A SEHGAL'S PROBLEM

Bertalan Király (Eger, Hungary)

Abstract

In this paper we generalize the Krull intersection theorem to group rings and given neccessary and sufficient conditions for the intersection theorem to hold for an arbitrary group ring over a commutative integral domain.

1. Introduction.

Let S be a commutative noetherian ring with unity, and let I be an ideal with $I \neq S$. Let $I^{\omega}=\cap_{n=1}^{\infty} I^{n}$. The Krull intersection theorem states that if $x \in I^{\omega}$ then there exists t in I such that $x=x t$.

The object of this paper is to generalize this result to group rings (see [8], Problem 38).

Let R be a commutative ring with unity, G a group and $R G$ its group ring and let $A(R G)$ denote the augmentation ideal of $R G$, that is the kernel of the ring homomorphism $\phi: R G \rightarrow R$ which maps the group elements to 1 . It is easy to see that as an R-module $A(R G)$ is a free module with the elements $g-1(g \in G)$ as a basis. Let

$$
A^{\omega}(R G)=\bigcap_{i=1}^{\infty} A^{i}(R G) .
$$

We shall say that the intersection theorem holds for $A(R G)$ if there exists an element $a \in A(R G)$ such that $A^{\omega}(R G)(1-a)=0$.

Sufficient conditions for the intersection theorem to hold for certain $R G$ are given in [2], [9], [6]. In the last paper are given the neccessary and sufficient conditions in the cases when G is finitely generated with a nontrivial torsion element and $R=\mathbf{Z}$ the ring of integers, or if G is finitely genereted and $R=\mathbf{Z}_{\mathbf{p}}$ the ring of p-adic integers.

In this paper we given neccessary and sufficient conditions for the intersection theorem to hold for an arbitrary group ring over a commutative integral domain (Theorem 3.1).
2. Notations and some known facts. If H is a normal subgroup of G, then $I(R H)$ (or $I(H)$ for short when it is obvious from the context what ring R we are working with) denotes the ideal of $R G$ generated by all elements of the form $h-1$,

[^0]$(h \in H)$. It is well known that $I(R H)$ is the kernel of the natural epimorphism $\bar{\phi}: R G \rightarrow R G / H$ induced by the group homomorphism ϕ of G onto G / H. It is clear that $I(R G)=A(R G)$.

If \mathcal{K} denotes a class of groups (by which we understand that \mathcal{K} contains all groups of order 1 and, with each $H \in \mathcal{K}$ all isomorphic copies of H) we define the class $R \mathcal{K}$ of residually- \mathcal{K} groups by letting $G \in R \mathcal{K}$ if and only if: whenever $1 \neq g \in G$, there exists a normal subgroup H_{g} of the group G such that $G / H_{g} \in \mathcal{K}$ and $g \notin H_{g}$.

We use the following notations for standard group classes: $\mathcal{N}_{o}-$ torsion-free nilpotent groups, $\overline{\mathcal{N}}_{p}-$ nilpotent p-groups of finite exponent, that is, nilpotent group in which for some $n=n(G)$ every element g satisfies the equation $g^{p^{n}}=1$.

Let \mathcal{K} be a class of groups. A group G is said to be discriminated by \mathcal{K} if for every finite subset $g_{1}, g_{2}, \ldots, g_{n}$ of distinct elements of G, there exists a group $H \in \mathcal{K}$ and a homomorphism ϕ of G into H, such that $\phi\left(g_{i}\right) \neq \phi\left(g_{j}\right)$ for $i \neq j,(1 \leq$ $i, j \leq n)$.

The n-th dimension subgroup $D_{n}(R G)$ of G over R is the set of group elements $g \in G$ such that $g-1$ lies in the n-th power of $A(R G)$. It is well known that for every natural number n the inclusion

$$
\gamma_{n}(G) \subseteq D_{n}(R G)
$$

holds, where $\gamma_{n}(G)$ is the n-th term of the lower central series of G.
Lemma 2.1. Let a class \mathcal{K} of groups be closed under the taking of subgroups (that is all subgroups of any member of the class \mathcal{K} are again in the class \mathcal{K}) and also finite direct products (that is the direct products of finite member groups of the class \mathcal{K} are again in the class \mathcal{K}) and let G be a residually- \mathcal{K} group. Then G is discriminated by \mathcal{K}.

The proof can be obtained immediately.
The ideal $A(R G)$ of the group ring $R G$ is said to be residually nilpotent if $A^{\omega}(R G)=0$.

Lemma 2.2. ([1], Proposition 15.1.) If G is discriminated by a class of groups \mathcal{K} and for each $H \in \mathcal{K}$ the equality $A^{\omega}(R H)=0$ holds, then $A^{\omega}(R G)=0$.

Lemma 2.3. ([1], Proposition 1.12.) The right annihilator L of the left ideal $I(R H)$ is non-zero if and only if H is a finite subgroup of a group G. If H is finite, then $L=\left(\sum_{h \in H} h\right) R G$.

If H, M are two subgroups of G, then we shall denote by $[H, M]$ the subgroup generated by all commutators $[g, h]=g^{-1} h^{-1} g h, g \in H, h \in M$.

A series

$$
G=H_{1} \supseteq H_{2} \supseteq \ldots \supseteq H_{n} \supseteq \ldots
$$

of normal subgroups of a group G is called an N-series if $\left[H_{i}, H_{j}\right] \subseteq H_{i+j}$ for all $i, j \geq 1$ and also each of the Abelian groups H_{i} / H_{j} is a direct product of (possibly infinitely many) cyclic groups which are either infinite or of order p^{k}, where p is a fixed prime and k is bounded by some integer depending only on G.

