ALMOST SURE CENTRAL LIMIT THEOREMS FOR m-DEPENDENT RANDOM FIELDS

Tibor Tómács (Eger, Hungary)

Dedicated to the memory of Professor Péter Kiss

Abstract. It is proved that the almost sure central limit theorem holds true for *m*-dependent random fields.

AMS Classification Number: 60 F 05, 60 F 15

1. Introduction

Let **N** be the set of the positive integers and \mathbf{N}^d the positive integer *d*dimensional lattice points, where *d* is a fixed positive integer. Denote **R** the set of real numbers and \mathcal{B} the σ -algebra of Borel sets of **R**. Let $\zeta_{\mathbf{n}}$, $\mathbf{n} \in \mathbf{N}^d$, be a multiindex sequence of random variables on the probability space $(\Omega, \mathcal{A}, \mathbf{P})$. Almost sure limit theorems in multiindex case state that

$$\frac{1}{D_{\mathbf{n}}} \sum_{\mathbf{k} \leq \mathbf{n}} d_{\mathbf{k}} \delta_{\zeta_{\mathbf{k}}(\omega)} \Rightarrow \mu, \text{ as } \mathbf{n} \to \infty, \text{ for almost every } \omega \in \Omega.$$

Here δ_x is the unit mass at point x, that is $\delta_x: \mathcal{B} \to \mathbf{R}, \ \delta_x(B) = 1$ if $x \in B$ and $\delta_x(B) = 0$ if $x \notin B$, moreover $\Rightarrow \mu$ denotes weak convergence to the probability measure μ . Theorems of this type are not direct consequences of the corresponding theorems for ordinary sequences.

In this paper $\mathbf{k} = (k_1, \ldots, k_d), \mathbf{n} = (n_1, \ldots, n_d), \ldots \in \mathbf{N}^d$. Relations $\leq, \not\leq$, min, \rightarrow etc. are defined coordinatewise, i.e. $\mathbf{n} \rightarrow \infty$ means that $n_i \rightarrow \infty$ for all $i \in \{1, \ldots, d\}$. Let $|\mathbf{n}| = \prod_{i=1}^d n_i$ and $|\log \mathbf{n}| = \prod_{i=1}^d \log_+ n_i$, where $\log_+ x = \log x$ if $x \geq e$ and $\log_+ x = 1$ if x < e.

In the multiindex version of the classical almost sure limit theorem $\zeta_{\mathbf{n}} = \frac{1}{\sqrt{|\mathbf{n}|}} \sum_{\mathbf{k} \leq \mathbf{n}} X_{\mathbf{k}}$, where $X_{\mathbf{k}}, \mathbf{k} \in \mathbf{N}^d$, are independent identically distributed random variables with expectation $\mathbf{E}X_{\mathbf{k}} = 0$ and variance $\mathbf{D}^2 X_{\mathbf{k}} = 1$, moreover $d_{\mathbf{k}} = \frac{1}{|\mathbf{k}|}$, $D_{\mathbf{n}} = |\log \mathbf{n}|$, finally μ is the standard normal distribution $\mathcal{N}(0, 1)$. (See [2] in multiindex case, while [1] and [3] for single index case.)

We shall prove a similar proposition, but in so-called m-dependent case. For this purpose we need the next known theorems and lemmas.

Theorem 1.1. Assume that for any pair $\mathbf{h}, \mathbf{l} \in \mathbf{N}^d$, $\mathbf{h} \leq \mathbf{l}$ there exists a random variable $\zeta_{\mathbf{h},\mathbf{l}}$ with the following properties. $\zeta_{\mathbf{h},\mathbf{l}} = 0$ if $\mathbf{h} = \mathbf{l}$. If $\mathbf{k}, \mathbf{l} \in \mathbf{N}^d$, then for $\mathbf{h} = \min{\{\mathbf{k},\mathbf{l}\}}$ we suppose that the following pairs of random variables are independent: $\zeta_{\mathbf{k}}$ and $\zeta_{\mathbf{h},\mathbf{l}}; \zeta_{\mathbf{l}}$ and $\zeta_{\mathbf{h},\mathbf{k}}; \zeta_{\mathbf{h},\mathbf{k}}$ and $\zeta_{\mathbf{h},\mathbf{l}}$. Assume that there exist c > 0 and $\mathbf{n}_0 \in \mathbf{N}^d$ such that $E(\zeta_{\mathbf{l}} - \zeta_{\mathbf{h},\mathbf{l}})^2 \leq c|\mathbf{h}|/|\mathbf{l}|$ for all $\mathbf{n}_0 \leq \mathbf{h} \leq \mathbf{l}, \mathbf{h}, \mathbf{l} \in \mathbf{N}^d$.

