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PERFECT NUMBERS CONCERNING

FIBONACCI SEQUENCE

Bui Minh Phong (ELTE, Hungary)

Abstract: We proved that there are no perfect numbers in the set

{

Fnm

Fm

∣

∣n, m ∈ IN

}

,

where F = {Fn}∞n=0 is the Fibonacci sequence.

1. Results and auxiliary lemmas

Let IN and P denote the set of all positive integers and the set of all prime
numbers, respectively. (m, n) denotes the greatest common divisor of the integers
m and n. The notation m ‖ n means that m is a unitary divisor of n, i.e. that
m|n and ( n

m , m) = 1.

A positive integer N is called perfect if it is equal to the sum of all its proper
divisors, i.e., if σ(N) = 2N , where σ(N) denotes the sum of all positive divisors
of N . Such integers were considered already by Euclid, who proved that i f the
number 1 + 2 + · · · + 2n happens to be a prime then its product by 2n is perfect.
Euler was the first to prove that Euclid’s method gives all even perfect numbers:

Euler’s Theorem. If N is an even perfect number, then it can be written in the
form N = 2p−1(2p − 1), where p and 2p − 1 are both primes. Conversely, if p and
2p − 1 are prime numbers, then the product 2p−1(2p − 1) is perfect.

For odd perfect numbers the situation is much worse since it is not known
whether such numbers exist at all. This question forms one of the oldest problems
in number theory. It is well-known that every odd perfect number is of the form
pax2, where p is a prime and p ≡ a ≡ 1 (mod 4), furthermore all prime divisors of
x is congruent to −1 (mod 4).

Let F = {Fn}∞n=0 be the Fibonacci sequence defined by F0 = 0, F1 = 1 and

Fn = Fn−1 + Fn−2 for all integers n ≥ 2.
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We denote the Lucas sequence by L = {Ln}∞n=0, which is given by L0 = 2, L1 = 1
and by the relation Ln = Ln−1 + Ln−2 for all integers n ≥ 2.

Recently, F. Luca [3] proved that there are no perfect Fibocacci or Lucas
numbers. Our purpose in this note is to improve this result by proving the following

Theorem. Let

F :=

{

Fnm

Fm

∣

∣ n, m ∈ IN

}

.

Then there are no perfect numbers in the set F .

We note that all numbers of the set F are positive integers, furthermore Fn ∈ F
and Ln ∈ F for all n ∈ IN . Thus, there are no perfect Fibocacci or Lucas numbers.
The following 51 numbers belong to F which are ≤ 10000:

1, 2, 3, 4, 5, 7, 8, 11, 13, 17, 18, 21, 29, 34, 47, 48, 55, 72, 76, 89, 122, 123, 144,
199, 233, 305, 322, 323, 329, 377, 521, 610, 842, 843, 987, 1292, 1353, 1364,
1597, 2207, 2208, 2255, 2584, 3571, 4181, 5473, 5777, 5778, 5796, 6765, 9349.

Our proof will make use of the Ribenboim’s result about the square-classes of
the Fibonacci and Lucas sequences. For a sequence X = {Xn}∞n=0 we say that the
terms Xn and Xm are square equivalent if there exist non-zero integers u and v
such that

u2Xn = v2Xm

or equivalently

XnXm = t2 with a suitable non-zero integer t.

The equivalent classes are called square-classes of X . A square-class is say trivial
if it contains only one element.

Lemma 1. ([4]) The square-class of a Fibonacci number Fk is trivial, if k 6=
1, 2, 3, 6 or 12 and the square-class of a Lucas number Lk is trivial, if k 6= 0, 1, 3 or
6.

It is known that for each positive integer M there exists the smallest postive
integer f = f(M) such that Ff ≡ 0 (mod M). This number f = f(M) is called
the rank of apparition of M in the Fibonacci sequence F .

We shall recall some properties of the Fibonacci sequence, which will be used
at the proofs of our theorems.

Lemma 2. We have

(a) Fk ≡ 0 (mod M) if and only if f(M) | k (k, M ∈ IN),

(b) (Fi, Fj) = F(i, j) for all i, j ∈ IN,

(c) f(p) |p − (5/p) for all odd primes p,

where (5/p) is the Legendre symbol with (5/5) = 0,

(d) f(p) |p−(5/p)
2 if and only if p ≡ 1 (mod 4),



Perfect numbers concerning Fibonacci and Lucas sequences 5

(e) pe+w ‖ Fmtpw if p ∈ P and e, w, m, t ∈ IN with pe ‖ Fm, p 6 |t,

(f) f(2e) =

{

3, if e = 1
6, if e = 2
3 · 2e−2, if e ≥ 3.

Proof . The proof of Lemma 2 may be found in [1], [2], [5], [6].

2. The proof of the theorem

The proof of our theorem follows from following Lemma 3–4.

Lemma 3. There are no even perfect numbers in the set F .

