SECOND ORDER LINEAR RECURRENCES AND PELL'S EQUATIONS OF HIGHER DEGREE

Ferenc Mátyás (Eger, Hungary)

Dedicated to the memory of Professor Péter Kiss

Abstract. In this note solutions are given to an infinite family of Pell's equations of degree $n \ge 2$ based on second order linear recursive sequences of integers.

AMS Classification Number: 11B39

1. Introduction

Let A and B be non-zero integers. The second order linear recursive sequences $R = \{R_n\}_{n=0}^{\infty}$ and $V = \{V_n\}_{n=0}^{\infty}$ are defined by the recursions

(1)
$$R_n = AR_{n-1} + BR_{n-2}$$
 and $V_n = AV_{n-1} + BV_{n-2}$,

for $n \ge 2$, while $R_0 = 0, R_1 = 1, V_0 = 2$ and $V_1 = A$. If A = B = 1 then $R_n = F_n$ and $V_n = L_n$, where F_n and L_n denote the n^{th} Fibonacci and Lucas numbers, respectively.

The polynomial $g(x) = x^2 - Ax - B$ is said to be the characteristic polynomial of the sequences R and V, the complex numbers α and β are the roots of g(x) = 0. In this note we suppose that $A^2 + 4B \neq 0$, i.e. $\alpha \neq \beta$. Then, by the well-known Binet formulae, for $n \geq 0$

(2)
$$R_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$
 and $V_n = \alpha^n + \beta^n$.

The classical Pell's equation $x^2 - dy^2 = \pm 1$ $(d \in \mathbf{Z})$ can be rewritten as

$$\det \begin{pmatrix} x & dy \\ y & x \end{pmatrix} = \pm 1.$$

Research supported by the Hungarian OTKA Foundation, No. T 032898.

To generalize this Lin Dazheng [1] investigated the quasi-cyclic matrix

(3)
$$\mathbf{C}_{n} = \mathbf{C}_{n}(d; x_{1}, x_{2}, \dots, x_{n}) = \begin{pmatrix} x_{1} & dx_{n} & dx_{n-1} & \dots & dx_{2} \\ x_{2} & x_{1} & dx_{n} & \dots & dx_{3} \\ x_{3} & x_{2} & x_{1} & \dots & dx_{4} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n} & x_{n-1} & x_{n-2} & \dots & x_{1} \end{pmatrix},$$

i.e. every entry of the upper triangular part (not including the main diagonal) of the cyclic matrix of entries x_1, x_2, \ldots, x_n is multiplied by d. The equation

(4)
$$\det\left(\mathbf{C}_{n}\right) = \pm 1$$

is called Pell's equation of degree $n \ge 2$. For example, if n = 3 then (4) has the form

$$x_1^3 + dx_2^3 + d^2x_3^3 - 3dx_1x_2x_3 = \pm 1.$$

Lin Dazheng [1] proved that det $(\mathbf{C}_n (L_n; F_{2n-1}, F_{2n-2}, \ldots, F_n)) = 1$, i.e. if $d = L_n$ then $(x_1, x_2, \ldots, x_n) = (F_{2n-1}, F_{2n-2}, \ldots, F_n)$ is a solution of (4). The aim of this paper is to extend and generalize this result for more general sequences defined by (1) with $A^2 + 4B \neq 0$. In the proofs of our theorems we'll apply the methods and algorithms developed and presented in [1] by Lin Dazheng.

2. Results

Using (1) with $A^2 + 4B \neq 0$ and (3), we can state our results.

Theorem 1. For $n \geq 2$

$$\det \left(\mathbf{C}_{n} \left(V_{n}; R_{2n-1}, R_{2n-2}, \dots, R_{n} \right) \right) = B^{n(n-1)}$$

i.e. $(x_1, x_2, \ldots, x_n) = (R_{2n-1}, R_{2n-2}, \ldots, R_n)$ is a solution of the generalized Pell's equation of degree n

$$\det\left(\mathbf{C}_{n}\left(V_{n};x_{1},x_{2},\ldots,x_{n}\right)\right)=B^{n(n-1)}.$$

Corollary 1. For $n \ge 2$

$$\prod_{k=0}^{n-1} \left(\sum_{j=1}^{n} R_{2n-j} \left(\sqrt[n]{V_n} \right)^{j-1} \varepsilon^{k(j-1)} \right) = B^{n(n-1)},$$

where $\sqrt[n]{V_n}$ denotes a fixed n^{th} complex root of V_n and $\varepsilon = e^{2\pi i/n}$.

