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ON POLYNOMIAL VALUES OF THE SUM AND THE PRODUCT

OF THE TERMS OF LINEAR RECURRENCES

Kálmán Liptai (Eger, Hungary)

Abstract. Let G(i)={G(i)
x }

∞

x=0
(i=1,2,...,m) linear recursive sequences and let F (x)=dxq+

dpxp+dp−1xp−1+···+d0, where d and di’s are rational integers, be a polynomial. In this paper

we showed that for the equations
m
∑

i=1

G(i)
xi

=F (x) and
m
∏

i=1

G(i)
xi

=F (x) where xi-s are non-negative

integers, with some restriction, there are no solutions in xi-s and x if q>q0, where q0 is an effectively

computable positive constant.

AMS Classification Number: 11B37

1. Introduction

Let m ≥ 2 be an integer and define the linear recurrences G(i) =
{

G
(i)
x

}∞

x=0

(i = 1, 2, . . . , m) of order ki by the recursion

(1) G(i)
x = A

(i)
1 G

(i)
x−1 + A

(i)
2 G

(i)
x−2 + · · · + A

(i)
ki

G
(i)
x−ki

(x ≥ ki ≥ 2),

where the initial values G
(i)
j and the coefficients A

(i)
j+1 (j = 0, 1, . . . , ki − 1) are

rational integers. Suppose that

A
(i)
ki

(∣

∣

∣
G

(i)
0

∣

∣

∣
+
∣

∣

∣
G

(i)
1

∣

∣

∣
+ · · · +

∣

∣

∣
G

(i)
ki−1

∣

∣

∣

)

6= 0

for any recurrences and denote the distinct roots of the characteristic polynomial

g(i)(u) = uki − A
(i)
1 uki−1 − · · · − A

(i)
ki

of the sequence G(i) by α
(i)
1 , α

(i)
2 , . . . , α

(i)
ti

(ti ≥ 2). It is known that there

exist uniquely determined polynomials p
(i)
j (u) ∈ Q(α

(i)
1 , α

(i)
2 , . . . , α

(i)
ti

)[u] (j =

1, 2, . . . , ti) of degree less than the multiplicity m
(i)
j of roots α

(i)
j such that for

x ≥ 0

(2) G(i)
x = p

(i)
1 (x)

(

α
(i)
1

)x

+ p
(i)
2 (x)

(

α
(i)
2

)x

+ · · · + p
(i)
ti

(x)
(

α
(i)
ti

)x

.
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Using the terminology of F. Mátyás [9], we say that G(1) is the dominant

sequence among the sequences G(i) (i = 1, 2, . . . , m) if m
(1)
1 = 1, the polynomial

p
(1)
1 (x) = a is a non-zero constant and, using the notation α

(1)
1 = α,

(3) |α| =
∣

∣

∣
α

(1)
1

∣

∣

∣
>
∣

∣

∣
α

(1)
2

∣

∣

∣
≥ · · · ≥

∣

∣

∣
α

(1)
t1

∣

∣

∣
and |α| ≥

∣

∣

∣
α

(i)
j

∣

∣

∣

for 2 ≤ i ≤ m and 1 ≤ j ≤ ti. (Since A
(1)
k1

∈ Z \ {0}, therefore |α| > 1.) In this case

(4) G(1)
x = aαx + p

(1)
2 (x)

(

α
(1)
2

)x

+ · · · + p
(1)
t1

(x)
(

α
(1)
t1

)x

.

If
∣

∣

∣
α

(i)
1

∣

∣

∣
>
∣

∣

∣
α

(i)
j

∣

∣

∣
(j = 2, . . . , ti) in a sequence G(i) and m

(i)
1 = 1 then we denote

p
(i)
1 (x) by ai, in the case i = 1 by a.

In the following we assume that

(5) F (x) = dxq + dpx
p + dp−1x

p−1 + · · · + d0,

is a polynomial with rational integer coefficients, where d 6= 0, q ≥ 2 and q > p.

In the paper we use the following notations:

Σx1,x2,...,xm
=

m
∑

i=1

G(i)
xi

(6)

and

Gx1,x2,...,xm
=

m
∏

i=1

G(i)
xi

,(7)

where xi-s are non-negative integers.

The Diophantine equation

(8) Gn = F (x)

with positive integer variables n and x was investigated by several authors. It is
known that if G is a nondegenerate second order linear recurrence, with some
restrictions, and F (x) = dxq then the equation (8) have finitely many integer
solutions in variables n ≥ 1 and q ≥ 2.

