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RESULTS CONCERNING PRODUCTS AND SUMS OF THE

TERMS OF LINEAR RECURRENCES

Péter Kiss (Eger, Hungary)

Abstract. Many papers have investigated perfect powers and polynomial values as terms

of linear recursive sequences of rational integers. Many results show, under some restrictions, that

if a term of a sequence is a perfect power or a polynomial value, then the exponent of the powers

and the degree of the polynomials are bounded above. In this paper we show and prove some

similar results where the terms are substituted by products and sums of the terms of sequences.

AMS Classification Number: 11B37

1. Introduction

For a given positive integer t ≥ 1 we define linear recursive sequences G(i) =

{G
(i)
n }

∞

n=0 of order ti ≥ 2 (i = 1, 2, . . . , t) by the recursion formulae

G(i)
n = A

(i)
1 G

(i)
n−1 + A

(i)
2 G

(i)
n−2 + · · · + A

(i)
ti

G
(i)
n−ti

,

where A
(i)
1 , . . . , A

(i)
ti

and the initial values G
(i)
0 , . . . , G

(i)
ti−1 are fixed rational integers

such that A
(i)
ti

6= 0 and the initial terms are not all zero for 1 ≤ i ≤ t. The
polynomial

g(i)(x) = xti − A
(i)
1 xti−1 − · · · − A

(i)
ti

is called the characteristic polynomial of the sequence G(i) and we denote its distinct

roots by α
(i)
1 , α

(i)
2 , . . . , α

(i)
ki

and suppose that

|α
(i)
1 | ≥ |α

(i)
2 | ≥ · · · ≥ |α

(i)
ki
|.

Denote the multiplicity of α
(i)
1 , . . . , α

(i)
ki

by m
(i)
1 , . . . , m

(i)
ki

, respectively. Then,
as it is well-known, the terms of the sequences can be expressed as

(1) G(i)
n = P

(i)
1 (n)(α

(i)
1 )

n

+ P
(i)
2 (n)(α

(i)
2 )

n

+ · · · + P
(i)
ki

(n)(α
(i)
ki

)
n
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for any n ≥ 0, where P
(i)
j are polynomials of degree m

(i)
j − 1 and the coefficients

of P
(i)
j are algebraic numbers from the number field Q(α

(i)
1 , . . . , α

(i)
ki

). If m
(i)
1 = 1

and |α
(i)
1 | > |α

(i)
j | (j = 2, . . . , ki) for some i, then α

(i)
1 will be denote by αi. In this

case |αi| > 1, since |A
(i)
ti
| ≥ 1, and by (1) we have

(2) G(i)
n = aiα

n
i + P

(i)
2 (n)(α

(i)
2 )

n

+ · · · + P
(i)
ki

(n)(α
(i)
ki

)
n

,

where ai ∈ Q(αi, α
(i)
2 , . . . , α

(i)
ki

) and we suppose that ai 6= 0. If t = 1 then we omit

(i) in (2) and we write Gn instead of G
(1)
n .

In the following we need some notations. Let p1, . . . , pr be given distinct prime
numbers. In the results and theorems S will denote the set of integers defined by

S = {±pe1

1 · pe2

2 · · · per

r : ei ≥ 0, 1 ≤ i ≤ r}.

Furthermore c0, c1, . . . , n0, n1, . . . will denote positive effectively computable con-
stans depending only on t, the parameters of the sequences, the primes p1, . . . , pr

and the constans which are given in some of the mentioned results and theorems
(δ, γ and K). We note that the constans can be exactly determined similary as in
the papers [4] and [8].

Perfect powers and polynomial values among the terms of linear recurrences
have been investigated for many years. For second order linear recurrences many
particular results are known concerning perfect squares and higher powers in the
sequences (see e.g. Cohn [2], Wylie [17], Mignotte and Pethő [9,11,12]). A general
result was obtained by Shorey and Stewart [14] and Pethő [13]: Any non degenerate
second order linear recursive sequence contains only finitely many perfect powers.

