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ON POLYNOMIAL VALUES OF THE PRODUCT

OF THE TERMS OF LINEAR RECURRENCE SEQUENCES

Kálmán Liptai (EKTF, Hungary)

Abstract: Let G and H be linear recurrence sequences and let F (x) = dxq +
dpx

p + dp−1x
p−1 + · · ·+ d0, where d and di’s are rational integers, be a polynomial. In

this paper we showed that for the equation GnHm = F (x), with some restriction, there

are no solutions in n, m and x if q > q0, where q0 is an effectively computable positive

constant.

1. Introduction

Let G = {Gn}
∞

n=0 be a linear recursive sequence of order k (≥ 2) defined by

Gn = A1Gn−1 + · · · + AkGn−k (n ≥ k),

where G0, G1, . . . , Gk−1, A1, A2, . . . , Ak are rational integer constants. We need an
other sequence, too. Let H = {Hn}

∞

n=0 be another linear recurrence of order l
defined by

Hn = B1Hn−1 + · · · + BlHn−l (n ≥ l),

where the initial terms H0, H1, . . . , Hl−1 and the Bi’s are given rational integers.
We suppose that Ak 6= 0 , Bl 6= 0, and that the initial values of both sequences are
not all zero.

Denote the distinct zeros of the characteristic polinomial

g(x) = xk − A1x
k−1 − · · · − Ak

by α = α1, α2, . . . , αs, and similarly let β = β1, β2, . . . , βt be the distinct zeros of
the polinomial

h(x) = xl − B1x
l−1 − · · · − Bl.

We suppose that s > 1, t > 1 and |α| = |α1| > |α2| ≥ |α3| ≥ · · · ≥ |αs| and
|β| = |β1| > |β2| ≥ |β3| ≥ · · · ≥ |βt|. Consequently, we have |α| > 1, |β| > 1.
Assume that α and β have multiplicity 1 in the characteristic polynomials. As it is
known the terms of the sequences G and H can be written in the form

(1) Gn = aαn + r2(n)αn
2 + · · · + rs(n)αn

s (n ≥ 0),
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and

(2) Hn = bβn + q2(n)βn
2 + · · · + qt(n)βn

t (n ≥ 0),

where ri’s, qj ’s are polynomials and the coefficients of the polynomials, a and b
are elements of the algebraic number field Q(α, α2, . . . , αs, β, β2, . . . , βt). In the
following we assume that ab 6= 0 and

(3) F (x) = dxq + dpx
p + dp−1x

p−1 + · · · + d0,

is a polynomial with rational integer coefficients, where d 6= 0, q ≥ 2 and q > p.

The Diophantine equation

(4) Gn = F (x)

with positive integer variables n and x was investigated by several authors. It is
known that if G is a nondegenerate second order linear recurrence, with some
restrictions, and F (x) = dxq then the equation (4) have finitely many integer
solutions in variables n ≥ 0, x and q ≥ 2.

For general linear recurrences we know a similar result (see [4]). A more general
result was proved by I. Nemes and A. Pethő [3]. They proved the following theorem:
let Gn be a linear recurrence sequence defined by (1) and let F (x) be a polinomial
defined by (3). Suppose that α2 6= 1, |α| = |α1| > |α2| > |αi| for 3 ≤ i ≤ s,
Gn 6= aαn for n > c1 and p ≤ qc2. Then all integer solution n, |x| > 1, q ≥ 2 of the
equation (4) satisfy q < c3, where c1, c2 and c3 are effectively computable positive
constants depending on the parameters of the sequence G and the polynomial F (x).

P. Kiss [2] showed that some conditions of the above result can be left out.

We prove a theorem which investigates a similar property of the product of the
terms of two different linear recurrences. In the theorem and its proof c4, c5, . . . will
denote effectively computable positive constants which depend on the sequences,
the polynomial F (x) and the constants in the following theorem.

Theorem. Let G and H be linear recursive sequences satisfying the above
conditions. Let K > 1 and δ (0 < δ < 1) be real numbers. Furthermore let F (x)
be a polynomial defined in (3) with the condition p < δq. Assume that Gi 6= aαi,
Hj 6= bβj if i, j > n0 and α /∈ Z or β /∈ Z. Then the equation

(5) GnHm = F (x)

in positive integers n, m, x for which m ≤ n < Km, implies that
q < q0 (n0, G, H, K, F, δ), where q0 is an effectively computable number (which
depends on only n0, G, H K, F and δ).