For general linear recurrences we know a similar result (see [11]). A more
general result was proved by I. Nemes and A. Pethő [10], furthermore by P. Kiss
[4].

Using some other conditions, B. Brindza, K. Liptai and L. Szalay [2] proved
that the equation

G(1)
x1

G(2)
x2

= wq
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implies that q is bounded above, while L. Szalay [12] made the following gener-
alization of this problem. Let d 6= 0 fixed integer and s a product of powers of

given primes. Then, under some conditions, the equation dG
(1)
x1 G

(2)
x2 . . .G

(m)
xm

= swq

in positive integers w > 1, q, x1, . . . , xm implies that q is bounded above by a
constant.

The author in [8] showed that for the equation G
(1)
n G

(2)
m = F (x), with some

restriction, there are no solutions in n, m and x if q > q0, where q0 is an effectively
computable positive constant.

With some restrictions, P. Kiss and F. Mátyás [7] proved an additive re-
sult in this theme, namely, if Σx1,x2,...,xm

= swq for positive integers w >

1, x1, x2, . . . , xm, q and there is a dominant sequence among the sequences G(i),
then q is bounded above.

P. Kiss investigated the difference between perfect powers and products or
sums of terms of linear recurrences. Such a result is proved in [3] for the sequence

G(1) which has the form of (4). Namely, under some restrictions,
∣

∣

∣
swq − G

(1)
x

∣

∣

∣
> ecx

for all integers w > 1, x, q and s, if x and q > n1, where c and n1 are effectively
computable positive numbers. Using some conditions, P. Kiss and F. Mátyás [6]

generalized this result substituting G
(1)
x by

m
∏

i=1

G
(i)
xi , where the sequences G(i) have

the form of (4).

F. Mátyás [8] proved a similar result in additive case.

2. Results and proofs

Using the notations mentioned above, we shall prove the following theorems.

Theorem 1. Let G(i) (i = 1, 2, . . . , m; m ≥ 2) be linear recursive sequences of

integers defined by (1). Suppose that G(1) is the dominant recurrence among the

sequences G(i) and α /∈ Z. Let K > 1 and 0 < δ1 < 1 be real constants, F (x) and
Σx1,x2,...,xm

are defined by (5) and (6) with the condition p < δ1q. If

x1 > K max
2≤i≤m

(xi)

then the equation

(9) Σx1,x2,...,xm
= F (x),

in positive integers x ≥ 2, x1 > x2, . . . , xm, q implies that q < q1, where q1 is an
effectively computable number depending on K, δ1, F (x), m and the sequences G(i).

Theorem 2. Let G(i) (i = 1, 2, . . . , m; m ≥ 2) be linear recursive sequences of

integers defined by (1). Suppose that |α
(i)
1 | > |α

(i)
j | for 1 ≤ i ≤ m and 2 ≤ j ≤ ti,
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moreover α
(i)
1 -s are not integers. Let 0 < γ < 1 and 0 < δ2 < 1 be real constants,

F (x) and Gx1,x2,...,xm
are defined by (5) and (7) with the condition p < δ2q. If

xi > γ max(x1, . . . , xm) for i = 1, . . . , m then the equation

(10) Gx1,x2,...,xm
= F (x),

in positive integers x ≥ 2, x1 > x2, . . . , xt, q implies that q < q2, where q2 is an
effectively computable number depending on γ, δ2, F (x), m and the sequences G(i).

Remark. P. Kiss in [5] proved similar results with other conditions.

In what follows we need the following auxiliary results.

Lemma 1. Let ω1, ω2, . . . , ωn (ωi 6= 0 or 1) be algebraic numbers with heights at
most M1, M2, . . . , Mn ≥ 4, respectively. If b1, b2, . . . , bn are non-zero integers with
max(|b1| , |b2| , . . . , |bn−1|) ≤ B and |bn| ≤ B′, B′ ≥ 3, furthermore

Λ = |b1 log ω1 + b2 log ω2 + · · · + bn log ωn| 6= 0,

where the logarithms are assumed to have their principal values, then there exists
an effectively computable positive constant C, depending only on n, M1, . . . , Mn−1

and the degree of the field Q(ω1, . . . ωn) such that

Λ > exp (−C log B′ log Mn − B/B′).

Lemma 1. is a result of A. Baker (see Theorem 1. in [1] with δ = 1/B′).

