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FAST ALGORITHM FOR SOLVING SUPERELLIPTIC EQUATIONS

OF CERTAIN TYPES

László Szalay (Sopron, Hungary)

Abstract. The purpose of this paper is to give a simple, elementary algorithm for finding

all integer solutions of the diophantine equation

y2
=x2k

+a2k−1x2k−1
+...+a1x+a0,

where the coefficients a2k−1,...,a0 are integers and k≥1 is a natural number.

AMS Classification Number: 11B41

1. Introduction

Let F (X) be a monic polynomial of even degree with integer coefficients.
Suppose that F (X) is not a perfect square. We consider the diophantine equation

(1) y2 = F (x)

in integers x and y.

The present paper provides a fast and elementary algorithm for solving
equation (1). The method is a generalization of a result of D. Poulakis [4],
who treated the case deg(F (X)) = 4. (Here and in the sequel deg(F (X)) denotes
the degree of the polynomial F (X).) For other results concerning superelliptic
equations see, for example, C. L. Siegel [5], A. Baker [1], Y. Bugeaud [2] or
D. W. Masser [3].

2. The algorithm

There is given the non-square polynomial

(2) F (X) = X2k + a2k−1X
2k−1 + · · · + a1X + a0, (k ≥ 1)
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over the ring of rational integers. The following procedure determines all integer
solutions (x, y) of the diophantine equation

(3) y2 = F (x).

Step 1. Find polynomials B(X) ∈ Q[X ] and C(X) ∈ Q[X ] such that

(4) F (X) = B2(X) + C(X)

with the assumption deg(C(X)) < k.

Step 2. If C(X) = 0 then output “F (X) is perfect square” and terminate the
algorithm.

Step 3. Find the least natural number α for which 2αB(X) and α2C(X) are
polynomials with integer coefficients.

Step 4. Set

(5) P1(X) = 2αB(X) − 1 + α2C(X)

and

(6) P2(X) = 2αB(X) + 1 − α2C(X).

Step 5. Let

(7) H = {a ∈ R : P1(a) = 0 or P2(a) = 0}.

Step 6. If H 6= ∅ then let m = ⌈min(H)⌉, M = ⌊max(H)⌋ and for each integer
element x of the interval [m, M ] compute F (x). If F (x) is a square of an integer y

then output the solution (x,±y).

Step 7. Determine the integer solutions x of the equation C(x) = 0, output
(x, B(x)) and (x,−B(x)), and terminate algorithm.

Summarizing the method, to reach our goal first we need a special decompo-
sition of the polynomial F (X), then we have to determine the real roots of two
polynomials. After then the integer elements of a quite short interval must be
checked. Finally, we have to compute the integer solutions of a polynomial with
rational coefficients.
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3. Examples

Using the steps of the algorithm, we solve three numerical examples.

Example 1. y2 = x8 + x7 + x2 + 3x − 5,

B(X) = X4 + 1

2
X3 + 1

8
X2 + 1

16
X − 5

128
,

C(X) = 7

128
X3 + 505

512
X2 + 3077

1024
X − 81945

16384
,

α = 128 = 27,

P1(X) = 256X4 + 1024X3 + 16128X2 + 49248X − 81956,

P2(X) = 256X4 − 768X3 − 16192X2 − 49216X + 81936,

[m, M ] = [−4, 10], C(x) = 0 has no integer solution.

All integer solutions are (x, y) = (−2,±11), (1,±1).

Example 2. y2 = x4 − 2x3 + 2x2 + 7x + 3,

P1(X) = 16X2 − 528X − 167,

P2(X) = 16X2 + 496X + 183,

[m, M ] = [−30, 33], C(x) = 0 has no integer solution.

All integer solutions are (x, y) = (−1,±2), (1,±5).

Example 3. y2 = x2 − 5x − 11,

B(X) = X − 5

2
, C(X) = − 69

4
, α = 2 ,

P1(X) = 4X − 80, P2(X) = 4X + 60,

[m, M ] = [−15, 20].

All integer solutions are (x, y) = (−5,±17), (−4,±5), (9,±5), (20,±17)

(C(X) 6= 0 is a constant polynomial, so it has no (integer) root).

Remark. The equation of Example 3 can easily be solved by using another simple
elementary method. (The equation y2 = x2 − 5x − 11 is equivalent to (2y − 2x +
5)(2y + 2x− 5) = −69, and the decomposition the rational integer −69 into prime
factors provides the solutions.) Here we only would like to demonstrate that if k = 1
then the algorithm can be applied, too.

4. Proof of rightness of the algorithm

Going through on the steps of the described algorithm we show that the
procedure is correct. As earlier, let

(8) F (X) = X2k + a2k−1X
2k−1 + · · · + a1X + a0,

where k is an integer greater than zero.
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4.1 First we prove that the decomposition F (X) = B2(X) + C(X) in Step 1
of the algorithm uniquely exists if we assume that the leading coefficient of B(X)
is positive. We have to show that there is a polynomial

(9) B(X) = bkXk + bk−1X
k−1 + · · · + b1X + b0 ∈ Q[X ]

(bk > 0), such that the first k + 1 coefficients coincide in F (X) and in B2(X).
Consequently, the degree of the polynomial

(10) C(X) = F (X) − B2(X)

is less than k.

