THE LIE AUGMENTATION TERMINALS OF GROUPS Bertalan Király (Eger, Hungary)

Abstract

In this paper we give necessary and sufficient conditions for groups which have finite Lie terminals with respect to commutative ring of non-zero characteristic m, where m is a composite number.

AMS Classification Number: 16D25

1. Introduction

Let R be a commutative ring with identity, G a group and $R G$ its group ring and let $A(R G)$ denote the augmentation ideal of $R G$, that is the kernel of the ring homomorphism $\phi: R G \rightarrow R$ which maps the group elements to 1 . It is easy to see that as R-module $A(R G)$ is a free module with the elements $g-1(g \in G)$ as a basis. It is clear that $A(R G)$ is the ideal generated by all elements of the form $g-1(g \in G)$.

The Lie powers $A^{[\lambda]}(R G)$ of $A(R G)$ are defined inductively:
$A(R G)=A^{[1]}(R G), A^{[\lambda+1]}(R G)=\left[A^{[\lambda]}(R G), A(R G)\right] \cdot R G$, if λ is not a limit ordinal, and $A^{[\lambda]}(R G)=\underset{\nu<\lambda}{\cap} A^{[\nu]}(R G)$ otherwise, where $[K, M]$ denotes the R-submodule of $R G$ generated by $[k, m]=k m-m k, k \in K, m \in M$, and for $K \subseteq R G, K \cdot R G$ denotes the right ideal generated by K in $R G$ (similarly $R G \cdot K$ will denote the left ideal generated by K). It is easy to see that the right ideal $A^{[\lambda]}(R G)$ is a two-sided ideal of $R G$ for all ordinals $\lambda \geq 1$. We have the following sequence

$$
A(R G) \supseteq A^{2}(R G) \supseteq \ldots
$$

of ideals of $R G$. Evidently there exists the least ordinal $\tau=\tau_{R}[G]$ such that $A^{[\tau]}(R G)=A^{[\tau+1]}(R G)$ which is called the Lie augmentation terminal (or Lie terminal for simple) of G with respect to R.

In this paper we give necessary and sufficient conditions for groups which have finite Lie terminal with respect to a commutative ring of non-zero characteristic.

[^0]
2. Notations and some known facts

If H is a normal subgroup of G, then $I(R H)$ (or $I(H)$ for short) denotes the ideal of $R G$ generated by all elements of the form $h-1(h \in H)$. It is well known that $I(R H)$ is the kernel of the natural epimorphism $\bar{\phi}: R G \rightarrow R G / H$ induced by the group homomorphism ϕ of G onto G / H. It is clear that $I(R G)=A(R G)$.

Let F be a free group on the free generators $x_{i}(i \in I)$, and $Z F$ be its integral group ring (Z denotes the ring of rational integers). Then every homomorphism $\phi: F \rightarrow G$ induces a ring homomorphism $\bar{\phi}: Z F \rightarrow R G$ by letting $\bar{\phi}\left(\sum n_{y} y\right)=$ $\sum n_{y} \phi(y)$, where $y \in F$ and the sum runs over the finite set of $n_{y} y \in Z F$. If $f \in Z F$, we denote by $A_{f}(R G)$ the two-sided ideal of $R G$ generated by the elements $\bar{\phi}(f), \phi \in \operatorname{Hom}(F, G)$, the set of homomorphism from F to G. In other words $A_{f}(R G)$ is the ideal generated by the values of f in $R G$ as the elements of G are substituted for the free generators x_{i}-s.

An ideal J of $R G$ is called a polynomial ideal if $J=A_{f}(R G)$ for some $f \in$ $Z F, F$ a free group.

It is easy to see that the augmentation ideal $A(R G)$ is a polynomial ideal. Really, $A(R G)$ is generated as an R-module by the elements $g-1(g \in G)$, i.e. by the values of the polynomial $x-1$.

Lemma 2.1. ([2], Corollary 1.9, page 6.) The Lie powers $A^{[n]}(R G)(n \geq 1)$ are polynomial ideals in $R G$.