Let
$$0 \leq d_k^{(i)} \leq c \log \frac{k+1}{k}$$
, assume that $\sum_{k=1}^{\infty} d_k^{(i)} = \infty$ for $i \in \{1, \dots, d\}$. Let

 $d_{\mathbf{k}} = \prod_{i=1}^{d} d_{k_i}^{(i)}$ and $D_{\mathbf{n}} = \sum_{\mathbf{k} \leq \mathbf{n}} d_{\mathbf{k}}$. Then for any probability distribution μ the following two statements are equivalent

$$\frac{1}{D_{\mathbf{n}}} \sum_{\mathbf{k} \leq \mathbf{n}} d_{\mathbf{k}} \delta_{\zeta_{\mathbf{k}}(\omega)} \Rightarrow \mu, \text{ as } \mathbf{n} \to \infty, \text{ for almost every } \omega \in \Omega;$$
$$\frac{1}{D_{\mathbf{n}}} \sum_{\mathbf{k} \leq \mathbf{n}} d_{\mathbf{k}} \mu_{\zeta_{\mathbf{k}}} \Rightarrow \mu, \text{ as } \mathbf{n} \to \infty,$$

where $\mu_{\zeta_{\mathbf{k}}}$ denotes the distribution of the $\zeta_{\mathbf{k}}$.

Proof. Choose in [2], Theorem 2.1 and Remark 2.2, $B = \mathbf{R}$, $\varrho(x, y) = |x - y|$, $c_n^{(i)} = n$ and $\beta = 1$.

Let $X_{\mathbf{n}}$, $\mathbf{n} \in \mathbf{N}^d$, be a multiindex sequence of random variables on the probability space $(\Omega, \mathcal{A}, \mathbf{P})$. Suppose that $\mathbf{E}X_{\mathbf{n}} = 0$ and $\mathbf{D}^2 X_{\mathbf{n}} < \infty$ for all $\mathbf{n} \in \mathbf{N}^d$. Let $||\mathbf{n}|| = \max\{n_1, \ldots, n_d\}$ and $d(V_1, V_2) = \inf\{||\mathbf{n} - \mathbf{m}|| : \mathbf{n} \in V_1, \mathbf{m} \in V_2\}$, where $V_1, V_2 \subset \mathbf{N}^d$. Let $\sigma(V)$, where $V \subset \mathbf{N}^d$, be the smallest σ -algebra with respect to which $\{X_{\mathbf{n}}, \mathbf{n} \in V\}$ are measurable.

Definition 1.2. Let $m \in \mathbf{N}$ be fixed. The random field $\{X_{\mathbf{n}}, \mathbf{n} \in \mathbf{N}^d\}$ is said to be *m*-dependent if the σ -algebras $\sigma(V_1)$ and $\sigma(V_2)$ are independent whenever $d(V_1, V_2) > m, V_1, V_2 \subset \mathbf{N}^d$.

In the following let $S_{\mathbf{n}} = \sum_{\mathbf{k} \leq \mathbf{n}} X_{\mathbf{k}}, B_{\mathbf{n}} = D^2 S_{\mathbf{n}}, \zeta_{\mathbf{n}} = S_{\mathbf{n}}/\sqrt{B_{\mathbf{n}}}$ and let $\mu_{\zeta_{\mathbf{n}}}$ denote the distribution of the random variable $\zeta_{\mathbf{n}}$.

Lemma 1.3. Let $\{X_{\mathbf{n}}, \mathbf{n} \in \mathbf{N}^d\}$ be an *m*-dependent random field, $EX_{\mathbf{n}} = 0$, $\mathbf{n} \in \mathbf{N}^d$. Assume that

(1.1) there exist $M, \delta \in \mathbf{R}$ such that $E|X_{\mathbf{n}}|^{2+\delta} \leq M < \infty$ for all $\mathbf{n} \in \mathbf{N}^d$,

for some $\delta \geq 0$. Then there exists constant $C_{\delta} > 0$ such that

$$E|S_{\mathbf{n}}|^{2+\delta} \le C_{\delta}|\mathbf{n}|^{\frac{2+\delta}{2}}$$

for all $\mathbf{n} \in \mathbf{N}^d$.

