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1. Introduction

Let N be the set of the positive integers and N
d the positive integer d-

dimensional lattice points, where d is a fixed positive integer. Denote R the set
of real numbers and B the σ-algebra of Borel sets of R. Let ζn, n ∈ N

d, be a
multiindex sequence of random variables on the probability space (Ω,A, P). Almost
sure limit theorems in multiindex case state that

1

Dn

∑

k≤n

dkδζk(ω) ⇒ µ, as n → ∞, for almost every ω ∈ Ω.

Here δx is the unit mass at point x, that is δx:B → R, δx(B) = 1 if x ∈ B and
δx(B) = 0 if x 6∈ B, moreover ⇒ µ denotes weak convergence to the probability
measure µ. Theorems of this type are not direct consequences of the corresponding
theorems for ordinary sequences.

In this paper k = (k1, . . . , kd),n = (n1, . . . , nd), . . . ∈ N
d. Relations ≤, 6≤,

min, → etc. are defined coordinatewise, i.e. n → ∞ means that ni → ∞ for all

i ∈ {1, . . . , d}. Let |n| =
d
∏

i=1

ni and | logn| =
d
∏

i=1

log+ ni, where log+ x = log x if

x ≥ e and log+ x = 1 if x < e.

In the multiindex version of the classical almost sure limit theorem ζn =
1√
|n|

∑

k≤n

Xk, where Xk, k ∈ N
d, are independent identically distributed random

variables with expectation EXk = 0 and variance D2Xk = 1, moreover dk = 1
|k| ,

Dn = | logn|, finally µ is the standard normal distribution N (0, 1). (See [2] in
multiindex case, while [1] and [3] for single index case.)
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We shall prove a similar proposition, but in so-called m-dependent case. For
this purpose we need the next known theorems and lemmas.

Theorem 1.1. Assume that for any pair h, l ∈ N
d, h ≤ l there exists a random

variable ζh,l with the following properties. ζh,l = 0 if h = l. If k, l ∈ N
d, then

for h = min{k, l} we suppose that the following pairs of random variables are
independent: ζk and ζh,l; ζl and ζh,k; ζh,k and ζh,l. Assume that there exist c > 0

and n0 ∈ N
d such that E(ζl − ζh,l)

2 ≤ c|h|/|l| for all n0 ≤ h ≤ l, h, l ∈ N
d.

Let 0 ≤ d
(i)
k ≤ c log k+1

k , assume that
∞
∑

k=1

d
(i)
k = ∞ for i ∈ {1, . . . , d}. Let

dk =
d
∏

i=1

d
(i)
ki

and Dn =
∑

k≤n

dk. Then for any probability distribution µ the following

two statements are equivalent

1

Dn

∑

k≤n

dkδζk(ω) ⇒ µ, as n → ∞, for almost every ω ∈ Ω;

1

Dn

∑

k≤n

dkµζk ⇒ µ, as n → ∞,

where µζk denotes the distribution of the ζk.

Proof. Choose in [2], Theorem 2.1 and Remark 2.2, B = R, ̺(x, y) = |x − y|,
c
(i)
n = n and β = 1.

Let Xn, n ∈ N
d, be a multiindex sequence of random variables on the

probability space (Ω,A, P). Suppose that EXn = 0 and D2Xn < ∞ for all n ∈ N
d.

Let ||n|| = max{n1, . . . , nd} and d(V1, V2) = inf{||n−m|| : n ∈ V1,m ∈ V2}, where
V1, V2 ⊂ N

d. Let σ(V ), where V ⊂ N
d, be the smallest σ-algebra with respect to

which {Xn,n ∈ V } are measurable.

Definition 1.2. Let m ∈ N be fixed. The random field {Xn,n ∈ N
d} is said

to be m-dependent if the σ-algebras σ(V1) and σ(V2) are independent whenever
d(V1, V2) > m, V1, V2 ⊂ N

d.

In the following let Sn =
∑

k≤n

Xk, Bn = D2Sn, ζn = Sn/
√

Bn and let µζn

denote the distribution of the random variable ζn.

Lemma 1.3. Let {Xn,n ∈ N
d} be an m-dependent random field, EXn = 0,

n ∈ N
d. Assume that

(1.1) there exist M, δ ∈ R such that E|Xn|2+δ ≤ M < ∞ for all n ∈ N
d,

for some δ ≥ 0. Then there exists constant Cδ > 0 such that

E|Sn|2+δ ≤ Cδ|n|
2+δ
2
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for all n ∈ N
d.

Proof. See [4], Lemma 5.

Lemma 1.4. Let µ, µn, n ∈ N
d, be distributions with µn ⇒ µ, as n → ∞. Let dk,

k ∈ N
d, be a nonidentically zero sequence of nonnegative real numbers. Assume

that for each fixed n0 ∈ N
d,

1
∑

k≤n

dk

∑

k∈An0

dk → 0, as n → ∞,

where An0
= {k ∈ N

d : k ≤ n and k 6≥ n0}. Then

1
∑

k≤n

dk

∑

k≤n

dkµk ⇒ µ, as n → ∞.

Proof. Let f :R → R be a bounded and continuous function. Then for ε > 0 there
exists nε ∈ N

d such that for n ≥ nε

∣

∣

∣

∣

∫

fdµn −
∫

fdµ

∣

∣

∣

∣

<
ε

2
and

1
∑

k≤n

dk

∑

k∈Anε

dk <
ε

2K
,

where
∣

∣

∫

fdµn −
∫

fdµ
∣

∣ ≤ K < ∞. Let γn =
∑

k≤n

dkµk

/

∑

k≤n

dk. Then

∣

∣

∣

∣

∫

fdγn −
∫

fdµ

∣

∣

∣

∣

≤ 1
∑

k≤n

dk

∑

k∈Anε

dk

∣

∣

∣

∣

∫

fdµk −
∫

fdµ

∣

∣

∣

∣

+
1

∑

k≤n

dk

∑

nε≤k≤n

dk

∣

∣

∣

∣

∫

fdµk −
∫

fdµ

∣

∣

∣

∣

< ε,

which implies Lemma 1.4.

