: A.Grytczuk@im.uz.zgora.pl