It is known from [3] that the inverse of a quasi-cyclic matrix is quasi-cyclic. In our case we can prove the following result, too.

Theorem 2. For $n \ge 3$ the matrix $\mathbf{C}_n(V_n; R_{2n-1}, R_{2n-2}, \ldots, R_n)$ is invertible and its inverse matrix \mathbf{C}_n^{-1} is as follows:

$$\mathbf{C}_{n}^{-1}(V_{n}; R_{2n-1}, R_{2n-2}, \dots, R_{n}) = (-1)^{n-1} B^{-n} (B\mathbf{I}_{n} + A\mathbf{E}_{n} - \mathbf{E}_{n}^{2}),$$

where \mathbf{I}_n and \mathbf{E}_n denotes the identity matrix of order n and the n by n matrix

(5)
$$\mathbf{E}_{n} = \begin{pmatrix} 0 & 0 & \dots & 0 & V_{n} \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}.$$

respectively.

Remark. Naturally, if $|B| \neq 1$ then the entries of the matrix

$$\mathbf{C}_{n}^{-1}(V_{n}; R_{2n-1}, R_{2n-2}, \dots, R_{n})$$

are not integers.

Corollary 2.

$$(x_1, x_2, \dots, x_n) = \begin{cases} (1, A, -1, 0, \dots, 0), & \text{if } n \ge 3 \text{ odd and } B = 1, \\ (1, -A, 1, 0, \dots, 0), & \text{if } n \ge 3 \text{ odd and } B = -1, \\ (-1, -A, 1, 0, \dots, 0), & \text{if } n \ge 4 \text{ even and } B = 1, \\ (1, -A, 1, 0, \dots, 0), & \text{if } n \ge 4 \text{ even and } B = -1 \end{cases}$$

is an other solution of the generalized Pell's equation

(6)
$$\det \left(\mathbf{C}_n \left(V_n; x_1, x_2, \dots, x_n \right) \right) = 1.$$

3. Proofs

To prove our theorems we need the following

Lemma. Let the sequences R and V be defined by (1) and we suppose that $\alpha \neq \beta$ in (2). Then

(7/1)
$$R_{n+1}R_{n-1} - R_n^2 = (-1)^n B^{n-1} \quad (n \ge 1),$$

$$(7/2) R_n V_n = R_{2n} \quad (n \ge 0),$$

(7/3)
$$V_n R_{n+1} = R_{2n+1} + (-B)^n \quad (n \ge 0),$$

(7/4)
$$\mathbf{E}_n^n = V_n \mathbf{I}_n \text{ and } \mathbf{E}_n^{n+1} = V_n \mathbf{E}_n \quad (n \ge 3),$$

where \mathbf{E}_n is defined by (5).

Proof. The first three properties of the Lemma are known or, using (2), they can be proven easily. For the proof of (7/4) consider the multiplication of matrices. For example:

$$\mathbf{E}_{n}^{2} = \mathbf{E}_{n} \cdot \mathbf{E}_{n} = \begin{pmatrix} 0 & 0 & \dots & 0 & V_{n} & 0 \\ 0 & 0 & \dots & 0 & 0 & V_{n} \\ 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 & 0 \end{pmatrix}, \\ \mathbf{E}_{n}^{3} = \mathbf{E}_{n}^{2} \cdot \mathbf{E}_{n} = \begin{pmatrix} 0 & 0 & \dots & 0 & V_{n} & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 & V_{n} & 0 \\ 0 & 0 & \dots & 0 & 0 & 0 & V_{n} \\ 1 & 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 & 0 & 0 \end{pmatrix}, \dots , \\ \mathbf{E}_{n}^{n} = \begin{pmatrix} V_{n} & 0 & \dots & 0 & 0 \\ 0 & V_{n} & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & V_{n} & 0 \\ 0 & 0 & \dots & 0 & V_{n} \end{pmatrix} = V_{n} \mathbf{I}_{n}$$

and so $\mathbf{E}_n^{n+1} = \mathbf{E}_n^n \cdot \mathbf{E}_n = (V_n \mathbf{I}_n) \mathbf{E}_n = V_n \mathbf{E}_n.$