Proof. See [4], Lemma 5.

Lemma 1.4. Let $\mu, \mu_{\mathbf{n}}, \mathbf{n} \in \mathbf{N}^d$, be distributions with $\mu_{\mathbf{n}} \Rightarrow \mu$, as $\mathbf{n} \to \infty$. Let $d_{\mathbf{k}}$, $\mathbf{k} \in \mathbf{N}^d$, be a nonidentically zero sequence of nonnegative real numbers. Assume that for each fixed $\mathbf{n}_0 \in \mathbf{N}^d$,

$$\frac{1}{\sum_{\mathbf{k}\leq\mathbf{n}}d_{\mathbf{k}}}\sum_{\mathbf{k}\in A_{\mathbf{n}_{0}}}d_{\mathbf{k}}\rightarrow0, \text{ as } \mathbf{n}\rightarrow\infty,$$

where $A_{\mathbf{n}_0} = \{ \mathbf{k} \in \mathbf{N}^d : \mathbf{k} \leq \mathbf{n} \text{ and } \mathbf{k} \not\geq \mathbf{n}_0 \}$. Then

$$\frac{1}{\sum_{\mathbf{k}\leq\mathbf{n}}d_{\mathbf{k}}}\sum_{\mathbf{k}\leq\mathbf{n}}d_{\mathbf{k}}\mu_{\mathbf{k}} \Rightarrow \mu, \text{ as } \mathbf{n} \to \infty.$$

Proof. Let $f: \mathbf{R} \to \mathbf{R}$ be a bounded and continuous function. Then for $\varepsilon > 0$ there exists $\mathbf{n}_{\varepsilon} \in \mathbf{N}^d$ such that for $\mathbf{n} \ge \mathbf{n}_{\varepsilon}$

$$\left|\int f \mathrm{d}\mu_{\mathbf{n}} - \int f \mathrm{d}\mu\right| < \frac{\varepsilon}{2} \quad \text{and} \quad \frac{1}{\sum_{\mathbf{k} \leq \mathbf{n}} d_{\mathbf{k}}} \sum_{\mathbf{k} \in A_{\mathbf{n}_{\varepsilon}}} d_{\mathbf{k}} < \frac{\varepsilon}{2K},$$

where $\left|\int f d\mu_{\mathbf{n}} - \int f d\mu\right| \leq K < \infty$. Let $\gamma_{\mathbf{n}} = \sum_{\mathbf{k} \leq \mathbf{n}} d_{\mathbf{k}} \mu_{\mathbf{k}} / \sum_{\mathbf{k} \leq \mathbf{n}} d_{\mathbf{k}}$. Then

$$\begin{split} \left| \int f \mathrm{d}\gamma_{\mathbf{n}} - \int f \mathrm{d}\mu \right| &\leq \frac{1}{\sum_{\mathbf{k} \leq \mathbf{n}} d_{\mathbf{k}}} \sum_{\mathbf{k} \in A_{\mathbf{n}_{\varepsilon}}} d_{\mathbf{k}} \left| \int f \mathrm{d}\mu_{\mathbf{k}} - \int f \mathrm{d}\mu \right| \\ &+ \frac{1}{\sum_{\mathbf{k} \leq \mathbf{n}} d_{\mathbf{k}}} \sum_{\mathbf{n}_{\varepsilon} \leq \mathbf{k} \leq \mathbf{n}} d_{\mathbf{k}} \left| \int f \mathrm{d}\mu_{\mathbf{k}} - \int f \mathrm{d}\mu \right| < \varepsilon, \end{split}$$

which implies Lemma 1.4.

It is easy to see that the conditions of Lemma 1.4 are satisfied for $d_{\mathbf{k}} = \frac{1}{|\mathbf{k}|}$. The next proposition is a central limit theorem for *m*-dependent random fields.

