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POWER INTEGRAL BASES

IN MIXED BIQUADRATIC NUMBER FIELDS

Gábor Nyul (Debrecen, Hungary)

Abstract. We give a complete characterization of power integral bases in quartic number

fields of type K = Q(
√

m,
√

n) where m, n are distinct square-free integers with opposite

sign. We provide a list of all fields of this type up to discriminant 104 in increasing order of

discriminants containing field indices, minimal indices and all elements of minimal index.
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1. Introduction

Let K be an algebraic number field of degree n. The index of a primitive
element α ∈ ZK is defined by

I(α) = (Z+

K
: Z[α]+).

The existence of power integral bases {1, α, . . . , αn−1} is a classical problem of
algebraic number theory. The element α generates a power integral basis if and
only if I(α) = 1 (for related results cf. [1]). If the number field K admits power
integral bases, it is called monogeneous. We recall that the minimal index of a
number field K is the minimum of the indices of all primitive integers in the field.
The field index is the greatest common divisor of the indices of all primitive integers
of the field.

Let m, n be distinct square-free integers. Biquadratic fields of type K =
Q(

√
m,

√
n) were considered by several authors. K. S. Williams [6] described an

integral basis of K. T. Nakahara [5] proved that infinitely many fields of this type
have power integral bases, on the other hand for any given N there are infinitely
many fields of this type with field index 1 but minimal index > N , consequently
without power integral basis.

M. N. Gras and F. Tanoe [4] gave necessary and sufficient conditions for
biquadratic fields to have power integral basis. In fact they characterized all mixed
biquadratic fields having power integral basis and established further necessary
conditions for totally real biquadratic fields to have power integral basis. Using the
integral bases I. Gaál, A. Pethő and M. Pohst [3] formulated the corresponding
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index forms and gave an algorithm for determining all generators of power integral
bases in the totally real case by solving systems of simultaneous Pellian equations.

To complete the above theory of power integral bases in biquadratic fields our
purpose is to describe all generators of power integral bases in mixed biquadratic
number fields. The most interesting point is that it turns out, that surprisingly the
coordinate vectors (with respect to the integral basis of [6]) of the generators of
power integral bases in mixed biquadratic number fields are contained in a finite set
of constant vectors for all these fields. We also provide a table of mixed biquadratic
fields in increasing order of discriminants up to 104 displaying the field index,
minimal index and all elements of minimal index.

2. Index form equation in mixed biquadratic fields

To fix our notation we shortly recall the integral bases and corresponding index
forms of biquadratic number fields with mixed signature.

Let m, n be distinct square-free rational integers (not equal to 1), let l =
(m, n) > 0 and let m1, n1 be defined by m = lm1, n = ln1. By K. S. Williams’
result [6] all mixed biquadratic number fields can be given in the form Q(

√
m,

√
n)

so that the parameters belong to one of the following cases:
Case 1: m > 0, n < 0, m ≡1 (mod 4), n ≡1 (mod 4),

m1≡1 (mod 4), n1≡1 (mod 4).
Case 2: m > 0, n < 0, m ≡1 (mod 4), n ≡1 (mod 4),

m1≡3 (mod 4), n1≡3 (mod 4).
Case 3/A: m > 0, n < 0, m ≡1 (mod 4), n ≡2 (mod 4).
Case 3/B: m < 0, n > 0, m ≡1 (mod 4), n ≡2 (mod 4).
Case 4/A: m > 0, n < 0, m ≡2 (mod 4), n ≡3 (mod 4).
Case 4/B: m < 0, n > 0, m ≡2 (mod 4), n ≡3 (mod 4).
Case 5/A: m > 0, n < 0, m ≡3 (mod 4), n ≡3 (mod 4).
Case 5/B: m < 0, n < 0, m ≡3 (mod 4), n ≡3 (mod 4).

and the integral bases are given by

Case 1:

{
1,

1 +
√

m

2
,
1 +

√
n

2
,
1 +

√
m +

√
n +

√
m1n1

4

}
.

Case 2:

{
1,

1 +
√

m

2
,
1 +

√
n

2
,
1 −√

m +
√

n +
√

m1n1

4

}
.

Cases 3/A and 3/B:

{
1,

1 +
√

m

2
,
√

n,

√
n +

√
m1n1

2

}
.

Cases 4/A and 4/B:

{
1,
√

m,
√

n,

√
m +

√
m1n1

2

}
.

Cases 5/A and 5/B:

{
1,
√

m,

√
m +

√
n

2
,
1 +

√
m1n1

2

}
.



Power integral bases in mixed biquadratic number fields 81

The integral basis enables one to construct the corresponding index forms (cf. e.g.
[2]):
Case 1:

(
l(x2 +

x4

2
)2 − n1

4
x2

4

) (
l(x3 +

x4

2
)2 − m1

4
x2

4

) (
n1(x3 +

x4

2
)2 − m1(x2 +

x4

2
)2

)
.