Proof. Assume that there is an even perfect number N in the set F . Then by
Euler’s Theorem, we have

(1) N =
Fnm

Fm
= 2p−1(2p − 1),

for some positive integers n ≥ 2 and m, where both p and 2p − 1 are primes.

Let

α :=
1 +

√
5

2
.

It is clear to check that

αk−1 ≥ Fk ≥ αk−2 for all k ∈ IN,

consequently

(2)
Fnm

Fm
= 2p−1(2p − 1) ≥ α(n−1)m−1.

It is obvious from (1) that 2p−1(2p−1) is the divisor of Fnm, therefore Lemma 2(a)
implies

(3) f
(

2p−1(2p − 1)
)

|nm and nm ≥ f
(

2p−1(2p − 1)
)

.

Since 22p−1 > 2p−1(2p − 1), we deduce from (2) and (3) that

(2p − 1)
log 2

log α
> (n − 1)m − 1 = nm − m − 1 ≥ f

(

2p−1(2p − 1)
)

− m − 1,

and so

m > f
(

2p−1(2p − 1)
)

− (2p − 1)
log 2

log α
− 1.
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Hence, in view of n ≥ 2 we have

(2p − 1)
log 2

log α
> (n − 1)m − 1 ≥ m − 1 > f

(

2p−1(2p − 1)
)

− (2p − 1)
log 2

log α
− 2,

and so

(4) 2(2p− 1)
log 2

log α
+ 2 > f

(

2p−1(2p − 1)
)

.

It is clear to check that

f
(

2p−1(2p − 1)
)

=

{

12, if p = 2
24, if p = 3
60, if p = 5

,

which with (4) shows that p ≥ 7, because

2(2p− 1)
log 2

log α
+ 2 <

{

12, if p = 2
24, if p = 3
60, if p = 5

.

Thus we have proved that (1) implies p ≥ 7.

Assume that (1) is satisfied for a suitable prime p ≥ 7 and positive integers
n, m. Then from Lemma 2 (f) we get

f
(

2p−1(2p − 1)
)

≥ f(2p−1) = 3 · 2p−3,

which together with (4) leads to

2(2p − 1)
log 2

log α
+ 2 > 3 · 2p−3.

This inequality is impossible for all prime p ≥ 7, thus Lemma 3 is proved.

Lemma 4. There are no odd perfect numbers in the set F .

Proof. Assume that there exists an odd perfect number N in the set F . Then

N =
Fnm

Fm
for some positive integers n ≥ 2, m.

It well-known that in this case we can write N as in the form

(5) N =
Fnm

Fm
= pa(qa1

1 · · · qas

s )2
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with distinct primes p, q1, . . . , qs and positive integers a, a1, . . . , as, furthermore

(6) p ≡ a ≡ 1 (mod 4) and q1 ≡ · · · ≡ qs ≡ −1 (mod 4).

First we prove that

(7) (nm, 2) = 1.

Assume that n is even. Then

N =
Fnm

Fm
=

Fn

2
m

Fm
· L n

2
m = pa(qa1

1 · · · qas

s )2.

By using the fact

(8) (Fk, Lk) =

{

2, if 3|k
1, if (3, k) = 1,

we have (Fn

2
m, L n

2
m) = 1. Thus, the last relation shows that one of the numbers

F n

2
m

Fm

, L n

2
m is a square. This, using Lemma 1, implies that

(9)
n

2
m ∈ {1, 2, 3, 6, 12}.

Thus, we have

(10) nm ∈ {2, 4, 6, 12, 24} and Fnm ∈ {1, 3, 23, 24 · 32, 25 · 32 · 7 · 23}.

Since N is an odd divisor of Fnm, one can check from (10) that any odd divisor of
Fnm is not a perfect number.

Now assume that n is odd and m is even. Then

Fnm

Fm
=

Fn m

2

Fm

2

·
Ln m

2

L m

2

and
(

Fn m

2

Fm

2

,
Ln m

2

L m

2

)

= 1.

Thus, we infer from (5) that one of the numbers
F

n
m

2

F m

2

,
L

n
m

2

L m

2

is a square. This,

using Lemma 1, implies that (9) and (10) are satisfied. As we shown above, these
are impossible.

Thus, we have proved that nm is odd.

Now we complete the proof of Lemma 4.
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If s ≥ 1, then we infer from (5), (7) and Lemma 2(a) that

f(q1) | nm, i.e. f(q1) is odd.

This implies that

f(q1) |
q1 − ( 5

q1

)

2
.

From Lemma 2(d), we have q1 ≡ 1 (mod 4), but this contradicts to (6). Thus we

have proved that the odd perfect number N has the form N = Fnm

Fm

= pa, with a

prime p and a positive integer a. In this case, we have

2 =
σ(N)

N
= 1 +

1

p
+ · · · + 1

pa
<

p

p − 1
,

which gives p < 2. This is impossible.

The proof of Lemma 4 is complete and the theorem is proved.
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