The proof depends on the fact that the system of the following k+1 equations

(11)

b2
k = 1,

2bkbk−1 = a2k−1,

2bkbk−2 + b2
k−1 = a2k−2,

...

2bkb0 + 2bk−1b1 + · · · = ak

uniquely solvable in the rational variables bk > 0, bk−1, . . . , b0, where the coefficients
a2k−1, . . . , ak of the polynomial F (X) are fixed integers.

Observe that in the ith equation of (11) (1 ≤ i ≤ k + 1) there are exactly i

variables and only one of them (bk+1−i) does not occur in the first i − 1 equations
(i > 1). Consequently, this “new” linear variable can directly expressed from the
ith equation. Hence we have the unique solution

(12)

bk = 1 (> 0),

bk−1 =
a2k−1

2bk

=
a2k−1

2
,

bk−2 =
a2k−2 − b2

k−1

2bk

=
a2k−2

2
−

a2
2k−1

8
,

...

b0 =
ak − (2bk−1b1 + · · ·)

2bk

= · · ·

of the system (11), which proves the unique existence of the decomposition F (X) =
B2(X) + C(X). We note that the equations of (11) come from the coincidence of
the first k + 1 coefficients of F (X) and the square

(13) B2(X) =

k
∑

i=0





i
∑

j=0

bk−jbk+j−i



 X2k−i + B1(X) = B0(X) + B1(X)
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with some polynomial B1(X), where deg(B1(X)) < k. From (13) it follows that

(14)
B0(X) =

(

b2
k

)

X2k + (2bkbk−1) X2k−1 +
(

2bkbk−2 + b2
k−1

)

X2k−2 + · · ·

+ (2bkb0 + 2bk−1b1 + · · ·)Xk,

which provides the system (11).

4.2 In the next step we check that the polynomial F (X) is perfect square
or not. If F (X) = B2(X) then the equation has infinitely many solutions and the
algorithm is terminated. In the sequel, we can assume that C(X) 6= 0.

4.3 Clearly, infinitely many natural number α1 exist for which 2α1B(X) and
α2

1C(X) are polynomials with integer coefficients. Let α be the least among them.
Since C(X) = F (X) − B2(X), together with (12) it follows that α = 2β, where
the natural number β depends, of course, on the degree k and the coefficients
a2k−1, . . . , a0 of the polynomial F (X). For instance, it is easy to see that if k = 1
then β ≤ 1, if k = 2 then β ≤ 3 and if k = 3 then β ≤ 4.

4.4 The polynomials P1(X) = 2αB(X) − 1 + α2C(X) and P2(X) =
2αB(X) + 1 − α2C(X) provided by Step 4 of the algorithm possess the following
properties. They have integer coefficients, deg(P1(X)) = deg(P2(X)) = k because
of deg(2αB(X)) = k and deg(α2C(X) − 1) < k, moreover their leading coefficent
2α is positive.

4.5 It follows from the first part of Step 6 of the algorithm that it is sufficient
to determine approximately the real roots of the polynomial P1(X) and P2(X).
There are many numerical methods which give (rational) numbers very close to
the exact roots, and several mathematical program package, for example Maple,

Mathematica,..., are able to provide the approximations of the roots and establish
the set H .

4.6 In Step 6 we are checking for each integer x ∈ [m, M ] that F (x) is square
or not (it can be done by computer, too). The length of the interval [m, M ] depends
on the coefficients of F (X). The examples in Section 3 show that [m, M ] may be
quite small.

4.7 Now we have arrived at the main part of the proof of the rightness of the
algorithm. We have to show that if an integer x 6∈ [m, M ] and F (x) is square then
C(x) = 0.

Suppose that x 6∈ [m, M ] and F (x) = y2 for some x, y ∈ Z. Since the leading
coefficient of P1(X) and P2(X) is positive, x 6∈ [m, M ] implies that P1(x) > 0 and
P2(x) > 0, or in case of odd k P1(x) < 0 and P2(x) < 0 can also be occurred.
Assume now that P1(x) > 0 and P2(x) > 0, i.e.

(15) 2αB(x) − 1 + α2C(x) > 0
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and

(16) 2αB(x) + 1 − α2C(x) > 0.

Hence

(17) −2αB(x) + 1 < α2C(x) < 2αB(x) + 1.

Now add anywhere α2B2(x) we have

(18) (αB(x) − 1)
2

< α2
(

B2(x) + C(x)
)

< (αB(x) + 1)
2
,

which together with B2(x) + C(x) = F (x) = y2 provides

(19) (αB(x) − 1)
2

< α2y2 < (αB(x) + 1)
2
.

Since αB(x) ± 1, α > 0 and y are integers it follows that B(x) > 0, moreover

(αB(x) − 1)2, α2y2 and (αB(x) + 1)2 are three consecutive squares, hence

(20) B(x) = y2.

But it means that C(x) = 0, so the integer x is a root of the polynomial C(X).

In the other case, when k is an odd number, P1(x) < 0 and P2(x) < 0 we gain
similar argument in similar manner:

(21) (αB(x) + 1)
2

< α2y2 < (αB(x) − 1)
2
,

which implies that B(x) < 0 and B2(x) = y2, i.e. C(x) = 0 for the integer x.
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