THE CONDITION FOR GENERALIZING INVERTIBLE SUBSPACES IN CLIFFORD ALGEBRAS

Nguyen Canh Luong (Hanoi, Vietnam)

Abstract. Let \mathcal{A} be a universal Clifford algebra induced by m-dimensional real linear space with basis $\{e_1, e_2, \dots, e_m\}$. The necessary and sufficient condition for the subspaces of form $L_1 = lin\{e_0, e_1, \dots, e_m, e_{m+1}, \dots, e_{m+s}\}$ to be invertible is $m \equiv 2 \pmod{4}$, s = 1 and $e_{m+1} = e_{12, \dots, m}$ (see [2]). In this paper we improve this assertion for the subspaces of the form $L = lin\{e_0, e_{A_1}, \dots, e_{A_m}, e_{A_{m+1}}, \dots, e_{A_{m+s}}\}$, where $A_i \subseteq \{1, 2, \dots, m\}$ $(i = 1, 2, \dots, m+s)$.

1. Introduction

Let V_m be an m-dimensional $(m \geq 1)$ real linear space with basis $\{e_1, e_2, \ldots, e_m\}$. Consider the 2^m -dimensional real space \mathcal{A} with basis

$$E = \{e_{\emptyset}, e_{\{1\}}, \dots, e_{\{m\}}, e_{\{1,2\}}, \dots, e_{\{m-1,m\}}, \dots, e_{\{1,2,\dots,m\}}\},\$$

where $e_{\{i\}} := e_i \ (i = 1, 2, \dots, m)$.

In the following, for each $K = \{k_1, k_2, \dots, k_t\} \subseteq \{1, 2, \dots, m\}$ we write $e_K = e_{k_1 k_2 \dots k_t}$ with $e_\emptyset = e_0$, and so

$$E = \{e_0, e_1, \dots, e_m, e_{12}, \dots, e_{m-1m}, \dots, e_{12\dots m}\}.$$

The product of two elements $e_A, e_B \in E$ is given by

(1)
$$e_A e_B = (-1)^{\sharp (A \cap B)} (-1)^{p(A,B)} e_{A \triangle B}; \quad A, B \subset \{1, 2, \dots, m\},$$

where

$$\begin{cases} p(A,B) = \sum_{j \in B} p(A,j), \\ p(A,j) = \sharp \{i \in A : i > j\}, \\ A \triangle B = (A \backslash B) \cup (B \backslash A) \end{cases}$$

and $\sharp A$ denotes the number of elements of A.

Each element $a = \sum_{A} a_A e_A \in \mathcal{A}$ is called a Clifford number. The product of two Clifford numbers $a = \sum_{A} a_A e_A$; $b = \sum_{B} b_B e_B$ is defined by the formula

$$ab = \sum_{A} \sum_{B} a_A b_B e_A e_B.$$

It is easy to check that in this way \mathcal{A} is turned into a linear associative non-commutative algebra over \mathbf{R} . It is called the Clifford algebra over V_m .

It follows at once from the multiplication rule (1) that e_{\emptyset} is identity element, which is denoted by e_0 and in particular

$$e_i e_j + e_j e_i = 0$$
 for $i \neq j$; $e_j^2 = -1$ $(i, j = 1, 2, ..., m)$

and

$$e_{k_1 k_2 \dots k_t} = e_{k_1} e_{k_2} \dots e_{k_t}; \quad 1 \le k_1 < k_2 < \dots < k_t \le m.$$

The involution for basic vectors is given by

$$\bar{e}_{k_1 k_2 \dots k_t} = (-1)^{\frac{t(t+1)}{2}} e_{k_1 k_2 \dots k_t}.$$

For any $a = \sum_A a_A e_A \in \mathcal{A}$, we write $\bar{a} = \sum_A a_A \bar{e}_A$. For any Clifford number $a = \sum_A a_A e_A$, we write $|a| = \left(\sum_A a_A^2\right)^{\frac{1}{2}}$.

2. Result and Proof

We use the following definitions.