It is easy to see that the conditions of Lemma 1.4 are satisfied for dk = 1
|k| .

The next proposition is a central limit theorem for m-dependent random fields.

Theorem 1.5. Let {Xn,n ∈ N
d} be an m-dependent random field, EXn = 0,

n ∈ N
d. Assume that (1.1) holds for some δ > 0 and

(1.2) there exist σ > 0 and nσ ∈ N
d such that

Bn

|n| ≥ σ for all n ≥ nσ.
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Then
µζn ⇒ N (0, 1) as n → ∞.

Proof. It is a simple corollary of [4], Theorem 1.

2. Results

Theorem 2.1. Let {Xn,n ∈ N
d} be an m-dependent random field, EXn = 0,

n ∈ N
d. Suppose that (1.1) and (1.2) hold for some δ ≥ 0. Let 0 ≤ d

(i)
k ≤ c log k+1

k ,

assume that
∞
∑

k=1

d
(i)
k = ∞ for i ∈ {1, . . . , d}. Let dk =

d
∏

i=1

d
(i)
ki

and Dn =
∑

k≤n

dk.

Then for any probability distribution µ the following two statements are equivalent

1

Dn

∑

k≤n

dkδζk(ω) ⇒ µ, as n → ∞, for almost every ω ∈ Ω;

1

Dn

∑

k≤n

dkµζk ⇒ µ, as n → ∞.

Proof. Let h, l ∈ N
d, h ≤ l, m = (m, . . . , m) ∈ N

d, Vl = {t ∈ N
d : t ≤ l},

Vh,l = {t ∈ N
d : t ≤ l and t 6≤ h + m}, ζh,l =

1√
Bl

∑

t∈Vh,l

Xt. Let us verify in this

case the assumptions of Theorem 1.1.

(I) ζl,l = 0 because Vl,l = ∅.
(II) Let k, l ∈ N

d and h = min{k, l}. Then

ζk is σ(Vk)-measurable, ζl is σ(Vl)-measurable,

ζh,l is σ(Vh,l)-measurable if Vh,l 6= ∅, otherwise ζh,l = 0,

ζh,k is σ(Vh,k)-measurable if Vh,k 6= ∅, otherwise ζh,k = 0,

d(Vk, Vh,l) > m if Vh,l 6= ∅,
d(Vl, Vh,k) > m if Vh,k 6= ∅,

d(Vh,k, Vh,l) > m if Vh,k 6= ∅ and Vh,l 6= ∅.
Thus the following pairs of random variables are independent: ζk and ζh,l; ζl and
ζh,k; ζh,k and ζh,l.
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(III) By Lyapunov’s inequality, (E|ξ|s)1/s ≤ (E|ξ|t)1/t if 0 < s ≤ t. (See it for
example in [5].) Thus we have

ES2
h+m

≤ (E|Sh+m|2+δ)
2

2+δ .

By Lemma 1.3,

(2.1) ES2
h+m

≤
(

c1|h + m| 2+δ
2

)
2

2+δ

= c2|h + m|.

Let h, l ∈ N
d such that max{m,nσ} ≤ h ≤ l. Then m ≤ h and (2.1) imply that

(2.2) E(ζl − ζh,l)
2 = E

(

1√
Bl

Sh+m

)2

=
1

Bl

ES2
h+m

≤ c2

Bl

|h + m|.

Since l ≥ nσ thus, by assumption (1.2), 1
Bl

≤ 1
σ|l| . So (2.2) implies that

E(ζl − ζh,l)
2 ≤ c2

σ

|h + m|
|l| = c3

d
∏

i=1

(hi + m)

|l| ≤ 2dc3
|h|
|l| = c4

|h|
|l| .

Therefore random variables ζl and ζh,l satisfy the conditions of Theorem 1.1, which
implies Theorem 2.1.

Theorem 2.2. Let {Xn,n ∈ N
d} be an m-dependent random field, EXn = 0,

n ∈ N
d. Assume that (1.1) and (1.2) hold for some δ > 0. Then

1

| logn|
∑

k≤n

1

|k|δζk(ω) ⇒ N (0, 1), as n → ∞, for almost every ω ∈ Ω.

Proof. Let d
(i)
k = 1

k , k ∈ N, i ∈ {1, . . . , d}. The conditions of Theorem 2.1 are

satisfied, because 2 ≤
(

1 + 1
k

)k
, so 1

k ≤ 1
log 2 log k+1

k , moreover
∞
∑

k=1

1
k = ∞. Then

dk = 1
|k| and

(2.3) Dn =
∑

k≤n

d
∏

i=1

1

ki
=

d
∏

i=1

ni
∑

ki=1

1

ki
∼

d
∏

i=1

log ni ∼ | logn|,

where an ∼ bn if an/bn → 1, as n → ∞. By Theorem 1.5, µζn ⇒ N (0, 1), as
n → ∞. Therefore Lemma 1.4 implies that

1

Dn

∑

k≤n

dkµζk =
1

∑

k≤n

1
|k|

∑

k≤n

1

|k|µζk ⇒ N (0, 1), as n → ∞.
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Now using Theorem 2.1, we obtain

1
∑

k≤n

1
|k|

∑

k≤n

1

|k|δζk(ω) ⇒ N (0, 1), as n → ∞, for almost every ω ∈ Ω.

This fact and (2.3) imply Theorem 2.2.
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