Theorem 1.5. Let $\{X_{\mathbf{n}}, \mathbf{n} \in \mathbf{N}^d\}$ be an *m*-dependent random field, $EX_{\mathbf{n}} = 0$, $\mathbf{n} \in \mathbf{N}^d$. Assume that (1.1) holds for some $\delta > 0$ and

(1.2) there exist
$$\sigma > 0$$
 and $\mathbf{n}_{\sigma} \in \mathbf{N}^{d}$ such that $\frac{B_{\mathbf{n}}}{|\mathbf{n}|} \ge \sigma$ for all $\mathbf{n} \ge \mathbf{n}_{\sigma}$.

Then

$$\mu_{\zeta_{\mathbf{n}}} \Rightarrow \mathcal{N}(0,1) \text{ as } \mathbf{n} \to \infty.$$

Proof. It is a simple corollary of [4], Theorem 1.

2. Results

Theorem 2.1. Let $\{X_{\mathbf{n}}, \mathbf{n} \in \mathbf{N}^d\}$ be an *m*-dependent random field, $EX_{\mathbf{n}} = 0$, $\mathbf{n} \in \mathbf{N}^d$. Suppose that (1.1) and (1.2) hold for some $\delta \ge 0$. Let $0 \le d_k^{(i)} \le c \log \frac{k+1}{k}$, assume that $\sum_{k=1}^{\infty} d_k^{(i)} = \infty$ for $i \in \{1, \ldots, d\}$. Let $d_{\mathbf{k}} = \prod_{i=1}^d d_{k_i}^{(i)}$ and $D_{\mathbf{n}} = \sum_{\mathbf{k} \le \mathbf{n}} d_{\mathbf{k}}$. Then for any probability distribution μ the following two statements are equivalent

$$\frac{1}{D_{\mathbf{n}}} \sum_{\mathbf{k} \leq \mathbf{n}} d_{\mathbf{k}} \delta_{\zeta_{\mathbf{k}}(\omega)} \Rightarrow \mu, \text{ as } \mathbf{n} \to \infty, \text{ for almost every } \omega \in \Omega;$$
$$\frac{1}{D_{\mathbf{n}}} \sum_{\mathbf{k} \leq \mathbf{n}} d_{\mathbf{k}} \mu_{\zeta_{\mathbf{k}}} \Rightarrow \mu, \text{ as } \mathbf{n} \to \infty.$$

Proof. Let $\mathbf{h}, \mathbf{l} \in \mathbf{N}^d$, $\mathbf{h} \leq \mathbf{l}, \mathbf{m} = (m, \dots, m) \in \mathbf{N}^d$, $V_{\mathbf{l}} = \{\mathbf{t} \in \mathbf{N}^d : \mathbf{t} \leq \mathbf{l}\}$, $V_{\mathbf{h},\mathbf{l}} = \{\mathbf{t} \in \mathbf{N}^d : \mathbf{t} \leq \mathbf{l} \text{ and } \mathbf{t} \not\leq \mathbf{h} + \mathbf{m}\}$, $\zeta_{\mathbf{h},\mathbf{l}} = \frac{1}{\sqrt{B_{\mathbf{l}}}} \sum_{\mathbf{t} \in V_{\mathbf{h},\mathbf{l}}} X_{\mathbf{t}}$. Let us verify in this

case the assumptions of Theorem 1.1.

(I) $\zeta_{\mathbf{l},\mathbf{l}} = 0$ because $V_{\mathbf{l},\mathbf{l}} = \emptyset$.

(II) Let $\mathbf{k}, \mathbf{l} \in \mathbf{N}^d$ and $\mathbf{h} = \min{\{\mathbf{k}, \mathbf{l}\}}$. Then

 $\zeta_{\mathbf{k}}$ is $\sigma(V_{\mathbf{k}})$ -measurable, $\zeta_{\mathbf{l}}$ is $\sigma(V_{\mathbf{l}})$ -measurable,

 $\zeta_{\mathbf{h},\mathbf{l}}$ is $\sigma(V_{\mathbf{h},\mathbf{l}})$ -measurable if $V_{\mathbf{h},\mathbf{l}} \neq \emptyset$, otherwise $\zeta_{\mathbf{h},\mathbf{l}} = 0$,