- (i) An element $a \in \mathcal{A}$ is said to be invertible if there exists an element a^{-1} such that $aa^{-1} = a^{-1}a = e_0$; a^{-1} is said to be the inverse of a.
- (ii) A subspace $X \subset \mathcal{A}$ is said to be invertible if every non-zero element in X is invertible in \mathcal{A} .
 - (iii) $L(u_1, u_2, \dots, u_n) = lin\{u_1, u_2, \dots u_n\}, u_i \in \mathcal{A} \quad (i = 1, 2, \dots, n).$

It is well-known (see [1]) that for any special Clifford number of the form $a = \sum_{i=0}^{m} a_i e_i \neq 0$ we have $a^{-1} = \frac{\bar{a}}{|a|^2}$. So $L(e_0, e_1, \dots, e_m)$ is invertible, and if $m \equiv 2$

(mod 4) (see [2]), then every $a = \sum_{i=0}^{m+1} a_i e_i \neq 0$, where $e_{m+1} = e_{12...m}$ is invertible and $a^{-1} = \frac{\bar{a}}{|a|^2}$. So $L(e_0, e_1, \dots, e_m, e_{m+1})$ is invertible.

We shall need the following lemmas.

Lemma 1. (see Lemma 1 [3]) If $L(e_{A_1}, e_{A_2}, \ldots, e_{A_k})$, where $e_{A_i} \in E, e_{A_i} \neq e_{A_j}$ for $i \neq j, i, j \in \{1, 2, \ldots, k\}$, is invertible if and only if $L(e_{A_1}\bar{e}_{A_k}, e_{A_2}\bar{e}_{A_k}, \ldots, e_{A_k}\bar{e}_{A_k})$ is invertible.

By Lemma 1 we shall study subspaces of A in the form $L(e_0, e_{A_1}, \ldots, e_{A_l})$.

Lemma 2. (see Lemma 3 [3]) $L(e_0, e_{A_1}, \ldots, e_{A_l})$, $e_{A_i} \in E, e_{A_i} \neq e_{A_j}$ for $i \neq j$, is invertible if and only if

$$e_{A_i}\bar{e}_{A_j} + e_{A_j}\bar{e}_{A_i} = 0 \text{ for } i \neq j, \quad i, j \in \{0, 1, 2, \dots, m\}, \text{ where } e_{A_0} = e_0.$$

Lemma 3. (see Theorem [3]) If $L(e_0, e_{A_1}, e_{A_2}, \dots, e_{A_l})$, $e_{A_i} \in E, e_{A_i} \neq e_{A_j}$ for $i \neq j, i, j \in \{1, 2, \dots, l\}$ is invertible, then

- (i) l < m + 1.
- (ii) If l = m + 1, then

either
$$e_{A_1} = e_{A_1} e_{A_2} \dots e_{A_{l-1}}$$
 or $e_{A_l} = -e_{A_1} e_{A_2} \dots e_{A_{l-1}}$.

The purpose of this paper is to prove the following.

Theorem. $L(e_0, e_{A_1}, \dots, e_{A_m}, e_{A_{m+1}}, \dots, e_{A_{m+s}})$ is invertible if and only if the following conditions simultaneously hold:

- (1) $e_{A_i}\bar{e}_{A_j} + e_{A_j}\bar{e}_{A_i} = 0$ for $i \neq j$ $i, j \in \{0, 1, 2, \dots m\}$, where $e_{A_0} = e_0$,
- $(2) \ m \equiv 2 \pmod{4},$
- (3) s = 1,
- (4) Either $e_{A_{m+1}} = e_{A_1} e_{A_2} \dots e_{A_m}$ or $e_{A_{m+1}} = -e_{A_1} e_{A_2} \dots e_{A_m}$.

