ON POLYNOMIAL VALUES OF THE SUM AND THE PRODUCT OF THE TERMS OF LINEAR RECURRENCES

Kálmán Liptai (Eger, Hungary)

Abstract

Let $G^{(i)}=\left\{G_{x}^{(i)}\right\}_{x=0}^{\infty} \quad(i=1,2, \ldots, m)$ linear recursive sequences and let $F(x)=d x^{q}+$ $d_{p} x^{p}+d_{p-1} x^{p-1}+\cdots+d_{0}$, where d and d_{i} 's are rational integers, be a polynomial. In this paper we showed that for the equations $\sum_{i=1}^{m} G_{x_{i}}^{(i)}=F(x)$ and $\prod_{i=1}^{m} G_{x_{i}}^{(i)}=F(x)$ where x_{i}-s are non-negative integers, with some restriction, there are no solutions in x_{i}-s and x if $q>q_{0}$, where q_{0} is an effectively computable positive constant.

AMS Classification Number: 11B37

1. Introduction

Let $m \geq 2$ be an integer and define the linear recurrences $G^{(i)}=\left\{G_{x}^{(i)}\right\}_{x=0}^{\infty}$ $(i=1,2, \ldots, m)$ of order k_{i} by the recursion

$$
\begin{equation*}
G_{x}^{(i)}=A_{1}^{(i)} G_{x-1}^{(i)}+A_{2}^{(i)} G_{x-2}^{(i)}+\cdots+A_{k_{i}}^{(i)} G_{x-k_{i}}^{(i)} \quad\left(x \geq k_{i} \geq 2\right) \tag{1}
\end{equation*}
$$

where the initial values $G_{j}^{(i)}$ and the coefficients $A_{j+1}^{(i)} \quad\left(j=0,1, \ldots, k_{i}-1\right)$ are rational integers. Suppose that

$$
A_{k_{i}}^{(i)}\left(\left|G_{0}^{(i)}\right|+\left|G_{1}^{(i)}\right|+\cdots+\left|G_{k_{i}-1}^{(i)}\right|\right) \neq 0
$$

for any recurrences and denote the distinct roots of the characteristic polynomial

$$
g^{(i)}(u)=u^{k_{i}}-A_{1}^{(i)} u^{k_{i}-1}-\cdots-A_{k_{i}}^{(i)}
$$

of the sequence $G^{(i)}$ by $\alpha_{1}^{(i)}, \alpha_{2}^{(i)}, \ldots, \alpha_{t_{i}}^{(i)} \quad\left(t_{i} \geq 2\right)$. It is known that there exist uniquely determined polynomials $p_{j}^{(i)}(u) \in \mathbf{Q}\left(\alpha_{1}^{(i)}, \alpha_{2}^{(i)}, \ldots, \alpha_{t_{i}}^{(i)}\right)[u](j=$ $1,2, \ldots, t_{i}$) of degree less than the multiplicity $m_{j}^{(i)}$ of roots $\alpha_{j}^{(i)}$ such that for $x \geq 0$

$$
\begin{equation*}
G_{x}^{(i)}=p_{1}^{(i)}(x)\left(\alpha_{1}^{(i)}\right)^{x}+p_{2}^{(i)}(x)\left(\alpha_{2}^{(i)}\right)^{x}+\cdots+p_{t_{i}}^{(i)}(x)\left(\alpha_{t_{i}}^{(i)}\right)^{x} \tag{2}
\end{equation*}
$$

Research supported by the Hungarian National Scientific Research Foundation, Operating Number T 032898 and 29330.

Using the terminology of F. Mátyás [9], we say that $G^{(1)}$ is the dominant sequence among the sequences $G^{(i)}(i=1,2, \ldots, m)$ if $m_{1}^{(1)}=1$, the polynomial $p_{1}^{(1)}(x)=a$ is a non-zero constant and, using the notation $\alpha_{1}^{(1)}=\alpha$,

$$
\begin{equation*}
|\alpha|=\left|\alpha_{1}^{(1)}\right|>\left|\alpha_{2}^{(1)}\right| \geq \cdots \geq\left|\alpha_{t_{1}}^{(1)}\right| \text { and }|\alpha| \geq\left|\alpha_{j}^{(i)}\right| \tag{3}
\end{equation*}
$$

for $2 \leq i \leq m$ and $1 \leq j \leq t_{i}$. (Since $A_{k_{1}}^{(1)} \in \mathbf{Z} \backslash\{0\}$, therefore $|\alpha|>1$.) In this case

$$
\begin{equation*}
G_{x}^{(1)}=a \alpha^{x}+p_{2}^{(1)}(x)\left(\alpha_{2}^{(1)}\right)^{x}+\cdots+p_{t_{1}}^{(1)}(x)\left(\alpha_{t_{1}}^{(1)}\right)^{x} \tag{4}
\end{equation*}
$$