Proof of Theorem 1. For n = 2 we get that

det (
$$\mathbf{C}_2(V_2; R_3, R_2)$$
) = $\begin{vmatrix} A^2 + B & A^3 + 2AB \\ A & A^2 + B \end{vmatrix} = B^2.$

If n > 2, let us consider the n by n matrices

$$\mathbf{T}_{n} = \begin{pmatrix} 1 & -A & -B & 0 & \dots & 0 & 0 \\ 0 & 1 & -A & -B & \dots & 0 & 0 \\ 0 & 0 & 1 & -A & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & -A & -B \\ 0 & 0 & 0 & 0 & \dots & 1 & -A \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

and

$$\mathbf{C}_{n} = \mathbf{C}_{n}(V_{n}, R_{2n-1}, R_{2n-2}, \dots, R_{n}) = \begin{pmatrix} R_{2n-1} & V_{n}R_{n} & \dots & V_{n}R_{2n-2} \\ R_{2n-2} & R_{2n-1} & \dots & V_{n}R_{2n-3} \\ \vdots & \vdots & \ddots & \vdots \\ R_{n} & R_{n+1} & \dots & R_{2n-1} \end{pmatrix}.$$

Then, by (1), (2) and (7/1)-(7/3), one can verify that

$$\mathbf{C}_{n}\mathbf{T}_{n} = \begin{pmatrix} R_{2n-1} & BR_{2n-2} & (-B)^{n} & 0 & \dots & 0\\ R_{2n-2} & BR_{2n-3} & 0 & (-B)^{n} & \dots & 0\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots\\ R_{n+2} & BR_{n+1} & 0 & 0 & \dots & (-B)^{n}\\ R_{n+1} & BR_{n} & 0 & 0 & \dots & 0\\ R_{n} & BR_{n-1} & 0 & 0 & \dots & 0 \end{pmatrix}.$$

Developing the $det(\mathbf{C}_n\mathbf{T}_n)$ we get that

$$\det(\mathbf{C}_n \mathbf{T}_n) = (-1)^{2n+2} \det \begin{pmatrix} R_{n+1} & BR_n \\ R_n & BR_{n-1} \end{pmatrix} \det ((-B)^n \mathbf{I}_{n-2})$$
$$= B(R_{n+1}R_{n-1} - R_n^2)(-B)^{n(n-2)} = B(-1)^n B^{n-1}(-B)^{n(n-2)}$$
$$= (-1)^{n(n-1)} B^{n(n-1)} = B^{n(n-1)}.$$

But, since $\det(\mathbf{T}_n) = 1$, $\det(\mathbf{C}_n \mathbf{T}_n) = \det(\mathbf{C}_n) \cdot \det(\mathbf{T}_n) = \det(\mathbf{C}_n)$, therefore $\det(\mathbf{C}_n) = B^{n(n-1)}$, i.e. Theorem 1 is true.

Proof of Corollary 1. In [2] it is proven that if C_n is as in (3) then

(8)
$$\det\left(\mathbf{C}_n(d, x_1, x_2, \dots, x_n)\right) = \prod_{k=0}^{n-1} \left(\sum_{j=1}^n x_j \left(\sqrt[n]{d}\right)^{j-1} \varepsilon^{k(j-1)}\right),$$

where $\varepsilon = e^{2\pi i/n}$. Substituting in (8)

$$d = V_n$$
 and $(x_1, x_2, \dots, x_n) = (R_{2n-1}, R_{2n-2}, \dots, R_n),$

by Theorem 1, the statement of Corollary 1 immediately yields.