For general linear recurrences, which satisfy (2), Shorey and Stewart [14]
proved that if Gx 6= aαx and Gx = dwq for positive integers w > 1, q > 1 and a fixed
integer d 6= 0, then q < n0. In [3] we improved this result substituting d by integers
s ∈ S, furthermore we showed, under some conditions, that |swq − Gx| > ec0x for
all integers s, w and x with s ∈ S and x, q > n1. Similar results were obtain by
Shorey and Stewart [15].

2. Results

If we replace Gx by the sums or products of the terms of linear recurrences G(i)

we can obtain similar results as the above ones. E.g. Brindza, Liptai and Szalay [1]
proved, under some conditions, that the equation

G(1)
x G(2)

y = wq
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can be satisfied only if q is bounded above. This result was extended by Szalay
[16]. Now we present some other more general results. In the results we shall use
the above notations and the following ones:

G(1)
x1

· G(2)
x2

· · ·G(t)
xt

= Πx1,...,xt

and
G(1)

x1
+ G(2)

x2
+ · · · + G(t)

xt
= Σx1,...,xt

,

where x1, . . . , xt are positive integers.

Theorem 1. (Szalay [16]). Let G(i) (i = 1, . . . , t) be linear recursive sequences
defined in (2) and let 0 < δ < 1 be a real number. If Πx1,...,xt

6= Πt
i=1aiα

xi

i and

Πx1,...,xt
= swq

with w > 1, s ∈ S and xj > δ · max(x1, . . . , xt) for 1 ≤ j ≤ t, then q < n2.

Theorem 2. (Kiss and Mátyás [4]). Let G(i) (i = 1, . . . , t) be linear recursive
sequences defined in (2) and let 0 < δ < 1 be a fixed number. Then there is an
effectively computable positive number c1 such that if swq 6= Πt

i=1aiα
xi

i , then

|swq − Πx1,...,xt
| > ec1·max(x1,...,xt)

for any positive integer s, w, q, x1, . . . , xt satisfying the conditions s ∈ S, w >
1, xi > δ · max(x1, . . . , xt) and min (q, max(x1, . . . , xt)) > n3.

Theorem 3. (Kiss and Mátyás [5]). Under the conditions of Theorem 2 concerning

the sequences G(i) and integers x1, . . . , xt, we have

|s − Πx1,...,xt
| > ec2·max(x1,...,xt)

for any s ∈ S and max(x1, . . . , xt) > n4.

Theorem 4. (Kiss and Mátyás [6]). Let G(1) and G(i) (i = 2, . . . , t) be linear
recurrences defined by (2) and (1), respectively, and let K > 1 be a real number.

Suppose that |α1| ≥ |α
(i)
j | for i = 2, . . . , t and j = 1, . . . , ki. If

|Σx1,...,xt
| 6= |a1α

x1

1 |

and
Σx1,...,xt

= swq

for positive integers w > 1, q, x1, . . . , xt and s ∈ S such that

x1 > K · max(x2, . . . , xt),
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then q < n5.

Theorem 5. (Mátyás [8]). Under the conditions of Theorem 4 for the sequences

G(i) and integers x1, . . . , xt we have

|swq − Σx1,...,xt
| > ec3x1

for any s ∈ S and min(x1, q) > n6.

Theorem 6. (Kiss and Mátyás [5]). Under the conditions of Theorem 4 for the

sequences G(i) and integers x1, . . . , xt we have

|s − Σx1,...,xt
| > ec4x1

for any s ∈ S and x1 > n7.

Corollary 1. Under the conditions implied by Theorem 2 and Theorem 4, Theorem
3 and Theorem 6 imply that the relations

Πx1,...,xt
∈ S and Σx1,...,xt

∈ S

hold only for finitely many positive integers x1, . . . , xt.

If we replace swq in Theorem 1, 2, 4 and 5 by a polynomial, we can obtain
similar results. Nemes and Pethő [10] furthermore Kiss [7] proved, that if G is a
linear recurrence defined by (2) and F (y) is a polynomial satisfying some conditions,
then the equation Gx = F (y) implies that the degree of F (y) is bounded above.
Now we give some generalizations of this result.