The ideal $J_{p}(R)$ of a ring R is defined by $J_{p}(R)=\bigcap_{i=1}^{\infty} p^{i} R$.
In this paper we shall use the following theorems:
Theorem 2.1. ([3], Theorem E.) Let G be a group with a finite N-series and R be a commutative ring with unity satisfying $J_{p}(R)=0$. Then $A^{\omega}(R G)=0$.

We apply Theorem 2.1 for residually- $\overline{\mathcal{N}}_{p}$ groups. It is clear that the lower central series of a nilpotent p-group of finite exponent is an N-series.

Theorem 2.2. Let R be a commutative ring with unity satisfying $J_{p}(R)=0$. If G is a residually- $\overline{\mathcal{N}}_{p}$ group, then $A^{\omega}(R G)=0$.

The proof of this theorem follows from Lemmas 2.1 and 2.2 and Theorem 2.1 because the class $\overline{\mathcal{N}}_{p}$ is closed under the taking of subgroups and also finite direct products.

Theorem 2.3. ([7], VI, Theorem 2.15.) If G is a residually torsion free nilpotent group and R is a commutative ring with unity such that its additive group is torsionfree, then $A^{\omega}(R G)=0$.

An element g of a group G is called a generalized torsion element if for all natural numbers n the order of the element $g \gamma_{n}(G)$ of the factor group $G / \gamma_{n}(G)$ is finite.

It is clear that torsion elements of a group G are generalized torsion elements of G

If $g \in G$ is a generalized torsion element then Ω_{g} denotes the set of prime divisors of the orders of the elements $g \gamma_{n}(G) \in G / \gamma_{n}(G)$ for all $n=2,3, \ldots$.

Lemma 2.4. ([4]) Let g be a generalized torsion element of a group G, Λ an arbitrary subset of $\Omega_{g}, r \in \bigcap_{p \in \Lambda} J_{p}(R)$ and let

$$
x \in \bigcap_{p \in \Omega_{g} \backslash \Lambda} \bigcap_{n=1}^{\infty} I\left(G^{p^{n}} \gamma_{n}(G)\right) .
$$

Then one of the following statements holds:

1) if Λ is the proper subset of Ω_{g}, then $r(g-1) x \in A^{\omega}(R G)$;
2) if $\Lambda=\Omega_{g}$, then $r(g-1) \in A^{\omega}(R G)$;
3) if $\Lambda=R$, then $(g-1) x \in A^{\omega}(R G)$.

We have the following theorem.
Theorem 2.4. ([4]) Let Ω be a nonempty subset of primes with $\bigcap_{p \in \Omega} J_{p}(R)=0$ and suppose that the group G is discriminated by the class of groups $\overline{\mathcal{N}}_{\Omega}$. If for every proper subset Λ of the set Ω at least one of the conditions

1) $\bigcap_{p \in \Lambda} J_{p}(R)=0$,
2) G is discriminated by the class of groups $\overline{\mathcal{N}}_{\Omega \backslash \Lambda}$ holds, then $A^{\omega}(R G)=0$.
3. The intersection theorem. Let R be a commutative ring with unity.

Lemma 3.1. Let $g \in G$ and $g^{p^{n}} \in D_{t}(R G)$ for a prime p and a natural number n. Then there exists a natural number m such that

$$
p^{m}(g-1) \in A^{t}(R G)
$$

Proof. We prove this by induction on t. For $t=1$ the statement is obvious. Let $p^{s}(g-1) \in A^{t-1}(R G)$ for some s. From the decomposition $g^{p^{m}}$ as $(g-1+1)^{p^{m}}$ we have that

$$
g^{p^{m}}-1=p^{m}(g-1)+\sum_{i=2}^{t-1}\binom{p^{m}}{i}(g-1)^{i}+\sum_{i=t}^{p^{m}}\binom{p^{m}}{i}(g-1)^{i}
$$

for every m. If $m \geq n(s+t)$, then p^{s} divides $\binom{p_{m}^{m}}{i}$ for $i=1,2, \ldots, t-1$ and $g^{p^{m}} \in D_{t}(R G)$. Therefore we have

$$
g^{p^{m}}-1=p^{m}(g-1)+p^{s}(g-1)^{2} \sum_{i=2}^{t-1} d_{i}(g-1)^{i-2}+\sum_{i=t}^{p^{m}}\binom{p^{m}}{i}(g-1)^{i}
$$

where $d_{i} p^{s}=\binom{p^{m}}{i}$ for $i=2,3, \ldots, t-1$. Since $g^{p^{m}}-1 \in A^{t}(R G)$, by iteration from the preceding identity $p^{m}(g-1) \in A^{t}(R G)$ follows. The proof is complete .

Let p be a prime and n a natural number. Denote $G^{p^{n}}$ is the subgroup of G generated by all elements of the form $g^{p^{n}}, g \in G$.

Lemma 3.2. Let $h \in G^{p^{n}} \gamma_{n}(G)$ for a natural number n. Then for all natural numbers t and s for which $n \geq t+s$,

$$
h-1 \equiv p^{s} F_{t}(h) \quad\left(\bmod A^{t}(R G)\right)
$$

holds, where $F_{t}(h) \in A(R G)$.