 $\zeta_{\mathbf{h},\mathbf{k}}$ is $\sigma(V_{\mathbf{h},\mathbf{k}})$ -measurable if $V_{\mathbf{h},\mathbf{k}} \neq \emptyset$, otherwise $\zeta_{\mathbf{h},\mathbf{k}} = 0$,

$$\begin{aligned} d(V_{\mathbf{k}}, V_{\mathbf{h}, \mathbf{l}}) &> m \text{ if } V_{\mathbf{h}, \mathbf{l}} \neq \emptyset, \\ d(V_{\mathbf{l}}, V_{\mathbf{h}, \mathbf{k}}) &> m \text{ if } V_{\mathbf{h}, \mathbf{k}} \neq \emptyset, \end{aligned}$$

 $d(V_{\mathbf{h},\mathbf{k}},V_{\mathbf{h},\mathbf{l}}) > m \text{ if } V_{\mathbf{h},\mathbf{k}} \neq \emptyset \text{ and } V_{\mathbf{h},\mathbf{l}} \neq \emptyset.$

Thus the following pairs of random variables are independent: $\zeta_{\mathbf{k}}$ and $\zeta_{\mathbf{h},\mathbf{l}}$; $\zeta_{\mathbf{l}}$ and $\zeta_{\mathbf{h},\mathbf{k}}$; $\zeta_{\mathbf{h},\mathbf{k}}$ and $\zeta_{\mathbf{h},\mathbf{l}}$.

(III) By Lyapunov's inequality, $(E|\xi|^s)^{1/s} \leq (E|\xi|^t)^{1/t}$ if $0 < s \leq t$. (See it for example in [5].) Thus we have

$$\mathbf{E}S_{\mathbf{h}+\mathbf{m}}^2 \le (\mathbf{E}|S_{\mathbf{h}+\mathbf{m}}|^{2+\delta})^{\frac{2}{2+\delta}}.$$

By Lemma 1.3,

(2.1)
$$\mathrm{E}S^{2}_{\mathbf{h}+\mathbf{m}} \leq \left(c_{1}|\mathbf{h}+\mathbf{m}|^{\frac{2+\delta}{2}}\right)^{\frac{2}{2+\delta}} = c_{2}|\mathbf{h}+\mathbf{m}|.$$

Let $\mathbf{h}, \mathbf{l} \in \mathbf{N}^d$ such that $\max\{\mathbf{m}, \mathbf{n}_\sigma\} \leq \mathbf{h} \leq \mathbf{l}$. Then $\mathbf{m} \leq \mathbf{h}$ and (2.1) imply that

(2.2)
$$\mathrm{E}(\zeta_{\mathbf{l}} - \zeta_{\mathbf{h},\mathbf{l}})^{2} = \mathrm{E}\left(\frac{1}{\sqrt{B_{\mathbf{l}}}}S_{\mathbf{h}+\mathbf{m}}\right)^{2} = \frac{1}{B_{\mathbf{l}}}\mathrm{E}S_{\mathbf{h}+\mathbf{m}}^{2} \le \frac{c_{2}}{B_{\mathbf{l}}}|\mathbf{h}+\mathbf{m}|.$$

Since $\mathbf{l} \geq \mathbf{n}_{\sigma}$ thus, by assumption (1.2), $\frac{1}{B_{\mathbf{l}}} \leq \frac{1}{\sigma |\mathbf{l}|}$. So (2.2) implies that

$$E(\zeta_{\mathbf{l}} - \zeta_{\mathbf{h},\mathbf{l}})^{2} \le \frac{c_{2}}{\sigma} \frac{|\mathbf{h} + \mathbf{m}|}{|\mathbf{l}|} = c_{3} \frac{\prod_{i=1}^{d} (h_{i} + m)}{|\mathbf{l}|} \le 2^{d} c_{3} \frac{|\mathbf{h}|}{|\mathbf{l}|} = c_{4} \frac{|\mathbf{h}|}{|\mathbf{l}|}.$$

Therefore random variables ζ_{l} and $\zeta_{h,l}$ satisfy the conditions of Theorem 1.1, which implies Theorem 2.1.

