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ON PRODUCTS AND SUMS OF THE TERMS
OF LINEAR RECURRENCES

Péter Kiss & Ferenc Mátyás (Eger, Hungary)

Abstract. For a fixed integer m≥2, let {G(i)
n }∞

n=0
(1≤i≤m) be linear recursive sequences of

integers, Πx1,x2,...,xm=G(1)
x1

G(2)
x2

···G(m)
xm

and let x= max
1≤i≤m

(xi). In the paper it is proved, under some

restrictions, that there are effectively computable constants c and n0 such that |s−Πx1,x2,...,xm |>
ec·x if s is an integer having fixed prime factors only, x>n0 and xj>γ·x for any 1≤j≤m with a

fixed real number 0<γ<1. Similar result can be obtained if we replace the pruduct of the terms

by their sum.
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1. Introduction

Let the linear recurrences G(i) =
{

G
(i)
n

}∞

n=0
(i = 1, 2, . . . , m; m ≥ 2) of order

ki be defined by the recursion

(1) G(i)
n = A

(i)
1 G

(i)
n−1 + A

(i)
2 G

(i)
n−2 + . . . + A

(i)
ki

G
(i)
n−ki

(n ≥ ki ≥ 2),

where the initial values G
(i)
j and the coefficients A

(i)
j+1 (j = 0, 1, . . . , ki − 1) are

rational integers. Denote the distinct roots of the characteristic polynomial

(2) g(i)(x) = xki − A
(i)
1 xki−1 − . . . − A

(i)
ki

of the sequence G(i) defined in (1) by α
(i)
1 , α

(i)
2 , . . . , α

(i)
ti

(ti ≥ 2), and suppose that

A
(i)
ki

(∣

∣

∣G
(i)
0

∣

∣

∣+
∣

∣

∣G
(i)
1

∣

∣

∣+ . . . +
∣

∣

∣G
(i)
ki−1

∣

∣

∣

)

6= 0
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for any i (1 ≤ i ≤ m). It is known that there exist uniquely determined

polynomials p
(i)
j (x) ∈ Q(α

(i)
1 , α

(i)
2 , . . . , α

(i)
ti

)[x] (j = 1, 2, . . . , ti) of degree less than

the multiplicity m
(i)
j of the roots α

(i)
j such that for n ≥ 0

(3) G(i)
n = p

(i)
1 (n)

(

α
(i)
1

)n

+ p
(i)
2 (n)

(

α
(i)
2

)n

+ . . . + p
(i)
ti

(n)
(

α
(i)
ti

)n

.

In that special case when g(i)(x) has a dominant root, say αi = α
(i)
1 , that is,

when the multiplicity of αi is 1 and |αi| >
∣

∣

∣α
(i)
j

∣

∣

∣ for j = 2, 3, . . . , ti, then |αi| > 1,

since
∣

∣

∣A
(i)
ki

∣

∣

∣ ≥ 1, and p
(i)
1 (n) in (3) is a constant which will be denoted by ai. In

this case

(4) G(i)
n = ai (αi)

n
+ p

(i)
2 (n)

(

α
(i)
2

)n

+ . . . + p
(i)
ti

(n)
(

α
(i)
ti

)n

,

where we suppose that ai 6= 0.

We say G(1) to be the dominant sequence among the sequences G(i) (1 ≤ i ≤

m) if g(1)(x) has a dominant root α1 and the inequalities |α1| >
∣

∣

∣α
(i)
j

∣

∣

∣ hold for any

(i, j) 6= (1, 1), where 1 ≤ i ≤ m and 1 ≤ j ≤ ti.

T. N. Shorey and C. L. Stewart [13] investigated the connection between the
sequences defined by (4) and perfect powers, then A. Pethő [11], [12] and P. Kiss
[6] proved important results in this field. Recently, some similar multiplicative and
additive problems have been solved by B. Brindza, K. Liptai and L. Szalay [3], L.
Szalay [14], P. Kiss and F. Mátyás [8-9] and F. Mátyás [10]. All of the authors
show, under some restrictions, that if a term (product or sum of terms) of linear
recurrences is a perfect power then the exponent of the power is bounded above.