Case 2:

(
l(x2 −

x4

2
)2 − n1

4
x2

4

) (
l(x3 +

x4

2
)2 − m1

4
x2

4

) (
n1(x3 +

x4

2
)2 − m1(x2 −

x4

2
)2

)
.

Cases 3/A and 3/B:

(
lx2

2 − n1x
2
4

) (
l(x3 +

x4

2
)2 − m1

4
x2

4

) (
n1(2x3 + x4)

2 − m1x
2
2

)
.

Cases 4/A and 4/B:

(
l

2
(2x2 + x4)

2 − n1

2
x2

4

) (
2lx2

3 −
m1

2
x2

4

)(
2n1x

2
3 −

m1

2
(2x2 + x4)

2

)
.

Cases 5/A and 5/B:

(
l(2x2 + x3)

2 − n1x
2
4

) (
lx2

3 − m1x
2
4

) (n1

4
x2

3 − m1(x2 +
x3

2
)2

)
.

As it is well-known (see e.g. [1]) K = Q(
√

m,
√

n) admits power integral bases
if and only if the index form equation

(1) I(x2, x3, x4) = ±1 (in x2, x3, x4 ∈ Z)

is solvable, where I(x2, x3, x4) is the index form given above. Moreover, all gener-
ators of power integral bases are of the form

α = x1 + x2ω2 + x3ω3 + x4ω4

where {1, ω2, ω3, ω4} is the integral basis of K, (x2, x3, x4) is a solution of the index
form equation (1) and x1 ∈ Z is arbitrary.

Our main theorem characterizes the cases when K has power integral bases
and describes all generators of power integral bases. M. N. Gras and F. Tanoe
[4] has already described the monogeneous mixed biquadratic fields. Our main
point is to show that the solutions of the index form equations in monogeneous
mixed biquadratic fields belong to a finite set of constant vectors. Especially, the
coordinates of the generators of power integral bases are explicitely given and do
not depend on the parameters m, n, l.
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Theorem. Let K = Q(
√

m,
√

n) be a mixed biquadratic number field represented
in one of the forms listed above.
In cases 1, 2 and 3/A there are no power integral bases.
In the other cases the necessary and sufficient condition of the existence of power
integral bases in K is
Case 3/B: m1 = −1, l − 4n1 = −1 (and by the assumption n1 > 0).
Case 4/A: m1 = 2, n1 = −1, l = 1, so m = 2 and n = −1.
Case 4/B: m1 = −2, l − n1 = ±2 (and by the assumption n1 > 0).
Case 5/A: n1 = −1, 4l − m1 = 1 (and by the assumption m1 > 0).
Case 5/B: l = 1, n1 − m1 = ±4 (and by the assumption m1, n1 < 0).

The solutions of the index form equation corresponding to the above integral basis
are
Case 3/B (x2, x3, x4) = (1, 1,−2), (1,−1, 2),
Case 4/A (x2, x3, x4) = (0, 0, 1), (1, 0,−1),
Case 4/B (x2, x3, x4) = (0, 0, 1), (1, 0,−1),
Case 5/A m = 3, n = −1 (x2, x3, x4) = (1,−2, 1), (1,−2,−1),

(0, 1, 0), (1,−1, 0),
Case 5/A other fields (x2, x3, x4) = (1,−2, 1), (1,−2,−1),
Case 5/B (x2, x3, x4) = (0, 1, 0), (1,−1, 0).

Note that if (x2, x3, x4) is a solution then so also is (−x2,−x3,−x4) but we
include only one of them.

Proof of the Theorem. In each case we solve equation (1) using the relevant
index form. In each case the index form splits into three factors taking integer
values, hence all factors must be equal to ±1. We detail some tipical cases, the
others are similar to deal with.

Case 1. We have m1 > 0, n1 < 0, m1≡1 (mod 4), n1≡1 (mod 4). Set
ñ1 = |n1| > 0.

The first factor of the index form is non-negative. Multiplying by 4 we get

l(2x2 + x4)
2 + ñ1x

2
4 = 4.

On the left hand side both terms are non-negative integers, hence we have to
consider the following five cases (a. to e.):

(a) l(2x2 + x4)
2 = 0, ñ1x

2
4 = 4

By l > 0, we have 2x2 + x4 = 0, that is 2 | x4. On the other hand
(ñ1, x

2
4) = (1, 4), (4, 1), and x4 is even which imply ñ1 = 1, that is n1 = −1. Then

we obtain n1 6≡1 (mod 4), a contradiction, hence in case a there are no solutions.