Proof of Theorem 2. Theorem 1 implies that $\mathbf{C}_n^{-1}(V_n; R_{2n-1}, R_{2n-2}, \ldots, R_n)$ exists. It is easily verifyable that

$$\mathbf{C}_{n}(V_{n}; R_{2n-1}, R_{2n-2}, \dots, R_{n}) = R_{2n-1}\mathbf{I}_{n} + R_{2n-2}\mathbf{E}_{n} + \dots + R_{n}\mathbf{E}_{n}^{n-1}$$

therefore we have to show that

(9)
$$(R_{2n-1}\mathbf{I}_n + R_{2n-2}\mathbf{E}_n + \dots + R_n\mathbf{E}_n^{n-1})(-1)^{n-1}B^{-n}(B\mathbf{I}_n + A\mathbf{E}_n - \mathbf{E}_n^2) = \mathbf{I}_n.$$

By (1), the left hand side of (9) can be written as

(10)
$$(-1)^{n-1}B^{-n} \left(R_{2n-1}B\mathbf{I}_n + R_{2n-2}B\mathbf{E}_n + R_{2n-1}A\mathbf{E}_n + R_n A\mathbf{E}_n^n - R_{n+1}\mathbf{E}_n^n - R_n \mathbf{E}_n^{n+1} + \mathbf{O}_n + \dots + \mathbf{O}_n \right),$$

where \mathbf{O}_n is the zero-matrix of order *n*. Thus, applying (1), (7/1)–(7/4) and (2), the form (10) is equal to

$$(-1)^{n-1}B^{-n} (R_{2n-1}B\mathbf{I}_n + (BR_{2n-2} + AR_{2n-1})\mathbf{E}_n + R_n AV_n \mathbf{I}_n - R_{n+1}V_n \mathbf{I}_n - R_n V_n \mathbf{E}_n) = (-1)^{n-1}B^{-n} (R_{2n-1}B\mathbf{I}_n + (R_{2n} - R_n V_n)\mathbf{E}_n + V_n (AR_n - R_{n+1})\mathbf{I}_n) = (-1)^{n-1}B^{-n} (R_{2n-1}B\mathbf{I}_n + \mathbf{O}_n - V_n BR_{n-1}\mathbf{I}_n) = (-1)^{n-1}B^{-n+1} (R_{2n-1} - V_n R_{n-1})\mathbf{I}_n = (-1)^{n-1}B^{-n+1} (-B)^{n-1}\mathbf{I}_n = (-1)^{2n-2}B^0\mathbf{I}_n = \mathbf{I}_n,$$

which completes the proof of Theorem 2.

Proof of Corollary 2. By Theorem 2

$$\det \left(\mathbf{C}_{n} \left(V_{n}; R_{2n-1}, R_{2n-2}, \dots, R_{n} \right) \right) \cdot \det \left(\mathbf{C}_{n}^{-1} \left(V_{n}; R_{2n-1}, R_{2n-2}, \dots, R_{n} \right) \right) = 1$$

thus, if |B| = 1 then, by Theorem 1,

$$\det \left(\mathbf{C}_{n}^{-1} \left(V_{n}; R_{2n-1}, R_{2n-2}, \dots, R_{n} \right) \right) = 1.$$

E.g. let $n \ge 3$ be an odd integer and B = 1. Then, by Theorem 2,

$$\mathbf{C}_{n}^{-1}(V_{n}; R_{2n-1}, R_{2n-2}, \dots, R_{n}) = \mathbf{I}_{n} + A\mathbf{E}_{n} - \mathbf{E}_{n}^{2}$$
$$= \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & -V_{n} & AV_{n} \\ A & 1 & 0 & \dots & 0 & 0 & -V_{n} \\ -1 & A & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & -1 & A & 1 \end{pmatrix},$$

i.e. $(x_1, x_2, \ldots, x_n) = (1, A, -1, 0, \ldots, 0)$ is a solution of (6). The proof is similar when $n \ge 3$ odd and B = -1, or $n \ge 4$ even and |B| = 1.

References

- LIN DAZHENG, Fibonacci–Lucas Quasi-Cyclic Matrices, The Fibonacci Quarterly 40.2 (2002), 280–286.
- [2] SHEN GUANGXING, On Eigenvalues of Some Cyclic Matrices, Math. Application 4.3 (1991), 76–82.
- [3] TANG TAIMING and LIN DAZHENG, Diophantine Approximation, Circulant Matrix and Pell Equation, J. Shaansi Normal Univ. (Natural Science Ed.), 28.14 (2000), 6–11.

Ferenc Mátyás

Department of Mathematics Károly Eszterházy College H-3301, Eger, P. O. Box 43. Hungary E-mail: matyas@ektf.hu