Proof. Writing the element h as $h=h_{1}^{p^{n}} h_{2}^{p^{n}} \ldots h_{m}^{p^{n}} y_{n} \quad\left(h_{i} \in G, y_{n} \in \gamma_{n}(G)\right)$ and using the identity

$$
\begin{equation*}
a b-1=(a-1)(b-1)+(a-1)+(b-1) \tag{1}
\end{equation*}
$$

we have

$$
h-1=\left(h_{1}^{p^{n}} h_{2}^{p^{n}} \ldots h_{m}^{p^{n}}-1\right)\left(y_{n}-1\right)+\left(h_{1}^{p^{n}} h_{2}^{p^{n}} \ldots h_{m}^{p^{n}}-1\right)+\left(y_{n}-1\right) .
$$

Since $t<n$, it follows that $\left(y_{n}-1\right) \in A^{t}(R G)$. It is clear that $p^{s} \operatorname{divides}\binom{p^{n}}{j}$ for $j=1,2, \ldots, t-1$. Then from the preceding identity

$$
h-1 \equiv \sum_{i=1}^{m}\left(h_{i}^{p^{n}}-1\right) b_{i} \equiv p^{s} \sum_{i=1}^{m} \sum_{j=1}^{t-1} d_{j}\left(h_{i}-1\right)^{j} b_{i} \equiv p^{s} F_{t}(h) \quad\left(\bmod A^{t}(R G)\right)
$$

follows, where $F_{t}(h)=p^{s} \sum_{i=1}^{m} \sum_{j=1}^{t-1} d_{j}\left(h_{i}-1\right)^{j} b_{i}, b_{i} \in R G$ and $p^{s} d_{j}=\binom{p^{n}}{j}$ for $1 \leq$ $j \leq t-1$. The proof is complete .

Suppose further that R is a commutative integral domain. Let $|G|$ be the order of the group G.

Lemma 3.3. Let H be a subgroup of a group G and $I(H)(1-a)=0$ for a suitable element $a \in A(R G)$. Then H is finite and the order of H is invertible in R.

Proof. By the condition of our lemma the right annihilator of the left ideal $I(H)$ is non-zero. By Lemma 2.3 H is finite and $1-a$ can be written as $1-a=\left(\sum_{h \in H} h\right) x$ for a suitable element $x \in R G$. If $\phi(y)$ is the sum of the coefficients of the element $y \in R G$, then the map $\phi: R G \rightarrow R$ is a ring homomorphism of $R G$ onto R, with $\phi(1-a)=\phi\left(\left(\sum_{h \in H} h\right) x\right)=|H| \phi(x)=1$, that is $|H|$ is invertible in R. The proof is complete.

Let $o(g)$ be the order of the element $g \in G$ and let $D_{\omega}(R G)$ be the ω-th dimension subgroup of G over R, that is $D_{\omega}(R G)=\cap_{n=1}^{\infty} D_{n}(R G)$. It is easy to see that $D_{\omega}(R G)=\left\{g \in G \mid g-1 \in A^{\omega}(R G)\right\}$.

Let R^{\star} denotes the unit group of the ring R.
Lemma 3.4. Let the intersection theorem hold for $A(R G)$. Then the set $S=$ $\left\{g \in G \mid o(g) \in R^{\star}\right\}$ coincides with $D_{\omega}(R G)$ and it is the largest finite subgroup of order invertible in R.

Proof. Let $g \in S$. Then the order $n=o(g)$ of the element g is invertible in R and from the identity

$$
0=g^{n}-1=n(g-1)+\binom{n}{2}(g-1)^{2}+\ldots+(g-1)^{n}
$$

we have

$$
g-1=-n^{-1}(g-1)\left(\binom{n}{2}(g-1)+\binom{n}{3}(g-1)^{2}+\ldots+(g-1)^{n-1}\right)
$$

Hence, by iteration, we have $g-1 \in A^{\omega}(R G)$. This implies that $S \subseteq D_{\omega}(R G)$.
Conversely, it is clear that $I\left(D_{\omega}(R G)\right) \subseteq A^{\omega}(R G)$ and from $A^{\omega}(R G)(1-a)=0$ we have $I\left(D_{\omega}(R G)\right)(1-a)=0$. Then by Lemma 3.3 the order of the subgroup $D_{\omega}(R G)$ is invertible in R. Therefore $D_{\omega}(R G) \subseteq S$. The proof is complete .

Corollary. Let the intersection theorem hold for $A(R G)$ and let $\bar{g} \neq \overline{1}$ be an element of finite order n of the group $\bar{G}=G / D_{\omega}(R G)$. Then the prime divisors of n are not invertible in R.

Lemma 3.5. Let G be a group having a p-element g and suppose that the intersection theorem holds for $A(R G)$. If the ideal $J_{p}(R)$ is non-zero, then $g \in D_{\omega}(R G)$.

Proof. Let $A^{\omega}(R G)(1-a)=0$ for a suitable element $a \in A(R G)$ and let p^{n} be the order of the element $g \in G$. Therefore for every natural number t we have $g^{p^{n}} \in \gamma_{t}(G) \subseteq D_{t}(R G)$. If $0 \neq r \in J_{p}(R)$ then for every $m \geq 1$ for the element r we have the decomposition $r=p^{m} r_{m}\left(r_{m} \in R\right)$. Then by Lemma 3.1

$$
r(g-1)=p^{m} r_{m}(g-1) \in A^{t}(R G)
$$

for an enough large integer m. Since t is an arbitrary natural number, we conclude that $r(g-1) \in A^{\omega}(R G)$, and so, $r(g-1)(1-a)=0$. In the group ring over an integral domain this equation implies that $(g-1)(1-a)=0$. Then by Lemma 3.3 the order of the element g is invertible in R. Consequently by Lemma 3.4 $g \in D_{\omega}(R G)$. The proof is complete .

$$
\text { Let } W_{p}(G)=\bigcap_{n=1}^{\infty} G^{p^{n}} \gamma_{n}(G)
$$

Lemma 3.6. Let $m=p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{s}^{m_{s}}$ be the prime power decomposition of the order of the element $g \in G$. Then for every prime $p \neq p_{i},(i=1,2, \ldots, s)$ the element g lies in $W_{p}(G)$.

Proof. Since the numbers p and m are coprimes, for an arbitrary n we can be choose the integers k and l with $k m+l p^{n}=1$. Then

$$
g=g^{k m+l p^{n}}=\left(g^{m}\right)^{k}\left(g^{l}\right)^{p^{n}}=\left(g^{l}\right)^{p^{n}} \in G^{p^{n}} \gamma_{n}(G) .
$$

Therefore $g \in G^{p^{n}} \gamma_{n}(G)$ for all n. Consequently $g \in W_{p}(G)$.

