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THE LIE AUGMENTATION TERMINALS OF GROUPS

Bertalan Király (Eger, Hungary)

Abstract. In this paper we give necessary and sufficient conditions for groups which

have finite Lie terminals with respect to commutative ring of non-zero characteristic m,

where m is a composite number.
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1. Introduction

Let R be a commutative ring with identity, G a group and RG its group ring
and let A(RG) denote the augmentation ideal of RG, that is the kernel of the ring
homomorphism φ : RG → R which maps the group elements to 1. It is easy to
see that as R-module A(RG) is a free module with the elements g − 1 (g ∈ G) as
a basis. It is clear that A(RG) is the ideal generated by all elements of the form
g − 1 (g ∈ G).

The Lie powers A[λ](RG) of A(RG) are defined inductively:

A(RG) = A[1](RG), A[λ+1](RG) = [A[λ](RG), A(RG)]·RG, if λ is not a li-

mit ordinal, and A[λ](RG) = ∩
ν<λ

A[ν](RG) otherwise, where [K,M ] denotes the

R−submodule of RG generated by [k,m] = km − mk, k ∈ K,m ∈ M , and for
K ⊆ RG,K·RG denotes the right ideal generated by K in RG (similarly RG·K
will denote the left ideal generated by K). It is easy to see that the right ideal

A[λ](RG) is a two-sided ideal of RG for all ordinals λ ≥ 1. We have the following
sequence

A(RG) ⊇ A2(RG) ⊇ . . .

of ideals of RG. Evidently there exists the least ordinal τ = τR[G] such that

A[τ ](RG) = A[τ+1](RG) which is called the Lie augmentation terminal (or Lie
terminal for simple) of G with respect to R.

In this paper we give necessary and sufficient conditions for groups which have
finite Lie terminal with respect to a commutative ring of non-zero characteristic.
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2. Notations and some known facts

If H is a normal subgroup of G, then I(RH) (or I(H) for short) denotes the
ideal of RG generated by all elements of the form h− 1 (h ∈ H). It is well known

that I(RH) is the kernel of the natural epimorphism φ : RG→ RG/H induced by
the group homomorphism φ of G onto G/H. It is clear that I(RG) = A(RG).

Let F be a free group on the free generators xi(i ∈ I), and ZF be its integral
group ring (Z denotes the ring of rational integers). Then every homomorphism

φ : F → G induces a ring homomorphism φ : ZF → RG by letting φ(
∑

nyy) =
∑

nyφ(y), where y ∈ F and the sum runs over the finite set of nyy ∈ ZF . If
f ∈ ZF , we denote by Af (RG) the two-sided ideal of RG generated by the elements

φ(f), φ ∈ Hom(F,G), the set of homomorphism from F to G. In other words
Af (RG) is the ideal generated by the values of f in RG as the elements of G are
substituted for the free generators xi-s.

An ideal J of RG is called a polynomial ideal if J = Af (RG) for some f ∈
ZF, F a free group.

It is easy to see that the augmentation ideal A(RG) is a polynomial ideal.
Really, A(RG) is generated as an R−module by the elements g− 1 (g ∈ G), i.e. by
the values of the polynomial x− 1.

Lemma 2.1. ([2], Corollary 1.9, page 6.) The Lie powers A[n](RG) (n ≥ 1) are
polynomial ideals in RG.

We use the following lemma, too.

Lemma 2.2. ([2] Proposition 1.4, page 2.) If f ∈ ZF , then f defines a polynomial
ideal Af (RG) in every group ring RG. Further, if θ : RG → KH is a ring
homomorphism induced by a group homomorphism φ : G → H and a ring
homomorphism ψ : R→ K, then

θ(Af (RG)) ⊆ Af (KH).

(It is assumed that ψ(1R) = 1K , where 1R and 1K are identity of the rings R
and K, respectively.)

Let θ : RG → R/LG be an epimorphism induced by the ring homomorphism

θ of R onto R/L. By Lemma 2.1 A[n](RG)(n ≥ 1) are polynomial ideal and from
Lemma 2.2 it follows that

(1) θ(A[n](RG)) = A[n](R/LG).