Theorem 7. Let G(i) (i = 1, . . . , t) be linear recursive sequences defined by (2)
and let 0 < δ < 1 be a fixed positive real number. Further let

(3) F (y) = byq + bkyk + bk−1y
k−1 + · · · + b0

be a polynomial of integer coefficients with b 6= 0 and k < γq, where 0 < γ < 1. If

γ < c6 and byq 6=
t
∏

i=1

aiα
xi

i , then

|F (y) − Πx1,...,xt
| > ec5·max(x1,...,xt)

for any positive integers y, q, x1, . . . , xt satisfying the conditions y > 1, xi >
δ · max(x1, . . . , xt), and min (q, max(x1, . . . , xt)) > n8.

Theorem 8. Let G(i) (i = 1, . . . , t) be linear recurrences and x1, . . . xt positive
integers which satisfy the conditions of Theorem 4. Let F (y) be a polynomial given
in Theorem 7. Then

|F (y) − Σx1,...,xt
| > ec7x1
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for any positive integers y > 1, x1, . . . , xt with min(q, x1) > n9.

Corollary 2. From Theorem 7 and 8 it follows, that if the sequences G(i), the
integers x1, . . . , xt and the polynomial F (y) satisfy the conditions of Theorem 7
and Theorem 8, then the equations

Πx1,...,xt
= F (y)

and
Σx1,...,xt

= F (y)

imply the inequalities q < n10 and q < n11, respectively.

3. Proofs

The proofs of the Theorems 1–6 can be found in the papers mentioned in
the theorems. The proofs are based upon Baker-type estimations of linear forms
of logarithms of algebraic numbers, using the explicit form of the terms of the
sequences.

Proof of Theorem 7. Let G(i) and F (y) be linear recurrences given in the theorem
and let y, q, x1, . . . , xt be positive integers such that y, q > 1, k < γq and xi >
δ · max(x1, . . . , xt) for i = 1, . . . , t Denote by x the maximum values of x1, . . . , xt,
i.e.

x = max(x1, . . . , xt).

Suppose that

(4) |F (y) − Πx1,...,xt
| < ecx

for some c > 0. Then by (2) and (3), using that δx < xi ≤ x and k < γq

(5)

∣

∣

∣

∣

∣

byq(1 + ε1) −

(

t
∏

i=1

aiα
xi

i

)

(1 + ε2)

∣

∣

∣

∣

∣

< ecx

follows, where
|ε1| < e−c8q and |ε2| < e−c9x

if q, x > n12. By (5), using that xi > δx, we obtain the inequalities

∣

∣

∣

∣

∣

∣

∣

∣

byq

t
∏

i=1

aiα
xi

i

−
1 + ε2

1 + ε1

∣

∣

∣

∣

∣

∣

∣

∣

<
ex

∣

∣

∣

∣

t
∏

i=1

aiα
xi

i

∣

∣

∣

∣

·
1

|1 + ε1|
<

ecx

ec10x
< e−c11x
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if c < c10. From these it follows that

(6) 1 − ε <

∣

∣

∣

∣

∣

∣

∣

∣

byq

t
∏

i=1

aiα
xi

i

∣

∣

∣

∣

∣

∣

∣

∣

< 1 + ε,

where 0 ≤ ε < c12 · max(|ε1|, |ε2|, e
−c11x). By (6) we get the inequality

|byq| < (1 + ε)

∣

∣

∣

∣

∣

t
∏

i=1

aiα
xi

i

∣

∣

∣

∣

∣

< ec13x

and so

(7) q · log y < c14x.

Using (7), by Theorem 2 we have

|F (y) − Πx1,...,xt
| ≥

∣

∣|byq − Πx1,...,xt
| − |dkyk + · · · + b0|

∣

∣ ≥

|ec15x − yc16k| = |ec15x − ec16k·log y| >

|ec15x − ec16γq·log y| > |ec15x − ec17γx| > ec18x

if c15 > c17γ, i.e. if γ < c15/c17. It contradicts to (4) if c < c18, which proves the
theorem with c5 = c18, c6 = c15/c17 and n8 = max(n12, n13), where n13 is implied
by Theorem 2.

Proof of Theorem 8. The theorem can be proved similary as Theorem 7 using
the result of Theorem 5.
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