Theorem 2.2. Let $\{X_{\mathbf{n}}, \mathbf{n} \in \mathbf{N}^d\}$ be an *m*-dependent random field, $EX_{\mathbf{n}} = 0$, $\mathbf{n} \in \mathbf{N}^d$. Assume that (1.1) and (1.2) hold for some $\delta > 0$. Then

$$\frac{1}{|\log \mathbf{n}|} \sum_{\mathbf{k} \leq \mathbf{n}} \frac{1}{|\mathbf{k}|} \delta_{\zeta_{\mathbf{k}}(\omega)} \Rightarrow \mathcal{N}(0, 1), \text{ as } \mathbf{n} \to \infty, \text{ for almost every } \omega \in \Omega.$$

Proof. Let $d_k^{(i)} = \frac{1}{k}$, $k \in \mathbf{N}$, $i \in \{1, \dots, d\}$. The conditions of Theorem 2.1 are satisfied, because $2 \leq (1 + \frac{1}{k})^k$, so $\frac{1}{k} \leq \frac{1}{\log 2} \log \frac{k+1}{k}$, moreover $\sum_{k=1}^{\infty} \frac{1}{k} = \infty$. Then $d_{\mathbf{k}} = \frac{1}{|\mathbf{k}|}$ and

(2.3)
$$D_{\mathbf{n}} = \sum_{\mathbf{k} \le \mathbf{n}} \prod_{i=1}^{d} \frac{1}{k_i} = \prod_{i=1}^{d} \sum_{k_i=1}^{n_i} \frac{1}{k_i} \sim \prod_{i=1}^{d} \log n_i \sim |\log \mathbf{n}|,$$

where $a_{\mathbf{n}} \sim b_{\mathbf{n}}$ if $a_{\mathbf{n}}/b_{\mathbf{n}} \to 1$, as $\mathbf{n} \to \infty$. By Theorem 1.5, $\mu_{\zeta_{\mathbf{n}}} \Rightarrow \mathcal{N}(0,1)$, as $\mathbf{n} \to \infty$. Therefore Lemma 1.4 implies that

$$\frac{1}{D_{\mathbf{n}}}\sum_{\mathbf{k}\leq\mathbf{n}} d_{\mathbf{k}}\mu_{\zeta_{\mathbf{k}}} = \frac{1}{\sum_{\mathbf{k}\leq\mathbf{n}}\frac{1}{|\mathbf{k}|}}\sum_{\mathbf{k}\leq\mathbf{n}}\frac{1}{|\mathbf{k}|}\mu_{\zeta_{\mathbf{k}}} \Rightarrow \mathcal{N}(0,1), \text{ as } \mathbf{n} \to \infty.$$

Now using Theorem 2.1, we obtain

$$\frac{1}{\sum_{\mathbf{k}\leq\mathbf{n}}\frac{1}{|\mathbf{k}|}}\sum_{\mathbf{k}\leq\mathbf{n}}\frac{1}{|\mathbf{k}|}\delta_{\zeta_{\mathbf{k}}(\omega)} \Rightarrow \mathcal{N}(0,1), \text{ as } \mathbf{n}\to\infty, \text{ for almost every } \omega\in\Omega.$$

This fact and (2.3) imply Theorem 2.2.

References

- BERKES, I., Results and problems related to the pointwise central limit theorem, In: Szyszkowicz, B. (Ed.) Asymptotic results in probability and statistics, Elsevier, Amsterdam, (1998), 59–96.
- [2] FAZEKAS, I., RYCHLIK, Z., Almost sure central limit theorems for random fields, *Technical Report No. 2001/12*, *University of Debrecen, Hungary* (submitted to Math. Nachr.).
- [3] FAZEKAS, I., RYCHLIK, Z., Almost sure functional limit theorems, *Technical Report No. 2001/11, University of Debrecen, Hungary* (submitted to Annales Universitas Maria Curie -Skodlodowska Lublin Polonia, Vol.LVI,1, 2002.)
- [4] PRAKASA RAO, B. L. S., A non-uniform estimate of the rate of convergence in the central limit theorem for *m*-dependent random fields, *Z. Wahrscheinlichkeitstheorie verw. Gebiete* 58 (1981), 247–256.
- [5] SHIRYAYEV, A. N., Probability, Springer-Verlag New York Inc. (1984).

Tibor Tómács

Department of Mathematics Károly Eszterházy College H-3301, Eger, P. O. Box 43. Hungary E-mail: tomacs@ektf.hu