The problem is similar when we want to consider those sequences G(i) where
the terms of G(i) have given prime factors only. Let p1, p2, . . . , pr be given distinct
rational primes and let

(5) S = {s ∈ Z : s = ±pe1
1 . . . per

r , 0 ≤ ei ∈ N} .

K. Győry, P. Kiss and A. Schinzel [4] showed that if Gx is a term of Lucas or
Lehmer (special second order) recurrences then

(6) Gx ∈ S

holds only for finitely many sequences and finitely many integers x. K. Győry [5]
improved this result.
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P. Kiss [6] proved that if G(1) is defined by (4) then, under some conditions,
∣

∣

∣G
(1)
x − s

∣

∣

∣ > ec′x for all integers s ∈ S and x > n′, where c′ and n′ are effectively

computable positive constants depending only on the pimes p1, p2, . . . , pr and G(1).

P. Kiss gave a summation of the results concerning this topic in [7], where
among others there were cited two theorems (Theorem 3 and Theorem 6) without
proofs hoping that the paper containing the proofs had already appeared. Unfor-
tunately, because of some technical reasons, these proofs can appear only in this
paper. So the purpose of this paper is to restate the above theorems and to present
their proofs. These theorems generalize and extend the result of P. Kiss [6] for the
products (and the sums) of terms of linear recurrences defined by (3) and (4).

2. Results

For brevity we introduce the following abbreviations:

(7) Πx1,x2,...,xm
=

m
∏

i=1

G(i)
xi

and

(8) Σx1,x2,...,xm
=

m
∑

i=1

G(i)
xi

,

where x1, x2, . . . , xm are positive integers. The following two theorems will be
proved.

Theorem 1. Let γ be a real number with 0 < γ < 1 and let S be the set of integers
defined by (5). Suppose that for any 1 ≤ i ≤ m the polynomial g(i)(x) defined by

(2) has a dominant root αi = α
(i)
1 and the sequence G(i) is defined by (4). Then

there exist positive real numbers c0 and n0 such that if x = max
1≤i≤m

(xi) > n0,

(9a and 9b)

m
∏

i=1

aiα
xi

i /∈ S and xi > γx for 1 ≤ i ≤ m,

then

(10) |s − Πx1,x2,...,xm
| > ec0x

for any s ∈ S and positive integers x1, x2, . . . , xm. The constants c0 and n0

are effectively computable positive numbers depending only on γ, the primes
p1, p2, . . . , pr and the parameters of the sequences G(i) (1 ≤ i ≤ m).
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Corollary. Under the conditions of Theorem 1, Πx1,x2,...,xm
/∈ S if x = max

1≤i≤m
(xi) >

n0.

Theorem 2. Let G(i) (1 ≤ i ≤ m, 2 ≤ m) be sequences defined by (3) if 2 ≤ i ≤ m

and by (4) if i = 1 and let S be the set of integers defined by (5). Suppose that G(1)

is the dominant sequence (with the dominant root α1 = α
(1)
1 ) among the sequences

G(i) (1 ≤ i ≤ m). Then there exist positive real numbers c1 and n1 such that if

(11a and 11b) a1α
x1
1 /∈ S and x1 > max

2≤i≤m
(xi),

then
|s − Σx1,x2,...,xm

| > ec1x1

for any s ∈ S and positive integers x1, x2, . . . , xm satisfying the condition x1 > n1.
The constants c1 and n1 are effectively computable positive numbers depending
only on the primes p1, p2, . . . , pr and the parameters of the sequences G(i) (1 ≤ i ≤
m).

Corollary. Under the conditions of Theorem 2, Σx1,x2,...,xm
/∈ S if x1 > n1.

3. Lemmas and Proofs

To prove the theorems we need the following auxiliary results.