Let π be the set of those primes p for which the group G contains an element of a prime order p and let $\pi^{\star}=\left\{p \in \pi \mid p \in R^{\star}\right\}$, where R^{\star} is the unit group of R. We recall that if the intersection theorem holds for $A(R G)$, then by Lemma 3.4, the set of the prime divisors of $\left|D_{\omega}(R G)\right|$ coincides with π^{\star}.

Let $\bar{G}=G / D_{\omega}(R G)$.
Lemma 3.7. Let the intersection theorem hold for $A(R G)$. Then for all $p \in \pi \backslash \pi^{\star}$, $W_{p}(\bar{G})$ is a torsion group with no p-elements and $\bigcap_{p \in \pi \backslash \pi^{\star}} W_{p}(\bar{G})=\langle\overline{1}\rangle$.

Proof. Let $A^{\omega}(R G)(1-a)=0$ for a suitable element $a \in A(R G)$. Suppose further that p is a fixed prime in $\pi \backslash \pi^{\star}$ and $\bar{g}=g D_{\omega}(R G)$ is an arbitrary element of $W_{p}(\bar{G})$. We shall prove that the element \bar{g} has a finite order. For every n the element \bar{g} lies in the subgroup $\bar{G}^{p^{n}} \gamma_{n}(\bar{G})$. Therefore for the element g we have the decomposition

$$
g=g_{1}^{p^{n}} g_{2}^{p^{n}} \ldots g_{k}^{p^{n}} h_{n} d_{n}
$$

where $h_{n} \in \gamma_{n}(G), d_{n} \in D_{\omega}(R G), g_{i} \in G, i=1,2, \ldots, k$. Since $p \in \pi \backslash \pi^{\star}$, clearly p is not invertible in R and from Lemma 3.4 and from the definition of the set $\pi \backslash \pi^{\star}$ it follows that \bar{G} contains a nontrivial p-element $\bar{h}=h D_{\omega}(R G)$. Let the order of the element \bar{h} be p^{s}. Then $h^{p^{s}} \in D_{\omega}(R G) \subseteq D_{t}(R G)$ for every natural number t. By Lemma 3.1 then there exists m such that

$$
\begin{equation*}
p^{m}(h-1) \in A^{t}(R G) . \tag{2}
\end{equation*}
$$

By Lemma 3.2 for an enough large n the element $x=g_{1}^{p^{n}} g_{2}^{p^{n}} \ldots g_{k}^{p^{n}} h_{n} \in G^{p^{n}} \gamma_{n}(G)$ satisfies the condition

$$
\begin{equation*}
x-1 \equiv p^{m} F_{t}(x) \quad\left(\bmod A^{t}(R G)\right), \quad F_{t}(x) \in A(R G) \tag{3}
\end{equation*}
$$

Since $d_{n}-1 \in A^{\omega}(R G)$ and $g=x d_{n}$, from (1) it follows that $(g-1)(h-1) \equiv$ $(x-1)(h-1) \quad\left(\bmod A^{t}(R G)\right)$. Then by (2) and (3) we obtain

$$
(g-1)(h-1) \equiv F_{t}(x) p^{m}(h-1) \equiv 0 \quad\left(\bmod A^{t}(R G)\right)
$$

Since t is an arbitrary natural number we conclude that

$$
\begin{equation*}
(g-1)(h-1) \in A^{\omega}(R G) \tag{4}
\end{equation*}
$$

By the condition of our lemma it follows, that $(g-1)(h-1)(1-a)=0$. The order of the element h is not invertible in R, consequently, by Lemma $3.3(h-1)(1-a) \neq 0$, and $g-1$ has a non-zero annihilator. Then by Lemma 2.3 the order of the element g is finite. Therefore \bar{g} is an element of finite order. Consequently, $W_{p}(\bar{G})$ is a torsion subgroup of \bar{G}.

Now suppose that the element $\bar{g}=g D_{\omega}(R G)$ is a non-trivial p-element. (Note that $p \in \pi \backslash \pi^{\star}$.) Since (4) is true for every p-element from the group \bar{G}, it follows that

$$
\begin{equation*}
(g-1)^{2} \in A^{\omega}(R G) \tag{5}
\end{equation*}
$$

By Lemma $3.4 D_{\omega}(R G)$ is finite and therefore the order of the element g is finite. Let $o(g)=l$. From the identity

$$
0=g^{l}-1=l(g-1)+\binom{l}{2}(g-1)^{2}+\ldots+(g-1)^{l}
$$

and from (5) we conclude that $l(g-1) \in A^{\omega}(R G)$. Hence $l(g-1)(1-a)=0$, because the intersection theorem holds for $A(R G)$. Since R is an integral domain, it follows that $(g-1)(1-a)=0$, which is impossible by Lemma 3.3 because p divides $o(g)$ and therefore $o(g)$ is not invertible in R. Consequently, for every $p \in \pi \backslash \pi^{\star}$ the subgroup $W_{p}(\bar{G})$ contains no p-elements.

Now we prove the equation $\bigcap_{p \in \pi \backslash \pi^{\star}} W_{p}(\bar{G})=\langle\overline{1}\rangle$. Let $\bar{v} \in \bigcap_{p \in \pi \backslash \pi^{\star}} W_{p}(\bar{G})$. Then the order $o(\bar{v})$ of the element \bar{v} is finite and by Corollary of Lemma 3.4. the prime divisors of $o(\bar{v})$ are not invertible in R, that is are lies in the set $\pi \backslash \pi^{\star}$. This is impossible since by above facts the subgroup $W_{p}(\bar{G})$ with no p-elements for all $p \in \pi \backslash \pi^{\star}$. Consequently $\bar{v}=\overline{1}$ and $\cap_{p \in \pi \backslash \pi^{\star}} W_{p}(\bar{G})=\langle\overline{1}\rangle$. The proof is complete.