Proof. First we prove the sufficiency. From $e_{A_i}\bar{e}_{A_j}+e_{A_j}\bar{e}_{A_i}=0$ for $i\neq j, i,j\in\{0,1,\ldots m\}$ we have

$$\bar{e}_{A_i}\bar{e}_{A_j} + \bar{e}_{A_j}\bar{e}_{A_i} = 0 \text{ and } e_{A_i} + \bar{e}_{A_i} = 0 \text{ for } i \neq j, \quad i, j \in \{1, \dots m\}.$$

We shall prove that $e_{A_k}\bar{e}_{A_{m+1}} + e_{A_{m+1}}\bar{e}_{A_k} = 0$ for $k \in \{0, 1, \dots m\}$. For k = 0, by $a\bar{b} = b\bar{a}$ and by $m \equiv 2 \pmod{4}$, we get that

$$e_0 \bar{e}_{A_{m+1}} + e_{A_{m+1}} \bar{e}_0 = \overline{e_{A_1} e_{A_2} \dots e_{A_m}} + e_{A_1} e_{A_2} \dots e_{A_m}$$

$$= \bar{e}_{A_m} \bar{e}_{A_{m-1}} \dots \bar{e}_{A_1} + e_{A_1} e_{A_2} \dots e_{A_m}$$

$$= (-1)^m e_{A_m} e_{A_{m-1}} \dots e_{A_1} + e_{A_1} e_{A_2} \dots e_{A_m}$$

$$= (-1)^m (-1)^{\frac{m(m-1)}{2}} e_{A_1} e_{A_2} \dots e_{A_m} + e_{A_1} e_{A_2} \dots e_{A_m}$$
$$= -e_{A_1} e_{A_2} \dots e_{A_m} + e_{A_1} e_{A_2} \dots e_{A_m} = 0.$$

For $k \in \{1, 2, \ldots, m\}$ we have

$$e_{A_k}\bar{e}_{A_{m+1}} + e_{A_{m+1}}\bar{e}_{A_k} = e_{A_k}\bar{e}_{A_m}\dots\bar{e}_{A_k}\dots\bar{e}_{A_1} + e_{A_1}\dots e_{A_k}\dots e_{A_m}\bar{e}_{A_k}$$

$$= (-1)^{m-k}\bar{e}_{A_m}\dots e_{A_k}\bar{e}_{A_k}\dots\bar{e}_{A_1} + (-1)^{m-k}e_{A_1}\dots e_{A_k}\bar{e}_{A_k}\dots e_{A_m}$$

$$= (-1)^{m-k} \left[(-1)^{m-1}e_{A_m}\dots e_{A_{k+1}}e_{A_{k-1}}\dots e_{A_1} + e_{A_1}\dots e_{A_{k-1}}e_{A_{k+1}}\dots e_{A_m} \right]$$

$$= (-1)^{m-k} \left[-(-1)^{\frac{(m-1)(m-2)}{2}}e_{A_1}\dots e_{A_{k-1}}e_{A_{k+1}}\dots e_{A_m} + e_{A_1}\dots e_{A_{k-1}}e_{A_{k+1}}\dots e_{A_m} \right] = 0.$$

Take $0 \neq a = a_0 e_0 + \sum_{i=1}^{m+1} a_i e_{A_i} \in L(e_0, e_{A_1}, \dots e_{A_m}, e_{A_{m+1}}).$

Let
$$a^{-1} = \frac{1}{|a|^2} \left(a_0 e_0 + \sum_{i=1}^{m+1} a_i \bar{e}_{A_i} \right)$$
. Then
$$a \cdot a^{-1} = \frac{1}{|a|^2} \left(a_0 e_0 + \sum_{i=1}^{m+1} a_i e_{A_i} \right) \left(a_0 e_0 + \sum_{i=1}^{m+1} a_j \bar{e}_{A_j} \right)$$

$$= \frac{1}{|a|^2} \left[a_0^2 e_0 + a_0 \left(\sum_{i=1}^{m+1} a_i e_{A_i} + \sum_{j=1}^{m+1} a_j \bar{e}_{A_j} \right) + \sum_{i=1}^{m+1} a_i^2 e_{A_i} \bar{e}_{A_i} \right]$$

$$+ \sum_{i \le j} a_i a_j (e_{A_i} \bar{e}_{A_j} + e_{A_j} \bar{e}_{A_i}) = \frac{1}{|a|^2} \left(\sum_{i=0}^{m+1} a_i^2 \right) e_0 = e_0.$$

Similarly, one can check the equality $a^{-1} \cdot a = e_0$.