For the sake of brevity we introduce the following abbreviations. For non-
negative integers x1, x2, . . . , xm let

(11) ε
(i)
j =

p
(i)
j (xi)

a

(

α
(i)
j

)xi

αx1
, ε1 =

t1
∑

j=2

ε
(1)
j , ε2 =

m
∑

i=2

ti
∑

j=1

ε
(i)
j

and ε = ε1 + ε2. Using (2), (4) and (6)

Σx1,x2,...,xm
= aαx1 +

t1
∑

j=2

p
(1)
j (x1)

(

α
(1)
j

)x1

+

m
∑

i=2

ti
∑

j=1

p
(i)
j (xi)

(

α
(i)
j

)xi

and by (11) we have

(12) Σx1,x2,...,xm
= aαx1 (1 + ε1 + ε2) = aαx1(1 + ε).

Let

(13) ε3 =

(

dp

d

(

1

x

)q−p
)

(

1 +
dp−1

dp

(

1

x

)

+ · · · +
d0

dp

(

1

x

)p)

.
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So (5) can be written in the form

(14) F (x) = dxq(1 + ε3).

The following three lemmas are due to F. Mátyás [8], where n1, n2, n3 means
effectively computable constants.

Lemma 2. Let G(1) be the dominant sequence among the recurrences G(i) (1 ≤
i ≤ m) defined by (1). Then there are effectively computable positive constants c1

and n1 depending only on the sequence G(1) such that

|ε1| < e−c1x1

for any n1 < x1.

Lemma 3. Let G(1) be the dominant sequence among the recurrences G(i) (1 ≤ i ≤
m) defined by (1), 1 < K ∈ R and x1 > K max

2≤i≤m
(xi). Then there are effectively

computable positive constants c2 and n2 depending only on K and the sequences
G(i) such that

|ε2| < e−c2x1

for any n2 < x1.

Lemma 4. Suppose that the conditions of Lemma 2 and Lemma 3 hold. Then
there exist effectively computable positive constants c3, c4, n3 depending only on
K and the sequences G(i) such that

ec3x1 < |Σx1,x2,...,xm
| < ec4x1

for any integer x1 > n3.

The following lemma is due to P. Kiss and F. Mátyás [6].

Lemma 5. Let γ be a real number with 0 < γ < 1 and let Gx1,...,xm
be an integer

defined by (7), where x1, . . . , xm are positive integers satisfying the condition xi >

γ max(x1, . . . , xt) and |α
(i)
1 | > |α

(i)
j | for 1 ≤ i ≤ m and 2 ≤ j ≤ ti. Then there

are effectively computable positive constants c5 and n4, depending only on the
sequences G(i) and γ, such that

(15) Gx1,...,xm
=

(

m
∏

i=1

aiα
xi

i

)

(1 + ε4),

where
|ε4| < e−c5·max(x1,...,xm)

for any max(x1, . . . , xm) > n4.
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Remark. In general α
(i)
1 is named the dominant root of the i-th sequence, if

∣

∣

∣
α

(i)
1

∣

∣

∣
>

∣

∣

∣
α

(i)
j

∣

∣

∣
for 2 ≤ j ≤ ti.

Proof of Theorem 1. In the proof c6, c7, . . . denote effectively computable
constants, which depend on K, δ1, F (x) and the sequences G(i). Suppose that (9)
holds with the conditions given in the Theorem 1. and x1 is sufficiently large. Using
(9), (14) and Lemma 4. we have

(16) |dxq(1 + ε3)| = |F (x)| = |Σx1,x2,...,xm
| < ec6x1 .

Taking the logarithms of the both side we get

|log |d| + q log x + log |1 + ε3|| < c6x1

that is

(17) q log x < c7x1.

Now, using (11) and (13), the equation (9) can be written in the form

(18)

∣

∣

∣

∣

aαx1

dxq

∣

∣

∣

∣

= |1 + ε3| |1 + ε|−1 .

We distinguish two cases. First we suppose that

aαx1 = dxq.

Let α′ 6= α be any conjugate of α and let ϕ be an automorphism of Q with
ϕ(α) = α′. Moreover,

ϕ (a) (ϕ(α))x1 = ϕ (dxq) .

Thus
a

ϕ(a)
=

(

α′

α

)x1

.

whence x1 is bounded, which implies that q is bounded. Now we can suppose that
aαx1

dxq 6= 1. Put

L1 =
∣

∣

∣
log
∣

∣

∣

aαx1

dxq

∣

∣

∣

∣

∣

∣
=
∣

∣

∣
log |a| + x1 log |α| − q log x − log d

∣

∣

∣

and employ Lemma 1. with M4 = x, B′ = q and B = x1. We have

(19) L1 > exp(−c8 log q log x −
x1

q
).
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Using (9), (11), (12), (13), (14) and (17) we have

c9x
q < dxq(1 + ε3) = aαx1(1 + ε1 + ε2) < c10x

q,

that is
c11x

q < αx1 < c12x
q .