From Lemma 5.2 of [6] it we have
Lemma 3.8. Let H_{1}, H_{2} be normal subgroups of a group G with $H_{1} \cap H_{2}=\langle 1\rangle$. Then $I\left(H_{1}\right) \cap I\left(H_{2}\right)=I\left(H_{1}\right) I\left(H_{2}\right)$.

Lemma 3.9. Let the set of elements of finite order of a group G form a finite nilpotent group $T(G)$ and let $A^{\omega}(R G / T(G))=0$. Suppose that for all $p \in \pi \backslash \pi^{\star}$ the group $W_{p}(G)$ is finite with no p-elements and $J_{p}(R)=0$. Then the intersection theorem holds for $A(R G)$.

Proof. Note that in this case $\pi=\pi^{\star}$ and it is the set of prime divisors of the order $|T(G)|$ of the group $T(G)$.

We prove lemma by induction on the order of $T(G)$. If $|T(G)|=1$, then $A^{\omega}(R G)=0$ and in this case the proof is complete.

Suppose first that $T(G)$ is a p-group. If $p \in \pi \backslash \pi^{\star}$, then p is not invertible in R and from the conditions of our lemma it follows that $W_{p}(G)=\langle 1\rangle$ and $J_{p}(R)=0$. The group $G / G^{p^{n}} \gamma_{n}(G)$ is a nilpotent p-group of finite exponent and by Theorem $2.1 A^{\omega}\left(R G / G^{p^{n}} \gamma_{n}(G)\right)=\overline{0}$ for all n. Since $W_{p}(G)=\langle 1\rangle$ it follows, that G is a residually- $\overline{\mathcal{N}}_{p}$ group. Therefore by Theorem $2.2 A^{\omega}(R G)=0$ and the intersection theorem holds for $A(R G)$.

Now let $p \in \pi^{\star}$, that is p is invertible in R. From $A^{\omega}(R G / T(G))=0$ it follows that $A^{\omega}(R G) \subseteq I(T(G))$. If p^{n} is the order of $T(G)$ then the element $1-\left(p^{n}\right)^{-1} \sum_{g \in T(G)} g$ in ideal $A(R G)$ and by Lemma 2.3

$$
A^{\omega}(R G)(1-a) \subseteq I(T(G))(1-a)=0
$$

Now assume that there exist at least two different primes dividing $|T(G)|$. Then for the finite nilpotent group $T(G)$ we have the direct product decomposition

$$
T(G)=S_{p_{1}} \otimes S_{p_{2}} \otimes \ldots \otimes S_{p_{k}}
$$

of its Sylow p-subgroups $S_{p_{i}},(i=1,2, \ldots, k)$ with $k \geq 2$.
If $\pi^{\star} \neq \emptyset$, that is among the primes $p_{i}(i=1,2, \ldots, k)$ there exists p_{j} which is invertible in R, then by Lemma 2.3, the element $b=1-\left|S_{p_{j}}\right|^{-1} \sum_{g \in S_{p_{j}}} g$ satisfies the equation

$$
\begin{equation*}
I\left(S_{p_{j}}\right)(1-b)=0, \quad b \in A(R G) \tag{6}
\end{equation*}
$$

By the induction hypothesis there exists an element $\bar{c} \in A\left(R G / S_{p_{j}}\right)$ such that $A^{\omega}\left(R G / S_{p_{j}}\right)(1-\bar{c})=\overline{0}$. If $c \in A(R G)$ is an element from the inverse image of \bar{c} by the homomorphism $\phi: R G \rightarrow R G / S_{p_{j}}$, then

$$
A^{\omega}(R G)(1-c) \subseteq I\left(S_{p_{j}}\right)
$$

Let $1-a=(1-c)(1-b)$. Then from the above inclusion and from (6) we obtain the equality $A^{\omega}(R G)(1-a)=0$.

Suppose that $\pi^{\star}=\emptyset$, that is all $p_{i}(i=1,2, \ldots, k)$ are not invertible in R. By the induction there exist $\bar{c}_{1} \in A^{\omega}\left(R G / S_{p_{l}}\right)$ and $\widetilde{c}_{2} \in A^{\omega}\left(R G / S_{p_{t}}\right)$ such that

$$
A^{\omega}\left(R G / S_{p_{l}}\right)\left(1-\bar{c}_{1}\right)=\overline{0} \quad \text { and } \quad A^{\omega}\left(R G / S_{p_{t}}\right)\left(1-\widetilde{c}_{2}\right)=\widetilde{0}
$$

Then $A^{\omega}(R G)\left(1-c_{1}\right) \subseteq I\left(S_{p_{l}}\right)$ and $A^{\omega}(R G)\left(1-c_{2}\right) \subseteq I\left(S_{p_{t}}\right)$ for suitable elements $c_{1}, c_{2} \in A(R G)$. Hence by Lemma 3.8 we have

$$
\begin{equation*}
A^{\omega}(R G)\left(1-c_{1}\right)\left(1-c_{2}\right) \subseteq I\left(S_{p_{l}}\right) \cap I\left(S_{p_{t}}\right)=I\left(S_{p_{l}}\right) I\left(S_{p_{t}}\right) \tag{7}
\end{equation*}
$$

We can be choose the integers n and m such that $n\left|S_{p_{l}}\right|+m\left|S_{p_{t}}\right|=1$. It is easy to see that the sum of the coefficients of the element $1-d=n \sum_{g \in S_{p_{1}}} g+m \sum_{g \in S_{p_{2}}} g$ equals to 1 and therefore $d \in A(R G)$. Since $T(G)$ is a finite group, by Lemma 2.3 it follows, that $I\left(S_{p_{l}}\right) I\left(S_{p_{t}}\right)(1-d)=0$. Then by (7) the element $1-a=$ $\left(1-c_{1}\right)\left(1-c_{2}\right)(1-d)$ satisfies the condition $A^{\omega}(R G)(1-a)=0$. The proof is complete.