Now we prove the necessity. By Lemma 2 we have $e_{A_i}\bar{e}_{A_j}+e_{A_j}\bar{e}_{A_i}=0$ for $i\neq j; \quad i,j\in\{0,1,\ldots,m\}$ and by Lemma 3 we get that s=1 and

either
$$e_{A_{m+1}} = e_{A_1} e_{A_2} \dots e_{A_m}$$
 or $e_{A_{m+1}} = -e_{A_1} e_{A_2} \dots e_{A_m}$.

We shall prove that $m \equiv 2 \pmod{4}$. From $e_{A_i}\bar{e}_{A_j} + e_{A_j}\bar{e}_{A_i} = 0$ for $i \neq j; i, j \in \{0, 1, \dots, m\}$ one gets

 $e_{A_i} + \bar{e}_{A_i} = 0$, $i \in \{1, 2, ..., m\}$. Hence either $\sharp A_i = 4p_i + 1$ or $\sharp A_i = 4p_i + 2$ $(p_i \in I\!N)$, $i \in \{1, 2, ..., m\}$. So $e_{A_i}e_{A_i} = -e_0$ (i = 1, 2, ..., m).

Let $m\equiv 0\pmod 4$ or $m\equiv 3\pmod 4$. Choosing $a=e_0+e_{A_{m+1}}$ and $b=e_0-e_{A_{m-1}}$ we find

$$ab = e_0 + e_{A_{m+1}} - e_{A_{m+1}} - e_{A_{m+1}} e_{A_{m+1}} = e_0 - e_{A_1} \dots e_{A_m} e_{A_1} \dots e_{A_m}$$
$$= e_0 - \left[(-1)^m (-1)^{\frac{m(m-1)}{2}} e_0 \right] = e_0 - (-1)^{\frac{m(m+1)}{2}} e_0 = e_0 - e_0 = 0.$$

Hence the non-zero numbers a and b are not invertible.

Let $m \equiv 1 \pmod{4}$. Choosing $a = e_{A_1} + e_{A_{m+1}}$ and $b = e_{A_1} - e_{A_{m+1}}$ we get

$$ab = (e_{A_1} + e_{A_{m+1}})(e_{A_1} - e_{A_{m+1}})$$

$$= e_{A_1}e_{A_1} - e_{A_1}e_{A_{m+1}} + e_{A_{m+1}}e_{A_1} - e_{A_{m+1}}e_{A_{m+1}}$$

$$= -e_0 - e_{A_1}e_{A_1}e_{A_2} \dots e_{A_m} + e_{A_1}e_{A_2} \dots e_{A_m}e_{A_1} - (-1)^{\frac{m(m+1)}{2}}e_0$$

$$= e_{A_2} \dots e_{A_m} + (-1)^{m-1}e_{A_1}e_{A_2} \dots e_{A_m} = e_{A_2} \dots e_{A_m} - e_{A_2} \dots e_{A_m} = 0.$$

Hence a and b are not invertible. So $m \equiv 2 \pmod{4}$. The theorem is proved.

References

- [1] F. Brackx, R. Delanghe and F. Sommen, *Clifford Analysis*, Pitman Advanced Publishing Program, Boston-London-Melbourne, 1982.
- [2] N. C. LUONG AND N. V. MAU, On Invertibility of Linear Subspaces Generating Clifford Algebras, Vietnam Journal of Mathematics, 25:2(1997) 133-140.
- [3] NGUYEN CANH LUONG, Remark on the Maximal Dimension of Invertible Subspaces in the Clifford Algebras, Proceeding of the Fifth Vietnamese Conference, 145-150.

Nguyen Canh Luong

Department of Mathematics University of Technology of Hanoi Hanoi, F105-Nha C14, 1 Dai Co Viet Vietnam e-mail: ncluong@hn.vnn.vn