If $\left|\alpha_{1}^{(i)}\right|>\left|\alpha_{j}^{(i)}\right|\left(j=2, \ldots, t_{i}\right)$ in a sequence $G^{(i)}$ and $m_{1}^{(i)}=1$ then we denote $p_{1}^{(i)}(x)$ by a_{i}, in the case $i=1$ by a.

In the following we assume that

$$
\begin{equation*}
F(x)=d x^{q}+d_{p} x^{p}+d_{p-1} x^{p-1}+\cdots+d_{0}, \tag{5}
\end{equation*}
$$

is a polynomial with rational integer coefficients, where $d \neq 0, q \geq 2$ and $q>p$.
In the paper we use the following notations:

$$
\begin{equation*}
\Sigma_{x_{1}, x_{2}, \ldots, x_{m}}=\sum_{i=1}^{m} G_{x_{i}}^{(i)} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{G}_{x_{1}, x_{2}, \ldots, x_{m}}=\prod_{i=1}^{m} G_{x_{i}}^{(i)}, \tag{7}
\end{equation*}
$$

where x_{i}-s are non-negative integers.
The Diophantine equation

$$
\begin{equation*}
G_{n}=F(x) \tag{8}
\end{equation*}
$$

with positive integer variables n and x was investigated by several authors. It is known that if G is a nondegenerate second order linear recurrence, with some restrictions, and $F(x)=d x^{q}$ then the equation (8) have finitely many integer solutions in variables $n \geq 1$ and $q \geq 2$.

For general linear recurrences we know a similar result (see [11]). A more general result was proved by I. Nemes and A. Pethő [10], furthermore by P. Kiss [4].

Using some other conditions, B. Brindza, K. Liptai and L. Szalay [2] proved that the equation

$$
G_{x_{1}}^{(1)} G_{x_{2}}^{(2)}=w^{q}
$$

implies that q is bounded above, while L. Szalay [12] made the following generalization of this problem. Let $d \neq 0$ fixed integer and s a product of powers of given primes. Then, under some conditions, the equation $d G_{x_{1}}^{(1)} G_{x_{2}}^{(2)} \ldots G_{x_{m}}^{(m)}=s w^{q}$ in positive integers $w>1, q, x_{1}, \ldots, x_{m}$ implies that q is bounded above by a constant.

The author in [8] showed that for the equation $G_{n}^{(1)} G_{m}^{(2)}=F(x)$, with some restriction, there are no solutions in n, m and x if $q>q_{0}$, where q_{0} is an effectively computable positive constant.

With some restrictions, P. Kiss and F. Mátyás [7] proved an additive result in this theme, namely, if $\Sigma_{x_{1}, x_{2}, \ldots, x_{m}}=s w^{q}$ for positive integers $w>$ $1, x_{1}, x_{2}, \ldots, x_{m}, q$ and there is a dominant sequence among the sequences $G^{(i)}$, then q is bounded above.
P. Kiss investigated the difference between perfect powers and products or sums of terms of linear recurrences. Such a result is proved in [3] for the sequence $G^{(1)}$ which has the form of (4). Namely, under some restrictions, $\left|s w^{q}-G_{x}^{(1)}\right|>e^{c x}$ for all integers $w>1, x, q$ and s, if x and $q>n_{1}$, where c and n_{1} are effectively computable positive numbers. Using some conditions, P. Kiss and F. Mátyás [6] generalized this result substituting $G_{x}^{(1)}$ by $\prod_{i=1}^{m} G_{x_{i}}^{(i)}$, where the sequences $G^{(i)}$ have the form of (4).
F. Mátyás [8] proved a similar result in additive case.