We shall say that G is a generalized nilpotent group if it is discriminated by the class of the nilpotent group. This is equivalent to the equality $\bigcap_{n=1}^{\infty} \gamma_{n}(G)=\langle 1\rangle$.

Lemma 3.10. ([5]) Let g, h are an elements of a nilpotent group G. Suppose that $\gamma_{t+1}(G)=\langle 1\rangle$ and $h^{n^{s}}=1$. Then the element h commute with $g^{n^{s(t-1)}}$.

We generalize this Lemma.
Lemma 3.11. Let G be a generalized nilpotent group, Ω a subset of the primes and let $g \in \cap_{p \in \Omega} W_{p}(G)$. If the prime divisors of the order o(h) of the element h are in Ω, then $g h=h g$. If the orders of the elements g and h are coprimes, then $g h=h g$.

Proof. Let $g \in \cap_{p \in \Omega} W_{p}(G)$ and let $c=g^{-1} h^{-1} g h \neq 1$ be the commutator of g and h. Since G is a generalized nilpotent group, there exists an integer $t \geq 2$ such that $c \notin \gamma_{t+1}(G)$. Let \bar{g} and \bar{h} be the image of the elements g and h in $\bar{G}=G / \gamma_{t+1}(G)$.

First we suppose that \bar{h} is a p-element $(p \in \Omega)$ of \bar{G} and $o(h)=p^{s}$. Since the element $g \in \cap_{p \in \Omega} W_{p}(G)$, that for g we have

$$
g=g_{1}^{p^{2 s(t-1)}} g_{2}^{p_{2}^{2 s(t-1)}} \ldots g_{k}^{p^{2 s(t-1)}} x_{2 s(t-1)},
$$

where $x_{2 s(t-1)} \in \gamma_{2 s(t-1)}(G), g_{i} \in G, i=1,2, \ldots, k$. Then

$$
\bar{g}=\bar{g}_{1}^{p^{2 s}(t-1)} \ldots \bar{g}_{2}^{\overline{p s}_{2 s(t-1)}} \ldots \bar{g}_{k}^{p^{2 s(t-1)}} \ldots \bar{x}_{2 s(t-1)} .
$$

From Lemma $3.10 \bar{h} \bar{g}_{i}^{p^{2 s(t-1)}}=\bar{g}_{i}^{p^{2 s(t-1)}} \bar{h}$ follow for all $i=1,2, \ldots, k$. Since $t \geq 2$, we have $2 s(t-1) \geq t$ and therefore $\bar{x}_{2 s(t-1)}$ is a central element of \bar{G}. Consequently, $\bar{g} \bar{h}=\bar{h} \bar{g}$.

Let h be a torsion element of G and let the prime divisors of the order of h be in Ω. Then the element \bar{h} of the nilpotent group \bar{G} has the decomposition $\bar{h}=\bar{h}_{1} \bar{h}_{2} \ldots \bar{h}_{l}$, where $l \geq 1, \bar{h}_{i}^{p_{i}^{n_{i}}}=\overline{1}, p_{i} \in \Omega, i=1,2, \ldots, l$. From the above fact we have that $\bar{g} \bar{h}_{i}=\bar{h}_{i} \bar{g}$ for all i. Therefore $\bar{g} \bar{h}=\bar{h} \bar{g}$. Consequently $c \in \gamma_{t+1}(G)$, which is a contradiction.

Let $g^{n}=h^{m}=1$. Suppose that n and m are coprimes. If the set Ω is the set of the prime divisors of m then by Lemma $3.6 g \in \cap_{p \in \Omega} W_{p}(G)$ and the by above argument $g h=h g$. The proof is complete.

Lemma 3.12. Let $\left\{H_{\alpha}\right\}_{\alpha \in K}$ be an arbitrary set of normal subgroups of a group G. Suppose that H is a subgroup of G of finite exponent k. If $g \in \cap_{\alpha \in K}\left(H_{\alpha} H\right)$, then $g^{k} \in \cap_{\alpha \in K} H_{\alpha}$.

Proof. Let $g \in \cap_{\alpha \in K}\left(H_{\alpha} H\right)$. Then for all $\alpha \in K$ the element g lies in $H_{\alpha} H$ and $g h \in H_{\alpha}$ for a suitable element $h \in H$. We shall show that for every $\alpha \in K$ we have $g^{s} h^{s} \in H_{\alpha}$ by induction on s.

For $s=1$ the proof is similar as above. Suppose that $g^{s-1} h^{s-1} \in H_{\alpha}$. Then $h g h h^{-1}=h g \in H$ and $h g g^{s-1} h^{s-1}=h g^{s} h^{s-1} \in H_{\alpha}$. Then $h^{-1} h g^{s} h^{s-1} h=h^{s} g^{s} \in$ H_{α} since H_{α} is a normal subgroup of G. If $s=k$ then $h^{s}=1$ and therefore $g^{k} \in H_{\alpha}$. Consequently, $g^{k} \in \cap_{\alpha \in K} H_{\alpha}$.

Let $\bar{G}=G / D_{\omega}(R G)$.