Let p be a prime and n a natural number. In this case let’s denote by Gpn

the
subgroup generated by all elements of the form gpn

(g ∈ G).
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If K,L are two subgroups of G, then we denote by (K,L) the subgroup
generated by all commutators (g, h) = g−1h−1gh, g ∈ K, h ∈ L.

The nth term of the lower central series of G is defined inductively: γ1(G) =
G, γ2(G) = G′ is the derived group (G,G) of G, and γn(G) = (γn−1(G), G). The
normal subgroups Gp,k (k = 1, 2, . . .) is defined by

Gp,k =
∞
⋂

n=1

(G′)pn

γk(G).

We have the following sequence of normal subgroups Gp,k of a group G

G = Gp,1 ⊇ Gp,2 ⊇ . . . ⊇ Gp,

where Gp =
∞

∩
k=1

Gp,k.

In [1] the following theorem was proved.

Theorem 2.1. Let R be a commutative ring with identity of characteristic pn,
where p a prime number. Then

1. τR[G] = 1 if and only if G = Gp,

2. τR[G] = 2 if and only if G 6= G′ = Gp,

3. τR[G] > 2 if and only if G/Gp is a nilpotent group whose derived group is
a finite p-group.

3. The Lie augmentation terminal

It is clear, that if G is an Abelian group, then A[2](RG) = 0 . Therefore we
may assume that the derived group G′ = γ2(G) of G is non-trivial.

We considere the case charR = m = pn1

1 pn2

2 . . . pns

s (s ≥ 1). Let Π(m) =

{p1, p2, . . . , ps} and Rpi
= R/pni

i R (pi ∈ Π(m)). If θ is the homomorphism of RG
onto Rpi

G, then by (1)

(2) θ(A[n](RG)) = A[n](Rpi
G)

and

(3) A[n](Rpi
G) ∼= (A[n](RG) + pni

i RG)/pni

i RG.

Theorem 3.1. Let G be a non-Abelian group and R be a commutative ring
with identity of non-zero characteristic m = pn1

1 pn2

2 . . . pns

s (s ≥ 1) Then the Lie
augmentation terminal of G with respect to R is finite if and onli if for every
pi ∈ Π(m) one of the following conditions holds:
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1. G = Gpi

2. G 6= G′ = Gpi

3. G/Gpi
is a nilpotent group whose derived group is a finite pi-group.

Proof. Let pi ∈ Π(m) and let one of the conditions hold: G = Gpi
or G 6= G′ = Gpi

or G/Gpi
is a nilpotent group whose derived group is a finite pi-group. From (2),(3)

and Theorem 2.1 it follows, that for every pi ∈ Π(m) there exists ki ≥ 1 such that

A[ki](Rpi
G) = A[ki+1](Rpi

G) = . . . ,

where Rpi
= R/pni

i R. If
k = maxs

i=1{ki},

then
A[k](Rpi

G) = A[k+1](Rpi
G) = . . .

for all pi ∈ Π(m).

Since A[n](Rpi
G) ∼= (A[n](RG) + pni

i RG)/pni

i RG for all n and every pi ∈
Π(m), then from the previous isomorphism it follows, that an arbitrary element

x ∈ A[k](RG) can be written as

x = xi + pni

i ai,

where xi ∈ A[k+1](RG), ai ∈ RG. If mi = m/pni

i , then mix = mixi since mip
ni

i is
zero in R. We have





∑

pi∈Π(m)

mi



 x =
∑

pi∈Π(m)

mixi.

Obviously mi and pni

i are coprime numbers and for all pi ∈ Π(m) pni

i divides
mj for j 6= i. Therefore

∑

pi∈Π(m)mi and the characteristic m of the ring R are

coprime numbers. Consequently
∑

pi∈Π(m)mi is invertible in R. So

x = a
∑

pi∈Π(m)

mixi,

where a
∑

pi∈Π(m)mi = 1. Hence x ∈ A[k+1](RG) and x ∈ A[k](RG) = A[k+1](RG).

Conversely. Let τR(G) = n ≥ 1, i.e. An−1(RG) 6= An(RG) = An+1(RG) = . . ..
Then for every prime pi ∈ Π(m)

Ak−1 6= A[k](Rpi
G) = A[k+1](Rpi

G) = . . .

holds for a suitable k ≤ n and Theorem 2.1 completes the proof.
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