We use the following lemma, too.
Lemma 2.2. ([2] Proposition 1.4, page 2.) If $f \in Z F$, then f defines a polynomial ideal $A_{f}(R G)$ in every group ring $R G$. Further, if $\theta: R G \rightarrow K H$ is a ring homomorphism induced by a group homomorphism $\phi: G \rightarrow H$ and a ring homomorphism $\psi: R \rightarrow K$, then

$$
\theta\left(A_{f}(R G)\right) \subseteq A_{f}(K H) .
$$

(It is assumed that $\psi\left(1_{R}\right)=1_{K}$, where 1_{R} and 1_{K} are identity of the rings R and K, respectively.)

Let $\bar{\theta}: R G \rightarrow R / L G$ be an epimorphism induced by the ring homomorphism θ of R onto R / L. By Lemma $2.1 A^{[n]}(R G)(n \geq 1)$ are polynomial ideal and from Lemma 2.2 it follows that

$$
\begin{equation*}
\bar{\theta}\left(A^{[n]}(R G)\right)=A^{[n]}(R / L G) \tag{1}
\end{equation*}
$$

Let p be a prime and n a natural number. In this case let's denote by $G^{p^{n}}$ the subgroup generated by all elements of the form $g^{p^{n}}(g \in G)$.

If K, L are two subgroups of G, then we denote by (K, L) the subgroup generated by all commutators $(g, h)=g^{-1} h^{-1} g h, g \in K, h \in L$.

The $n^{\text {th }}$ term of the lower central series of G is defined inductively: $\gamma_{1}(G)=$ $G, \gamma_{2}(G)=G^{\prime}$ is the derived group (G, G) of G, and $\gamma_{n}(G)=\left(\gamma_{n-1}(G), G\right)$. The normal subgroups $G_{p, k}(k=1,2, \ldots)$ is defined by

$$
G_{p, k}=\bigcap_{n=1}^{\infty}\left(G^{\prime}\right)^{p^{n}} \gamma_{k}(G) .
$$

We have the following sequence of normal subgroups $G_{p, k}$ of a group G

$$
G=G_{p, 1} \supseteq G_{p, 2} \supseteq \ldots \supseteq G_{p}
$$

where $G_{p}=\bigcap_{k=1}^{\infty} G_{p, k}$.
In [1] the following theorem was proved.
Theorem 2.1. Let R be a commutative ring with identity of characteristic p^{n}, where p a prime number. Then

1. $\tau_{R}[G]=1$ if and only if $G=G_{p}$,
2. $\tau_{R}[G]=2$ if and only if $G \neq G^{\prime}=G_{p}$,
3. $\tau_{R}[G]>2$ if and only if G / G_{p} is a nilpotent group whose derived group is a finite p-group.

3. The Lie augmentation terminal

It is clear, that if G is an Abelian group, then $A^{[2]}(R G)=0$. Therefore we may assume that the derived group $G^{\prime}=\gamma_{2}(G)$ of G is non-trivial.

We considere the case char $R=m=p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{s}^{n_{s}}(s \geq 1)$. Let $\Pi(m)=$ $\left\{p_{1}, p_{2}, \ldots, p_{s}\right\}$ and $R_{p_{i}}=R / p_{i}^{n_{i}} R\left(p_{i} \in \Pi(m)\right)$. If $\bar{\theta}$ is the homomorphism of $R G$ onto $R_{p_{i}} G$, then by (1)

$$
\begin{equation*}
\bar{\theta}\left(A^{[n]}(R G)\right)=A^{[n]}\left(R_{p_{i}} G\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{[n]}\left(R_{p_{i}} G\right) \cong\left(A^{[n]}(R G)+p_{i}^{n_{i}} R G\right) / p_{i}^{n_{i}} R G \tag{3}
\end{equation*}
$$

Theorem 3.1. Let G be a non-Abelian group and R be a commutative ring with identity of non-zero characteristic $m=p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{s}^{n_{s}}(s \geq 1)$ Then the Lie augmentation terminal of G with respect to R is finite if and onli if for every $p_{i} \in \Pi(m)$ one of the following conditions holds:

1. $G=G_{p_{i}}$
2. $G \neq G^{\prime}=G_{p_{i}}$
3. $G / G_{p_{i}}$ is a nilpotent group whose derived group is a finite p_{i}-group.