In the proof of the Theorem we shall use the following result due to A. Baker
(see Theorem 1. in [1] with δ = 1

δ
). In this lemma the height of an algebraic number

means the height of the minimal defining polynomial of the algebraic number.
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Lemma. Let π1, π2, . . . , πr be non-zero algebraic numbers of heights not exceeding
M1, M2, . . . , Mr respectively (Mr ≥ 4). Further let b1, . . . , br−1 be rational integers
with absolute values at most B and let br be a non-zero rational integer with
absolute value at most B′ (B′ ≥ 3). Then there exists a computable constant
C = C(r, M1, . . . , Mr−1, π1, . . . , πr) such that the inequalities

0 6=
∣

∣

∣

r
∑

i=1

bilogπi

∣

∣

∣
> e−C(log Mr log B′+ B

B′
)

are satisfied. (It is assumed that the logarithms have their principal values.)

Proof. Suppose that (5) holds with the conditions given in the Theorem. We may
assume without loss of generality that |α| ≥ |β| and that the terms of the sequences
G, H are positive and x > 1. We may assume that n > n0 and m > n0. By (1),
(2) and (5) we have

F (x) = aαn

(

1 +
r2(n)

a

(α2

α

)n

+ · · ·

)

bβm

(

1 +
q2(m)

b

(

β2

β

)m

+ · · ·

)

.

By the assumption |α| > |αi| and |β| > |βi| we obtain that

(6)

(

1 +
r2(n)

a

(α2

α

)n

+ · · ·

)

→ 1 as n → ∞,

and

(7)

(

1 +
q2(m)

b

(

β2

β

)m

+ · · ·

)

→ 1 as m → ∞.

Then (5) can be written in the form

(8)

abαnβm

dxq
= (1 + ε1)((1 + ε2)(1 + ε3))

−1 =

(

1 +

p
∑

i=0

di

d
xi−q

)

((

1+
1

a

s
∑

i=2

ri(n)
(αi

α

)n
)(

1 +
1

b

t
∑

i=2

qi(m)

(

βi

β

)m))

−1

where

|ε1| =

∣

∣

∣

∣

∣

dp

d

(

1

x

)q−p
∣

∣

∣

∣

∣

∣

∣

∣

∣

1 +
dp−1

dp

(

1

x

)

+ · · ·

∣

∣

∣

∣

(9)

|ε2| =

∣

∣

∣

∣

r2(n)

a

(α2

α

)n
∣

∣

∣

∣

∣

∣

∣

∣

1 +
r3(n)

r2(n)

(

α3

α2

)n

+ · · ·

∣

∣

∣

∣

(10)

and
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|ε3| =

∣

∣

∣

∣

q2(m)

b

(

β2

β

)m∣

∣

∣

∣

∣

∣

∣

∣

1 +
q3(m)

q2(m)

(

β3

β2

)m

+ · · ·

∣

∣

∣

∣

(11)

Using (8), (9), (10), (11) and m ≤ n < Km we have

(12) c4x
1

2 < |α|
n
q < xc5 .

Therefore by (9), (10), (11) and (12) we have the following inequalities

(13) |ε1| <

∣

∣

∣

∣

1

α

∣

∣

∣

∣

c6
q−p

q
n

, |ε2| <
∣

∣

∣

α2

α

∣

∣

∣

c7n

, |ε3| <

∣

∣

∣

∣

β2

β

∣

∣

∣

∣

c8n

.

We distinguish two cases. First we suppose that

xq =
ab

d
αnβm,

moreover, without loss of generality we may assume that α /∈ Z. Let α′ 6= α be
any conjugate of α and let ϕ be an automorphism of Q with ϕ(α) = α′. Then
ϕ(β) = β′ is a conjugate of β and |β′| ≤ |β|, |α′| < |α|. Moreover,

ab

c
αnβm = ϕ

(

ab

c

)

(ϕ(α))n(ϕ(β))m.

Thus
∣

∣

∣

∣

(

α

ϕ(α)

)n∣

∣

∣

∣

=

∣

∣

∣

∣

cϕ(ab)

abϕ(c)

(

ϕ(β)

β

)m∣

∣

∣

∣

≤

∣

∣

∣

∣

cϕ(ab)

abϕ(c)

∣

∣

∣

∣

,

whence n is bounded, which implies that q is bounded.

Now we can suppose that dxq 6= abαnβm. Applying the Lemma with M6 = x,
B′ = q and B = n, it follows that

L :=

∣

∣

∣

∣

log
dxq

aαnbβm

∣

∣

∣

∣

= |q log x − log a − n log α − log b − m logβ|

> e−C(log x log q+ n
q
).

On the other hand, using that q−p
q

> 1− δ and (13) we can derive an upper bound

for L
L < 2|ε1| + 2|ε2| + 2|ε3| < e−c9n

and it follows that

(14) c10(log x log q +
n

q
) > c9n.
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By (12) we have

(15) c11 log x <
n

q
< c12 log x,

so by (14) and (15)
log q log x > c12n > c13q log x

and
log q

q
> c13.

This can be satisfied only by finitely many positive integer q so our theorem is
proved.
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