Lemma 1. Let

Λ = γ0 + γ1 · logω1 + γ2 · logω2 + · · · + γn · logωn,

where the γ′s and ω′s denote algebraic numbers (ωi 6= 0 or 1). We assume that not
all the γ′s are zero and that the logarithms mean their principal values. Suppose
that ωi and γi have heights at most Mi(≥ 4) and B(≥ 4), respectively, and that
the field generated by the ω′s and γ′s over the rational numbers has degree at most
d. If Λ 6= 0, then

|Λ| > (BΩ)−CΩ·log Ω′

,

where
Ω = log M1 · log M2 · · · log Mn, Ω′ = Ω/ logMn

and C = (16nd)200n. If γ0 = 0 and γ1, γ2, . . . , γn are rational integers, then

|Λ| > B−CΩ log Ω′

.
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Proof. It is a result of A. Baker [1]. (We mention that this result was improved
by A. Baker and G. Wüstholz [2], but we do not calculate the exact values of the
constants thus we use only the result of Lemma 1.)

Lemma 2. Let γ be a real number with 0 < γ < 1, Πx1,x2,...,xm
be an integer

defined by (7) and G(i) (1 ≤ i ≤ m, 2 ≤ m) be sequences defined by (4), that

is, for any 1 ≤ i ≤ m the polynomial g(i)(x) has a dominant root αi = α
(i)
1 . If

xi > γ ·max(x1, x2, . . . , xm), then there are effectively computable positive constans

c2 and n2 depending only on the sequences G(i) and γ, such that

Πx1,x2,...,xm
=

(

m
∏

i=1

aiα
xi

i

)

(1 + ε),

where |ε| < e−c2x for any x = max(x1, x2, . . . , xm) > n2.

Proof. For the proof see Lemma 2 in [9].

After these lemmas we present the proofs of the theorems. We mention that
the constants ci and ni (i ≥ 2) shall always denote effectively computable positive
real numbers depending on γ, the primes p1, p2, . . . , pr and the parameters of the
recurrences. One can compute their explicit values similarly as in [9-10].

Proof of Theorem 1. Suppose that the conditions of the theorem are fulfiled and

(12) |s − Πx1,x2,...,xm
| ≤ ec′0x

with a suitable constant c′0 > 0 and sufficiently large x. By Lemma 2,

(13) Πx1,x2,...,xm
=

(

m
∏

i=1

aiα
xi

i

)

(1 + ε),

where |ε| < e−c2x if x > n2. On the other hand, by (9b),

(14)

∣

∣

∣

∣

∣

m
∏

i=1

aiα
xi

i

∣

∣

∣

∣

∣

= e

m
∑

i=1

log |ai|+
m
∑

i=1

xi log |αi|

> e

m
∑

i=1

log |ai|+γx

m
∑

i=1

log |αi|

> ec3x

if x > n3. Using (13) and (14), from (12) we can get the inequalities

∣

∣

∣

∣

∣

∣

∣

∣

s
m
∏

i=1

aiα
xi

i

− (1 + ε)

∣

∣

∣

∣

∣

∣

∣

∣

≤
ec′0

m
∏

i=1

|aiα
xi

i |
< e(c′0−c3)x = e−c4x
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if c′0 < c3. From this estimation, with |ε| < e−c2x,

(15)

∣

∣

∣

∣

∣

∣

∣

∣

s
m
∏

i=1

aiα
xi

i

∣

∣

∣

∣

∣

∣

∣

∣

< 1 + |ε| + e−c4x < 1 + e−c5x

follows if x > n4, which implies that

|s| <
(

1 + e−c5x
)

m
∏

i=1

|aiα
xi

i | <
(

1 + e−c5x
)

e

m
∑

i=1

log |ai|+x

m
∑

i=1

log |αi|

< ec6x,

if x > n5. Since by (5), using the notation y = max
1≤i≤r

(ei),

ec6x > |s| =

r
∏

i=1

pei

i ≥

r
∏

i=1

2ei ≥ 2y = ey·log 2,

therefore

(16) y = max
1≤i≤r

(ei) < c7x.