Proof. Let $p_{i} \in \Pi(m)$ and let one of the conditions hold: $G=G_{p_{i}}$ or $G \neq G^{\prime}=G_{p_{i}}$ or $G / G_{p_{i}}$ is a nilpotent group whose derived group is a finite p_{i}-group. From (2),(3) and Theorem 2.1 it follows, that for every $p_{i} \in \Pi(m)$ there exists $k_{i} \geq 1$ such that

$$
A^{\left[k_{i}\right]}\left(R_{p_{i}} G\right)=A^{\left[k_{i}+1\right]}\left(R_{p_{i}} G\right)=\ldots,
$$

where $R_{p_{i}}=R / p_{i}^{n_{i}} R$. If

$$
k=\max _{i=1}^{s}\left\{k_{i}\right\},
$$

then

$$
A^{[k]}\left(R_{p_{i}} G\right)=A^{[k+1]}\left(R_{p_{i}} G\right)=\ldots
$$

for all $p_{i} \in \Pi(m)$.
Since $A^{[n]}\left(R_{p_{i}} G\right) \cong\left(A^{[n]}(R G)+p_{i}^{n_{i}} R G\right) / p_{i}^{n_{i}} R G$ for all n and every $p_{i} \in$ $\Pi(m)$, then from the previous isomorphism it follows, that an arbitrary element $x \in A^{[k]}(R G)$ can be written as

$$
x=x_{i}+p_{i}^{n_{i}} a_{i},
$$

where $x_{i} \in A^{[k+1]}(R G), a_{i} \in R G$. If $m_{i}=m / p_{i}^{n_{i}}$, then $m_{i} x=m_{i} x_{i}$ since $m_{i} p_{i}^{n_{i}}$ is zero in R. We have

$$
\left(\sum_{p_{i} \in \Pi(m)} m_{i}\right) x=\sum_{p_{i} \in \Pi(m)} m_{i} x_{i}
$$

Obviously m_{i} and $p_{i}^{n_{i}}$ are coprime numbers and for all $p_{i} \in \Pi(m) p_{i}^{n_{i}}$ divides m_{j} for $j \neq i$. Therefore $\sum_{p_{i} \in \Pi(m)} m_{i}$ and the characteristic m of the ring R are coprime numbers. Consequently $\sum_{p_{i} \in \Pi(m)} m_{i}$ is invertible in R. So

$$
x=a \sum_{p_{i} \in \Pi(m)} m_{i} x_{i},
$$

where $a \sum_{p_{i} \in \Pi(m)} m_{i}=1$. Hence $x \in A^{[k+1]}(R G)$ and $x \in A^{[k]}(R G)=A^{[k+1]}(R G)$.
Conversely. Let $\tau_{R}(G)=n \geq 1$, i.e. $A^{n-1}(R G) \neq A^{n}(R G)=A^{n+1}(R G)=\ldots$ Then for every prime $p_{i} \in \Pi(m)$

$$
A^{k-1} \neq A^{[k]}\left(R_{p_{i}} G\right)=A^{[k+1]}\left(R_{p_{i}} G\right)=\ldots
$$

holds for a suitable $k \leq n$ and Theorem 2.1 completes the proof.

References

[1] Király, B., The Lie augmentation terminals of a groups, Acta Acad. Paed. Agriensis, Sect. Math. (1995-96), 63-69.
[2] Passi, I. B., Group ring and their augmentation ideals, Lecture notes in Math., 715, Springer-Verlag, Berlin-Heidelberg-New York, 1979.

Bertalan Király

Károly Eszterházy College
Department of Mathematics
H-3300 Eger, Hungary
Leányka str. 4.
e-mail: kiraly@ektf.hu

[^0]: *Research supported by the Hungarian National Foundation for Scientific Research Grant, No T025029.