(b) l(2x2 + x4)
2 = 1, ñ1x

2
4 = 3
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This is only possible if l = 1, 2x2 + x4 = ±1, ñ1 = 3 (that is n1 = −3) and
x2

4 = 1. If x4 = 1, then x2 = 0 or x2 = −1; if x4 = −1, then x2 = 0 or x2 = 1.
Then the third factor of the index form is not positive, hence it is equal to −1:

If x2 = 0, x4 = 1 or x2 = −1, x4 = 1, then −3

(
x3 +

1

2

)2

− m1

4
= −1, that is

3(2x3 + 1)2 + m1 = 4. The first term is non-negative, not greater than 4, divisible
by 3 and odd, hence it is equal to 3. Then 3(2x3 + 1)2 = 3 and m1 = 1, hence
2x3 + 1 = ±1, x3 = 0 or x3 = −1.

If x2 = 0, x4 = −1 or x2 = 1, x4 = −1, then −3

(
x3 −

1

2

)2

− m1

4
= −1, that

is 3(2x3 − 1)2 + m1 = 4. Similarly as above it follows that the first term is 3 and
m1 = 1, x3 = 0 or x3 = 1.

The remaining cases are (x3, x4) = (0, 1), (−1, 1), (0,−1), (1,−1). Considering

the second factor we get l

4
− m1

4
= ±1. On the other hand we have l = m1 = 1,

hence l−m1

4
= 0. It means that there are no solutions in case b, either.

The cases

(c) l(2x2 + x4)
2 = 2, ñ1x

2
4 = 2,

(d) l(2x2 + x4)
2 = 3, ñ1x

2
4 = 1,

(e) l(2x2 + x4)
2 = 4, ñ1x

2
4 = 0

are much simpler to consider.

Hence in case 1 there are no power integral bases.

Cases 2, 3/A, 3/B are similar to consider.

Case 4/A. Now we have m1 > 0, n1 < 0. Let ñ1 = |n1| > 0.

The third factor is non-positive, so multiplying by −2 we get

4ñ1x
2
3 + m1(2x2 + x4)

2 = 2.

The first term is non-negative, less than or equal to 2 and divisible by 4, hence only
4ñ1x

2
3 = 0 and m1(2x2 + x4)

2 = 2 are possible. These imply x3 = 0, m1 = 2 and
2x2 + x4 = ±1. Then the second factor is −x2

4 = −1, that is x4 = ±1. If x4 = 1,
then x2 = 0 or x2 = −1, and if x4 = −1, then x2 = 0 or x2 = 1. The remaining
cases are (x2, x4) = (0, 1), (−1, 1), (0,−1), (1,−1). Considering the first factor we

get l

2
− n1

2
= ±1. But l > 0, n1 < 0, so l−n1

2
> 0, hence l−n1

2
= 1, that is l−n1 = 2.

On the other hand, by l, n1 ∈ Z, we get l ≥ 1, n1 ≤ −1, hence l − n1 ≥ 2. In
this inequality the equation holds, so we have l = 1, n1 = −1. Summarizing, in
this case l = 1, m1 = 2, n1 = −1 and the solutions of the index form equation are
(x2, x3, x4) = ±(0, 0, 1),±(1, 0,−1).

Case 4/B. In this case n1 > 0, m1 < 0, and set m̃1 = |m1| > 0.
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Now the second factor is not negative, hence it is equal to 1. If we multiply it
by 2, we get

4lx2
3 + m̃1x

2
4 = 2.

On the left hand side the first term is equal to 0, because it is non-negative, not
greater than 2 and divisible by 4, which implies 4lx2

3 = 0, m̃1x
2
4 = 2. From

these we get x3 = 0, m̃1 = 2 (that is m1 = −2), x4 = ±1. Then the third
factor is (2x2 + x4)

2 = 1, hence 2x2 + x4 = ±1. If x4 = 1, then x2 = 0
or x2 = −1; if x4 = −1, then x2 = 0 or x2 = 1. In the remaining cases
((x2, x4) = (0, 1), (−1, 1), (0,−1), (1,−1)) the first factor is l

2
− n1

2
= ±1, that

is l − n1 = ±2. Summarizing, we get m1 = −2, l − n1 = ±2 and the solutions of
the index form equation in this case are (x2, x3, x4) = ±(0, 0, 1),±(1, 0,−1).

Cases 5/A, 5/B can be discussed in a similar way.

In each case it is simple to verify by substitution that the triples (x2, x3, x4)
obtained above are indeed solutions of the index form equation.