Using (13), the previous inequalities and the condition p < δ1q we have

(20) |ε3| <

(

1

x

)c13(q−p)

<

(

1

x

)c13q(1−δ1)

< exp(−c14x1).

Recalling that |log(1 + x)| ≤ x and |log(1 − x)| ≤ 2x for 0 ≤ x < 1
2 and using (20),

Lemma 2. and Lemma 3. we find that

∣

∣

∣
log |1 + ε3| |1 + ε|

−1
∣

∣

∣
< exp(−c15x1)

Using (17), (18), (19) and (20) we have the following inequalities

c15x1 < c8 log q log x +
x1

q
< c8 log q

c7x1

q
+

x1

q
< c16x1

log q

q
.

This implies
c15

c16
<

log q

q
.

The previous inequality can be satisfied by only finitely many q and this completes
the proof.

Proof of Theorem 2. Similarly the previous proof, ci-s denote effectively com-
putable positive constants, which depend on γ, δ2, F (x) and the sequences G(i).
Suppose that (10) holds with the conditions given in Theorem 2. Let x1, . . . , xt be
positive integers and let x0 = max(x1, . . . , xt). We suppose that αs is the dominant
root of the sequence which belongs to x0. Using Lemma 5. we have

(21) ec17x0 < Gx1,...,xm
= F (x) < ec18x0

if x0 > n4. So by (10) and (21) we get

(22) |dxq(1 + ε3)| = |F (x)| = |Gx1,x2,...,xm
| < ec18x0 .

Taking the logarithms of the both side we get

|log |d| + q log x + log |1 + ε3|| < c18x0
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that is

(23) q log x < c19x0.

The equation (10) can be written in the form

(24)

m
∏

i=1

aiα
xi

i

dxq
= (1 + ε3)(1 + ε4)

−1.

We distinguish two cases. First we suppose that

m
∏

i=1

aiα
xi

i = dxq.

Let α′
s 6= αs be any conjugate of αs and let ϕ be an automorphism of Q with

ϕ(α) = α′. Moreover,

ϕ

(

m
∏

i=1

aiα
xi

i

)

= ϕ (dxq)

that is
m
∏

i=1

aiα
xi

i = ϕ

(

m
∏

i=1

aiα
xi

i

)

.

Since α dominant root, ϕ(αi) ≤ αi i = 1, 2, . . . , m we have

(

αs

ϕ(αs)

)x0

≤

ϕ

(

m
∏

i=1

ai

)

m
∏

i=1

ai

,

whence x0 is bounded, which implies that q is bounded. Now we can suppose that
t
∏

i=1

aiα
xi

i 6= dxq. Put

L2 =

∣

∣

∣

∣

∣

∣

∣

∣

log

∣

∣

∣

∣

∣

∣

∣

∣

m
∏

i=1

aiα
xi

i

dxq

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

m
∑

i=1

log |ai| +
m
∑

i=1

xi log |αi| − log d − q log x

∣

∣

∣

∣

∣

and employ Lemma 1. with M2t+2 = x, B′ = q and B = x0. We have

(25) L2 > exp(−c20 log q log x −
x0

q
).
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Using (15) and Lemma 5. we have

c20x
q < dxq(1 + ε3) =

m
∏

i=1

aiα
xi

i (1 + ε4) < c21x
q

that is
αx0

s < c21x
q.

Using (13), the previous inequality and the condition p < δ2q we have

(26) |ε3| <

(

1

x

)c22(q−p)

<

(

1

x

)c22q(1−δ2)

< exp(−c23x0).

Recalling that |log(1 + x)| ≤ x and |log(1 − x)| ≤ 2x for 0 ≤ x < 1
2 and using (26)

and Lemma 5. we find that

(27)
∣

∣

∣
log |1 + ε3| |1 + ε4|

−1
∣

∣

∣
< exp(−c24x0).

Using (23), (24), (25), and (27) we have the following inequalities

c24x0 < c20 log q log x +
x0

q
< c20 log q

c19x0

q
+

x0

q
< c25x0

log q

q
.

This implies
c24

c25
<

log q

q
.

The previous inequality can be satisfied by only finitely many q and this completes
the proof.
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