2. Results and proofs

Using the notations mentioned above, we shall prove the following theorems.
Theorem 1. Let $G^{(i)}(i=1,2, \ldots, m ; m \geq 2)$ be linear recursive sequences of integers defined by (1). Suppose that $G^{(1)}$ is the dominant recurrence among the sequences $G^{(i)}$ and $\alpha \notin \mathbf{Z}$. Let $K>1$ and $0<\delta_{1}<1$ be real constants, $F(x)$ and $\Sigma_{x_{1}, x_{2}, \ldots, x_{m}}$ are defined by (5) and (6) with the condition $p<\delta_{1} q$. If

$$
x_{1}>K \max _{2 \leq i \leq m}\left(x_{i}\right)
$$

then the equation

$$
\begin{equation*}
\Sigma_{x_{1}, x_{2}, \ldots, x_{m}}=F(x) \tag{9}
\end{equation*}
$$

in positive integers $x \geq 2, x_{1}>x_{2}, \ldots, x_{m}, q$ implies that $q<q_{1}$, where q_{1} is an effectively computable number depending on $K, \delta_{1}, F(x), m$ and the sequences $G^{(i)}$.

Theorem 2. Let $G^{(i)}(i=1,2, \ldots, m ; m \geq 2)$ be linear recursive sequences of integers defined by (1). Suppose that $\left|\alpha_{1}^{(i)}\right|>\left|\alpha_{j}^{(i)}\right|$ for $1 \leq i \leq m$ and $2 \leq j \leq t_{i}$,
moreover $\alpha_{1}^{(i)}$-s are not integers. Let $0<\gamma<1$ and $0<\delta_{2}<1$ be real constants, $F(x)$ and $\mathcal{G}_{x_{1}, x_{2}, \ldots, x_{m}}$ are defined by (5) and (7) with the condition $p<\delta_{2} q$. If $x_{i}>\gamma \max \left(x_{1}, \ldots, x_{m}\right)$ for $i=1, \ldots, m$ then the equation

$$
\begin{equation*}
\mathcal{G}_{x_{1}, x_{2}, \ldots, x_{m}}=F(x), \tag{10}
\end{equation*}
$$

in positive integers $x \geq 2, x_{1}>x_{2}, \ldots, x_{t}$, q implies that $q<q_{2}$, where q_{2} is an effectively computable number depending on $\gamma, \delta_{2}, F(x), m$ and the sequences $G^{(i)}$.

Remark. P. Kiss in [5] proved similar results with other conditions.
In what follows we need the following auxiliary results.
Lemma 1. Let $\omega_{1}, \omega_{2}, \ldots, \omega_{n} \quad\left(\omega_{i} \neq 0\right.$ or 1$)$ be algebraic numbers with heights at most $M_{1}, M_{2}, \ldots, M_{n} \geq 4$, respectively. If $b_{1}, b_{2}, \ldots, b_{n}$ are non-zero integers with $\max \left(\left|b_{1}\right|,\left|b_{2}\right|, \ldots,\left|b_{n-1}\right|\right) \leq B$ and $\left|b_{n}\right| \leq B^{\prime}, B^{\prime} \geq 3$, furthermore

$$
\Lambda=\left|b_{1} \log \omega_{1}+b_{2} \log \omega_{2}+\cdots+b_{n} \log \omega_{n}\right| \neq 0
$$

where the logarithms are assumed to have their principal values, then there exists an effectively computable positive constant C, depending only on $n, M_{1}, \ldots, M_{n-1}$ and the degree of the field $\mathbf{Q}\left(\omega_{1}, \ldots \omega_{n}\right)$ such that

$$
\Lambda>\exp \left(-C \log B^{\prime} \log M_{n}-B / B^{\prime}\right)
$$

Lemma 1. is a result of A. Baker (see Theorem 1. in [1] with $\delta=1 / B^{\prime}$).
For the sake of brevity we introduce the following abbreviations. For nonnegative integers $x_{1}, x_{2}, \ldots, x_{m}$ let