3. Description of the table

We present a list of all mixed biquadratic fields up to discriminant 104. In this
table DK , mK , µ denote the discriminant, the field index and the minimal index,
respectively. They are followed by the solutions of I(x2, x3, x4) = ±µ, that is the
coordinates of the elements of minimal index. If (x2, x3, x4) is a solution then so
also is (−x2,−x3,−x4) but we list only one of them. To construct the table we used
[6] (integral basis, DK), [2] (to calculate mK). In order to determine the minimal
index µ we took the multiplies k · mK of mK until the index form equation with
right hand side ±k ·mK had solutions. In [3] the authors provided a similar list of
totally real biquadratic fields. These computations were performed in MAPLE and
took just a few minutes.
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DK m1 n1 l mK µ (x2, x3, x4)
144 3 -1 1 1 1 (1, -2, 1), (1, -1, 0), (0, 1, 0), (1, -2, -1)
225 -3 5 1 2 2 (0, 1, -1), (0, 0, 1), (1, 0, -1), (1, 1, -1)
256 2 -1 1 1 1 (0, 0, 1), (1, 0, -1)
400 -1 -5 1 1 1 (0, 1, 0), (1, -1, 0)
441 -1 7 3 2 2 (0, 1, -1), (1, 0, 1), (1, -1, 1), (0, 0, 1)
576 -3 2 1 1 4 (0, 1, -1), (0, 0, 1)
576 -1 2 3 1 3 (1, 1, -1), (1, 0, -1), (1, 0, 1), (1, -1, 1)
784 7 -1 1 1 2 (1, -1, 0), (0, 1, 0)

1089 -1 11 3 2 4 (3, -1, 2), (1, 1, -2)
1225 -7 5 1 2 6 (0, 1, -1), (1, 1, -1), (1, 0, -1), (0, 0, 1)
1521 -3 13 1 2 10 (2, 1, -1), (2, 0, -1), (1, 0, 1), (1, -1, 1)
1600 5 -2 1 1 4 (0, 1, -1), (0, 0, 1)
1600 1 -2 5 1 4 (0, 1, -1), (0, 0, 1)
1936 11 -1 1 1 3 (1, -1, 0), (0, 1, 0)
2304 6 -1 1 1 5 (0, 1, -1), (0, 1, 1), (1, -1, -1), (1, 1, -1)
2304 -2 3 1 1 1 (1, 0, -1), (0, 0, 1)
2601 -3 17 1 2 20 (0, 1, -1), (1, -1, 0), (1, 1, 0), (1, 0, -1), (1, 1, -1), (0, 0, 1)
2704 -1 -13 1 1 3 (0, 1, 0), (1, -1, 0)
3025 -11 5 1 2 12 (0, 0, 1), (0, 1, -1), (1, 1, -1), (1, 0, -1)
3136 -7 2 1 1 8 (0, 1, -1), (0, 0, 1)
3136 -1 2 7 1 1 (1, -1, 2), (1, 1, -2)
3249 -1 19 3 2 14 (1, 0, -1), (2, -1, 1), (1, 1, -1), (2, 0, 1)
3600 15 -1 1 1 4 (1, -1, 0), (0, 1, 0), (2, -4, 1), (2, -4, -1)
3600 3 -5 1 1 2 (1, -1, 0), (0, 1, 0)
3600 3 -1 5 1 12 (0, 1, -1), (1, -1, 1), (0, 1, 1), (1, -1, -1)
4624 -1 -17 1 1 4 (0, 1, 0), (1, -1, 0)
4761 -1 23 3 2 8 (2, -1, 1), (1, 0, -1), (2, 0, 1), (1, 1, -1)
5776 19 -1 1 1 5 (1, -1, 0), (0, 1, 0)
5929 -1 11 7 2 4 (2, -1, 2), (0, 1, -2)
6400 10 -1 1 1 21 (0, 1, -1), (1, 1, -1), (1, -1, -1), (0, 1, 1)
6400 2 -5 1 1 3 (1, 0, -1), (0, 0, 1)
6400 2 -1 5 3 3 (1, 0, -1), (0, 0, 1)
7056 1 -7 3 1 18 (1, -1, 0), (0, 1, 0)
7056 1 -3 7 1 31 (1, 0, -1), (1, 0, 1)
7056 -1 -21 1 1 5 (0, 1, 0), (1, -1, 0)
7569 -3 29 1 2 26 (3, 1, -1), (2, -1, 1), (3, 0, -1), (2, 0, 1)
7744 -11 2 1 1 12 (0, 0, 1), (0, 1, -1)
7744 -1 2 11 3 3 (1, -1, 2), (1, 1, -2)
8281 -7 13 1 2 20 (1, 1, 0), (1, -1, 0)
8464 23 -1 1 1 6 (1, -1, 0), (0, 1, 0)
8649 -1 31 3 2 10 (2, -1, 1), (2, 0, 1), (1, 0, -1), (1, 1, -1)
9025 -19 5 1 2 24 (1, 1, 0), (1, -1, 0)
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