Let λ =

∣

∣

∣

∣

∣

∣

∣

log

∣

∣

∣

∣

∣

∣

∣

s
m
∏

i=1

aiα
xi
i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. It is clear by (9a) that λ 6= 0, while by (15) and the

properties of the logarithm function,

(17) 0 < λ < log
(

1 + e−c5x
)

< e−c5x.

Now we give a lower estimation for

λ =

∣

∣

∣

∣

∣

r
∑

i=1

ei log pi −

m
∑

i=1

log |ai| −

m
∑

i=1

xi log |αi|

∣

∣

∣

∣

∣

.

Since the numbers pi, |ai| and |αi| are algebraic ones with bounded heights, further
on the numbers ei and xi are bounded above by c7x (see (16)) and x, respectively,
thus by Lemma 1

(18) λ > e−c8 log x.

(17) and (18) imply that
c5x < c8 log x,
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that is,
x

log x
< c9,

but this is a contradiction if x > n6. Therefore the inequality (10) of the theorem
holds with 0 < c0 < c3 and n0 = max

2≤i≤6
(ni).

Proof of Theorem 2. Using the estimation

(19) |a1α
x1
1 | = elog |a1|+x1 log |α1| > ec10x1

if x1 > n7, suppose that

(20) |s − Σx1,x2,...,xm
| ≤ ec′1x1

with a suitable constant 0 < c′1 < c10 and sufficiently large x1.

Using (4) for G(1) and (3) for G(i) (2 ≤ i ≤ m), then

(21) Σx1,x2,...,xm
= a1α

x1
1



1 +

t1
∑

j=2

p
(1)
j (x1)

a1

(

α
(1)
j

α1

)x1

+

m
∑

i=2

ti
∑

j=1

p
(i)
j (xi)

ai

(

α
(i)
j

)xi

αx1
1



 = a1α
x1
1 (1 + ε1)

for any x1 > n8, where |ε1| < e−c11x1 , since x1 > max
2≤i≤m

(xi) and |α1| >
∣

∣

∣α
(i)
j

∣

∣

∣ for

any (i, j) 6= (1, 1). From (20), by (19) and (21), we get that

∣

∣

∣

∣

s

a1α
x1
1

− (1 + ε1)

∣

∣

∣

∣

≤
ec′1x1

|a1α
x1
1 |

<
ec′1x1

ec10x1
= e(c′1−c10)x1 = e−c12x1 ,

if x1 > n9. This implies the inequalities

(22)

∣

∣

∣

∣

s

a1α
x1
1

∣

∣

∣

∣

< 1 + |ε1| + e−c12x1 < 1 + e−c13x1

if x1 > n10. From this we can get

|s| < |a1α
x1
1 |
(

1 + e−c13x1
)

< ec14x1 ,
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if x1 > n11. According to (5) and the notation y = max
1≤i≤r

(ei),

ec14x1 > |s| =

r
∏

i=1

pei

i ≥ 2y = ey log 2,

that is,

(23) y = max
1≤i≤r

(ei) < c15x1.

Let λ =
∣

∣

∣log
∣

∣

∣

s

a1α
x1
1

∣

∣

∣

∣

∣

∣. By (11a), λ 6= 0. From (22) we can obtain an upper estimation

for λ, as follows:

(24) 0 < λ < log
(

1 + e−c13x1
)

< e−c13x1 .

To construct a lower estimation for λ we apply Lemma 1 for

λ =

∣

∣

∣

∣

∣

r
∑

i=1

ei log pi − log |a1| − x1 log |α1|

∣

∣

∣

∣

∣

.

We can similarly get, as in the proof of Theorem 1, that

(25) λ > e−c16 log x1 .

Making a comparison between (24) and (25), we get

c13x1 < c16 log x1,

from which

(26)
x1

log x1
< c17

follows. This proves the theorem, since (26) is a contradiction if x1 > n12, that is,
the theorem holds with 0 < c1 < c10 and n1 = max

7≤i≤12
(ni).

The statements of the corollaries are obvious by the theorems.
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