$$
\begin{equation*}
\varepsilon_{j}^{(i)}=\frac{p_{j}^{(i)}\left(x_{i}\right)}{a} \frac{\left(\alpha_{j}^{(i)}\right)^{x_{i}}}{\alpha^{x_{1}}}, \quad \varepsilon_{1}=\sum_{j=2}^{t_{1}} \varepsilon_{j}^{(1)}, \quad \varepsilon_{2}=\sum_{i=2}^{m} \sum_{j=1}^{t_{i}} \varepsilon_{j}^{(i)} \tag{11}
\end{equation*}
$$

and $\varepsilon=\varepsilon_{1}+\varepsilon_{2}$. Using (2), (4) and (6)

$$
\Sigma_{x_{1}, x_{2}, \ldots, x_{m}}=a \alpha^{x_{1}}+\sum_{j=2}^{t_{1}} p_{j}^{(1)}\left(x_{1}\right)\left(\alpha_{j}^{(1)}\right)^{x_{1}}+\sum_{i=2}^{m} \sum_{j=1}^{t_{i}} p_{j}^{(i)}\left(x_{i}\right)\left(\alpha_{j}^{(i)}\right)^{x_{i}}
$$

and by (11) we have

$$
\begin{equation*}
\Sigma_{x_{1}, x_{2}, \ldots, x_{m}}=a \alpha^{x_{1}}\left(1+\varepsilon_{1}+\varepsilon_{2}\right)=a \alpha^{x_{1}}(1+\varepsilon) \tag{12}
\end{equation*}
$$

Let

$$
\begin{equation*}
\varepsilon_{3}=\left(\frac{d_{p}}{d}\left(\frac{1}{x}\right)^{q-p}\right)\left(1+\frac{d_{p-1}}{d_{p}}\left(\frac{1}{x}\right)+\cdots+\frac{d_{0}}{d_{p}}\left(\frac{1}{x}\right)^{p}\right) \tag{13}
\end{equation*}
$$

So (5) can be written in the form

$$
\begin{equation*}
F(x)=d x^{q}\left(1+\varepsilon_{3}\right) . \tag{14}
\end{equation*}
$$

The following three lemmas are due to F . Mátyás [8], where n_{1}, n_{2}, n_{3} means effectively computable constants.

Lemma 2. Let $G^{(1)}$ be the dominant sequence among the recurrences $G^{(i)}(1 \leq$ $i \leq m$) defined by (1). Then there are effectively computable positive constants c_{1} and n_{1} depending only on the sequence $G^{(1)}$ such that

$$
\left|\varepsilon_{1}\right|<e^{-c_{1} x_{1}}
$$

for any $n_{1}<x_{1}$.
Lemma 3. Let $G^{(1)}$ be the dominant sequence among the recurrences $G^{(i)}(1 \leq i \leq$ m) defined by (1), $1<K \in \mathbf{R}$ and $x_{1}>K \max _{2 \leq i \leq m}\left(x_{i}\right)$. Then there are effectively computable positive constants c_{2} and n_{2} depending only on K and the sequences $G^{(i)}$ such that

$$
\left|\varepsilon_{2}\right|<e^{-c_{2} x_{1}}
$$

for any $n_{2}<x_{1}$.
Lemma 4. Suppose that the conditions of Lemma 2 and Lemma 3 hold. Then there exist effectively computable positive constants c_{3}, c_{4}, n_{3} depending only on K and the sequences $G^{(i)}$ such that

$$
e^{c_{3} x_{1}}<\left|\Sigma_{x_{1}, x_{2}, \ldots, x_{m}}\right|<e^{c_{4} x_{1}}
$$

for any integer $x_{1}>n_{3}$.
The following lemma is due to P. Kiss and F. Mátyás [6].
Lemma 5. Let γ be a real number with $0<\gamma<1$ and let $\mathcal{G}_{x_{1}, \ldots, x_{m}}$ be an integer defined by (7), where x_{1}, \ldots, x_{m} are positive integers satisfying the condition $x_{i}>$ $\gamma \max \left(x_{1}, \ldots, x_{t}\right)$ and $\left|\alpha_{1}^{(i)}\right|>\left|\alpha_{j}^{(i)}\right|$ for $1 \leq i \leq m$ and $2 \leq j \leq t_{i}$. Then there are effectively computable positive constants c_{5} and n_{4}, depending only on the sequences $G^{(i)}$ and γ, such that

$$
\begin{equation*}
\mathcal{G}_{x_{1}, \ldots, x_{m}}=\left(\prod_{i=1}^{m} a_{i} \alpha_{i}^{x_{i}}\right)\left(1+\varepsilon_{4}\right) \tag{15}
\end{equation*}
$$

where

$$
\left|\varepsilon_{4}\right|<e^{-c_{5} \cdot \max \left(x_{1}, \ldots, x_{m}\right)}
$$

for any $\max \left(x_{1}, \ldots, x_{m}\right)>n_{4}$.