Lemma 3.13. Let the intersection theorem hold for $A(R G)$. Then the following assertionare satisfied:

1) If the set $\pi \backslash \pi^{\star}$ contains more than one element then the set $T(G)$ of the torsion elements of G form a finite normal subgroup of G, and for all $p \in \pi \backslash \pi^{\star}$ the subgroup $W_{p}(\bar{G})$ is finite with no p-elements and $J_{p}(R)=0$.
2) If $\pi \backslash \pi^{\star}=\{p\}$ then \bar{G} is a residually $-\overline{\mathcal{N}}_{p}$ group and $J_{p}(R)=0$.
3) If $\pi=\pi^{\star}$ then either \bar{G} is discriminated by the torsion free nilpotent groups, or there exists a nonempty subset Ω of the set of primes such that $\cap_{p \in \Omega} J_{p}(R)=0$, the group \bar{G} is discriminated by the class of groups $\overline{\mathcal{N}}_{\Omega}$ and for every proper subset Λ of the set Ω at least one of the conditions
4) $\cap_{p \in \Lambda} J_{p}(R)=0$
5) \bar{G} is discriminated by the class of groups $\overline{\mathcal{N}}_{\Omega \backslash \Lambda}$
holds.
Proof. Let $A^{\omega}(R G)(1-a)=0$ for a suitable element $a \in A(R G)$.
Case 1. Suppose that the set $\pi \backslash \pi^{\star}$ contains more than one element. First we prove that the elements of finite order of the group \bar{G} form a normal subgroup.

Let $\bar{g}, \bar{h} \in \bar{G}$ and $o(\bar{g})=n, o(\bar{h})=m$. It is evident that the order of \bar{g}^{-1} is finite. Therefore it is enough to show that the order of the element $\bar{g} \bar{h}$ is finite.

By Corollary of Lemma 3.4 it follows that the prime divisors of the integers n and m are in $\pi \backslash \pi^{\star}$. Let us denote by $d=d(n, m)$ the greatest common divisor of n and m. Then $n=n^{\prime} d$ and $m=m^{\prime} d$ for a suitable n^{\prime} and m^{\prime} with $d\left(n^{\prime}, m^{\prime}\right)=1$.

Put $k=n^{\prime} m^{\prime} d$. If $d=1$ then by Lemma $3.7 \bar{g} \bar{h}=\bar{h} \bar{g}$ and therefore $(\bar{g} \bar{h})^{n m}=\overline{1}$.
Let now $d \neq 1$. Suppose that k is a prime power p. Then \bar{g} and \bar{h} are p-elements of \bar{G}. Since $\pi \backslash \pi^{\star}$ contains more than one element, there exists $q \in \pi \backslash \pi^{\star}$ such that $q \neq p$. By Lemma $3.6 \bar{g}, \bar{h}$ are in $W_{q}(\bar{G})$, which by Lemma 3.7 is a torsion group, and therefore the order of the element $\bar{g} \bar{h}$ is finite.

Let k be a composed number. Then for k we have the decomposition $k=p^{\alpha} l$ for some prime $p \in \pi \backslash \pi^{\star}$ and some natural number l where $(l, p)=1$. Then there exist integers s and r such that $s p^{\alpha}+r l=1$. Hence $\bar{g} \bar{h}=\bar{g}^{s p^{\alpha}} \bar{g}^{r l} \bar{h}^{s p^{\alpha}} \bar{h}^{r l}$. Since
$d\left(o\left(\bar{g}^{r l}\right), o\left(\bar{h}^{s p^{\alpha}}\right)\right)=d\left(o\left(\bar{g}^{s p^{\alpha}}\right), o\left(\bar{h}^{r l}\right)\right)=1$ then, Lemma $3.11 \bar{g}^{r l} \bar{h}^{s p^{\alpha}}=\bar{h}^{s p^{\alpha}} \bar{g}^{r l}$ and $\bar{g}^{s p^{\alpha}} \bar{h}^{r l}=\bar{h}^{r l} \bar{g}^{s p^{\alpha}}$. By the induction we have

$$
\begin{equation*}
(\bar{g} \bar{h})^{t}=\left(\bar{g}^{s p^{\alpha} \alpha} \bar{h}^{s p^{\alpha}}\right)^{t}\left(\bar{g}^{r l} \bar{h}^{r l}\right)^{t} \tag{8}
\end{equation*}
$$

for every t. The orders of the elements $\bar{g}^{s p^{\alpha}}$ and $\bar{h}^{s p^{\alpha}}$ are coprimes with p and by Lemma $3.6 \bar{g}^{s p^{\alpha}}, \bar{h}^{s p^{\alpha}}$ are in $W_{p}(\bar{G})$ which by Lemma 3.7 is a torsion group. Therefore $\left(\bar{g}^{s p^{\alpha}} h^{s p^{\alpha}}\right)^{t_{1}}=\overline{1}$ for a suitable t_{1}. By similar arguments we obtain that $\left(\bar{g}^{r l} h^{r l}\right)^{t_{2}}=\overline{1}$ for a suitable t_{2}. Then by (8) the integer $t=t_{1} t_{2}$ satisfies the equality $(g h)^{t}=1$. Consequently $T(\bar{G})$ is a torsion subgroup of \bar{G} and clearly it is normal in \bar{G}.

Now we show that $T(G)$ is a torsion normal subgroup of G. It is clear that $T(\bar{G})$ is a generalized nilpotent group, because \bar{G} is a generalized nilpotent group. By Lemma 3.11. for $T(\bar{G})$ we have the direct product decomposition

$$
\begin{equation*}
T(\bar{G})=\prod_{p \in \pi \backslash \pi^{\star}} \bar{S}_{p} \tag{9}
\end{equation*}
$$

of its Sylow p-subgroups \bar{S}_{p}.
Let S_{p} be the inverse image of \bar{S}_{p} in G. We shall show that $I\left(S_{p}\right) I\left(S_{q}\right) \subseteq$ $A^{\omega}(R G)$ for $p \neq q$ and $p, q \in S_{p}, p \in \pi \backslash \pi^{\star}$. It will be sufficient to show that $(g-1)(h-1) \in A^{\omega}(R G)$ for all $g \in S_{p}$, and $h \in S_{q}$. By (9) for the elements g and h we have the decompositions $g=v x$ and $h=w y$ where the elements $x, y, v^{p^{2}}, w^{q^{j}}$ are in $D_{\omega}(R G)$ for suitable i and j. Applying the identity (5) to the elements $g-1, h-1$ we have