Remark. In general $\alpha_{1}^{(i)}$ is named the dominant root of the i-th sequence, if $\left|\alpha_{1}^{(i)}\right|>$ $\left|\alpha_{j}^{(i)}\right|$ for $2 \leq j \leq t_{i}$.

Proof of Theorem 1. In the proof c_{6}, c_{7}, \ldots denote effectively computable constants, which depend on $K, \delta_{1}, F(x)$ and the sequences $G^{(i)}$. Suppose that (9) holds with the conditions given in the Theorem 1. and x_{1} is sufficiently large. Using (9), (14) and Lemma 4. we have

$$
\begin{equation*}
\left|d x^{q}\left(1+\varepsilon_{3}\right)\right|=|F(x)|=\left|\Sigma_{x_{1}, x_{2}, \ldots, x_{m}}\right|<e^{c_{6} x_{1}} . \tag{16}
\end{equation*}
$$

Taking the logarithms of the both side we get

$$
|\log | d|+q \log x+\log | 1+\varepsilon_{3}| |<c_{6} x_{1}
$$

that is

$$
\begin{equation*}
q \log x<c_{7} x_{1} . \tag{17}
\end{equation*}
$$

Now, using (11) and (13), the equation (9) can be written in the form

$$
\begin{equation*}
\left|\frac{a \alpha^{x_{1}}}{d x^{q}}\right|=\left|1+\varepsilon_{3}\right||1+\varepsilon|^{-1} \tag{18}
\end{equation*}
$$

We distinguish two cases. First we suppose that

$$
a \alpha^{x_{1}}=d x^{q} .
$$

Let $\alpha^{\prime} \neq \alpha$ be any conjugate of α and let φ be an automorphism of $\overline{\mathbf{Q}}$ with $\varphi(\alpha)=\alpha^{\prime}$. Moreover,

$$
\varphi(a)(\varphi(\alpha))^{x_{1}}=\varphi\left(d x^{q}\right) .
$$

Thus

$$
\frac{a}{\varphi(a)}=\left(\frac{\alpha^{\prime}}{\alpha}\right)^{x_{1}}
$$

whence x_{1} is bounded, which implies that q is bounded. Now we can suppose that $\frac{a \alpha^{x_{1}}}{d x^{q}} \neq 1$. Put

$$
\left.L_{1}=|\log | \frac{a \alpha^{x_{1}}}{d x^{q}} \||=|\log | a|+x_{1} \log |\alpha|-q \log x-\log d \right\rvert\,
$$

and employ Lemma 1 . with $M_{4}=x, B^{\prime}=q$ and $B=x_{1}$. We have

$$
\begin{equation*}
L_{1}>\exp \left(-c_{8} \log q \log x-\frac{x_{1}}{q}\right) \tag{19}
\end{equation*}
$$

Using (9), (11), (12), (13), (14) and (17) we have

$$
c_{9} x^{q}<d x^{q}\left(1+\varepsilon_{3}\right)=a \alpha^{x_{1}}\left(1+\varepsilon_{1}+\varepsilon_{2}\right)<c_{10} x^{q}
$$

that is

$$
c_{11} x^{q}<\alpha^{x_{1}}<c_{12} x^{q}
$$

Using (13), the previous inequalities and the condition $p<\delta_{1} q$ we have

$$
\begin{equation*}
\left|\varepsilon_{3}\right|<\left(\frac{1}{x}\right)^{c_{13}(q-p)}<\left(\frac{1}{x}\right)^{c_{13} q\left(1-\delta_{1}\right)}<\exp \left(-c_{14} x_{1}\right) \tag{20}
\end{equation*}
$$

Recalling that $|\log (1+x)| \leq x$ and $|\log (1-x)| \leq 2 x$ for $0 \leq x<\frac{1}{2}$ and using (20), Lemma 2. and Lemma 3. we find that

$$
|\log | 1+\varepsilon_{3}| | 1+\left.\varepsilon\right|^{-1} \mid<\exp \left(-c_{15} x_{1}\right)
$$

Using (17), (18), (19) and (20) we have the following inequalities

$$
c_{15} x_{1}<c_{8} \log q \log x+\frac{x_{1}}{q}<c_{8} \log q \frac{c_{7} x_{1}}{q}+\frac{x_{1}}{q}<c_{16} x_{1} \frac{\log q}{q} .
$$

This implies

$$
\frac{c_{15}}{c_{16}}<\frac{\log q}{q}
$$

The previous inequality can be satisfied by only finitely many q and this completes the proof.

Proof of Theorem 2. Similarly the previous proof, c_{i}-s denote effectively computable positive constants, which depend on $\gamma, \delta_{2}, F(x)$ and the sequences $G^{(i)}$. Suppose that (10) holds with the conditions given in Theorem 2. Let x_{1}, \ldots, x_{t} be positive integers and let $x_{0}=\max \left(x_{1}, \ldots, x_{t}\right)$. We suppose that α_{s} is the dominant root of the sequence which belongs to x_{0}. Using Lemma 5 . we have

$$
\begin{equation*}
e^{c_{17} x_{0}}<\mathcal{G}_{x_{1}, \ldots, x_{m}}=F(x)<e^{c_{18} x_{0}} \tag{21}
\end{equation*}
$$

if $x_{0}>n_{4}$. So by (10) and (21) we get

$$
\begin{equation*}
\left|d x^{q}\left(1+\varepsilon_{3}\right)\right|=|F(x)|=\left|\mathcal{G}_{x_{1}, x_{2}, \ldots, x_{m}}\right|<e^{c_{18} x_{0}} \tag{22}
\end{equation*}
$$

Taking the logarithms of the both side we get

$$
|\log | d|+q \log x+\log | 1+\varepsilon_{3}| |<c_{18} x_{0}
$$

that is

$$
\begin{equation*}
q \log x<c_{19} x_{0} \tag{23}
\end{equation*}
$$

The equation (10) can be written in the form

$$
\begin{equation*}
\frac{\prod_{i=1}^{m} a_{i} \alpha_{i}^{x_{i}}}{d x^{q}}=\left(1+\varepsilon_{3}\right)\left(1+\varepsilon_{4}\right)^{-1} \tag{24}
\end{equation*}
$$

We distinguish two cases. First we suppose that

$$
\prod_{i=1}^{m} a_{i} \alpha_{i}^{x_{i}}=d x^{q}
$$

Let $\alpha_{s}^{\prime} \neq \alpha_{s}$ be any conjugate of α_{s} and let φ be an automorphism of $\overline{\mathbf{Q}}$ with $\varphi(\alpha)=\alpha^{\prime}$. Moreover,

$$
\varphi\left(\prod_{i=1}^{m} a_{i} \alpha_{i}^{x_{i}}\right)=\varphi\left(d x^{q}\right)
$$

that is

$$
\prod_{i=1}^{m} a_{i} \alpha_{i}^{x_{i}}=\varphi\left(\prod_{i=1}^{m} a_{i} \alpha_{i}^{x_{i}}\right)
$$

Since α dominant root, $\varphi\left(\alpha_{i}\right) \leq \alpha_{i} i=1,2, \ldots, m$ we have

$$
\left(\frac{\alpha_{s}}{\varphi\left(\alpha_{s}\right)}\right)^{x_{0}} \leq \frac{\varphi\left(\prod_{i=1}^{m} a_{i}\right)}{\prod_{i=1}^{m} a_{i}}
$$

whence x_{0} is bounded, which implies that q is bounded. Now we can suppose that $\prod_{i=1}^{t} a_{i} \alpha_{i}^{x_{i}} \neq d x^{q}$. Put

$$
L_{2}=|\log | \frac{\prod_{i=1}^{m} a_{i} \alpha_{i}^{x_{i}}}{d x^{q}}| |=\left|\sum_{i=1}^{m} \log \right| a_{i}\left|+\sum_{i=1}^{m} x_{i} \log \right| \alpha_{i}|-\log d-q \log x|
$$

and employ Lemma 1. with $M_{2 t+2}=x, B^{\prime}=q$ and $B=x_{0}$. We have

$$
\begin{equation*}
L_{2}>\exp \left(-c_{20} \log q \log x-\frac{x_{0}}{q}\right) \tag{25}
\end{equation*}
$$

Using (15) and Lemma 5. we have

$$
c_{20} x^{q}<d x^{q}\left(1+\varepsilon_{3}\right)=\prod_{i=1}^{m} a_{i} \alpha_{i}^{x_{i}}\left(1+\varepsilon_{4}\right)<c_{21} x^{q}
$$

that is

$$
\alpha_{s}^{x_{0}}<c_{21} x^{q} .
$$

Using (13), the previous inequality and the condition $p<\delta_{2} q$ we have

$$
\begin{equation*}
\left|\varepsilon_{3}\right|<\left(\frac{1}{x}\right)^{c_{22}(q-p)}<\left(\frac{1}{x}\right)^{c_{22} q\left(1-\delta_{2}\right)}<\exp \left(-c_{23} x_{0}\right) \tag{26}
\end{equation*}
$$

Recalling that $|\log (1+x)| \leq x$ and $|\log (1-x)| \leq 2 x$ for $0 \leq x<\frac{1}{2}$ and using (26) and Lemma 5. we find that

$$
\begin{equation*}
|\log | 1+\varepsilon_{3}| | 1+\left.\varepsilon_{4}\right|^{-1} \mid<\exp \left(-c_{24} x_{0}\right) \tag{27}
\end{equation*}
$$

Using (23), (24), (25), and (27) we have the following inequalities

$$
c_{24} x_{0}<c_{20} \log q \log x+\frac{x_{0}}{q}<c_{20} \log q \frac{c_{19} x_{0}}{q}+\frac{x_{0}}{q}<c_{25} x_{0} \frac{\log q}{q} .
$$

This implies

$$
\frac{c_{24}}{c_{25}}<\frac{\log q}{q} .
$$

The previous inequality can be satisfied by only finitely many q and this completes the proof.

References

[1] A. Baker, A sharpening of the bounds for linear forms in logarithms II., Acta Arithm., 24 (1973), 33-34.
[2] B. Brindza, K. Liptai and L. Szalay, On products of the terms of linear recurrences, Number Theory, Eds.: Győry -Pethő-Sós, Walter de Gruyter, Berlin-New York, (1998), 101-106.
[3] P. Kiss, Differences of the terms of linear recurrences, Studia Sci. Math. Hungar., 20 (1985), 285-293.
[4] P. Kiss, Note on a result of I. Nemes and A. Pethő concerning polynomial values in linear recurrences, Publ. Math. Debrecen, 56/3-4 (2000), 451-455.
[5] P. Kiss, Results concerning products and sum of the terms of linear recurrences, Acta Acad. Paed. Agriensis, 27 (2000), 1-7.
[6] P. Kiss and F. Mátyás, Perfect powers from the sums of terms of linear recurrences, Period Math. Hung. (accepted for publication).
[7] P. Kiss and F. Mátyás, On the product of terms of linear recurrences, Studia Sci. Math. Hungar. (accepted for publication).
[8] K. Liptai, On polynomial values of the product of the terms of linear recurrence sequences, Acta Acad. Paed. Agriensis, 26 (1999), 19-23.
[9] F. MÁtyÁs, On the difference of perfect powers and sums of terms of linear recurrences, Rivista di Matematica Univ. Parma, (accepted for publication).
[10] I. Nemes and A. Pethô, Polynomial values in linear recurrences, Publ. Math. Debrecen, 31 (1984), 229-233.
[11] T. N. Shorey and C. L. Stewart, On the Diophantine equation $a x^{2 t}+$ $b x^{t} y+c y^{2}=d$ and pure powers in recurrence sequences, Math. Scand., 52 (1982), 24-36.
[12] L. Szalay, A note on the products of the terms of linear recurrences, Acta Acad. Paed. Agriensis, 24 (1997), 47-53.

Kálmán Liptai

Institute of Mathematics and Informatics
Eszterházy Károly College
Leányka str. 4.
H-3300 Eger, Hungary
e-mail: liptaik@ektf.hu