$$
\begin{equation*}
(g-1)(h-1) \equiv(v-1)(w-1) \quad\left(\bmod A^{\omega}(R G)\right), \tag{10}
\end{equation*}
$$

because $x-1$ and $y-1$ in $A^{\omega}(R G)$. For the elements $v^{p^{i}}-1$ and $w^{q^{j}}-1$ we have

$$
\begin{gathered}
v^{p^{i}}-1=p^{i}(v-1)+\binom{p^{i}}{2}(v-1)^{2}+\ldots+(v-1)^{p^{i}}, \\
w^{q^{j}}-1=q^{j}(w-1)+\binom{q^{j}}{2}(v-1)^{2}+\ldots+(w-1)^{q^{j}} .
\end{gathered}
$$

Choose the integers s and l such that $s p^{i}+l q^{j}=1$. Multiplying these equations by $s(w-1)$ and $l(v-1)$ respectively and adding we obtain

$$
\begin{aligned}
(v-1)(w-1) & =(v-1)(w-1) b+c(v-1)(w-1)+ \\
& +s\left(v^{p^{i}}-1\right)(w-1)+l(v-1)\left(w^{q^{j}}-1\right)
\end{aligned}
$$

where

$$
\begin{aligned}
b & =-l\left(\binom{q^{j}}{2}(w-1)+\binom{q^{j}}{3}(w-1)^{2}+\ldots+(w-1)^{q^{j}-1}\right) \\
c & =-s\left(\binom{p^{i}}{2}(v-1)+\binom{p^{i}}{3}(v-1)^{2}+\ldots+(v-1)^{p^{i}-1}\right)
\end{aligned}
$$

Since the elements $b, c \in A(R G)$ and $v^{p^{i}}-1$ and $w^{q^{j}}-1$ are in $A^{\omega}(R G)$, from the above identity we conclude that $(v-1)(w-1) \in A^{t}(R G)$ for all integers $t \geq 1$. Therefore $(v-1)(w-1) \in A^{\omega}(R G)$ and by $(10),(g-1)(h-1) \in A^{\omega}(R G)$. Consequently $I\left(S_{p}\right) I\left(S_{q}\right) \subseteq A^{\omega}(R G)$.

Now we show that $T(G)$ is a finite subgroup. Let q be an arbitrary element of $\pi \backslash \pi^{\star}, H_{q}=S_{p_{1}} S_{p_{2}} \ldots$, where $q, p_{i}, \in \pi \backslash \pi^{\star}$ and $p_{i} \neq q$ for all i. Then from the above argument it follows that

$$
I\left(H_{q}\right) I\left(S_{q}\right) \subseteq A^{\omega}(R G) \text { and } I\left(S_{q}\right) I\left(H_{q}\right) \subseteq A^{\omega}(R G)
$$

Since $A^{\omega}(R G)(1-a)=0$ we have that

$$
\begin{equation*}
I\left(H_{q}\right) I\left(S_{q}\right)(1-a)=0 \text { and } I\left(S_{q}\right) I\left(H_{q}\right)(1-a)=0 . \tag{11}
\end{equation*}
$$

The prime q is not invertible in R and so, by Lemma 3.1, $I\left(S_{q}\right)(1-a) \neq 0$. Therefore by (11) the ideal $I\left(H_{q}\right)$ has a non-zero right annihilator. Consequently H_{q} is a finite subgroup of G and therefore the set $\pi \backslash \pi^{\star}$ is finite. Furthermore $I\left(H_{q}\right)(1-a) \neq 0$ because the order of H_{q} is not invertible in R. It follows that S_{p} is finite for all $p \in \pi \backslash \pi^{\star}$. Then by (9) we obtain that $T(\bar{G})$ is finite. By Lemma $3.4 D_{\omega}(R G)$ is a finite subgroup of G and from the isomorphism $T(\bar{G}) \cong T(G) / D_{\omega}(R G)$ it follows that $T(G)$ is a finite subgroup of G.

Let $p \in \pi \backslash \pi^{\star}$. Then in G there exists a p-element g such that $g \in D_{\omega}(R G)$. Therefore by Lemma $3.5 J_{p}(R)=0$. From Lemma 3.7 we have that $W_{p}(\bar{G}) \subseteq T(\bar{G})$, and $W_{p}(\bar{G})$ contains no p-elements. Since $T(\bar{G})$ is finite, it follows that $W_{p}(\bar{G})$ is also a finite subgroup of G with no p-elements.

Case 2. Let $\pi \backslash \pi^{\star}=\{p\}$. Then from the Corollary of Lemma 3.4 it follows that the elements of finite order of \bar{G} are p-elements. By Lemma $3.7 W_{p}(\bar{G})$ is a torsion group with no p-elements. Consequently $W_{p}(\bar{G})=\langle\overline{1}\rangle$ that is \bar{G} is a residually nilpotent p-group of finite exponent.

Case 3. Let $\pi=\pi^{\star}$. By Lemma 3.2 $T(G)=D_{\omega}(R G)$ and it is a finite group.
Assume G contains no generalized torsion element of infinite order, and let $\sqrt{\gamma_{n}(G)}$ be the isolator of $\gamma_{n}(G)$ in G, that is

$$
\sqrt{\gamma_{n}(G)}=\left\{g \in G \mid g^{m} \in \gamma_{n}(G) \text { for some integer } m \geq 1\right\}
$$

Then $\cap_{n=1}^{\infty} \sqrt{\gamma_{n}(G)}=D_{\omega}(R G)$ and therefore for every element $\bar{g}=g D_{\omega}(R G)$ there exists an integer n such that $g \in \sqrt{\gamma_{n}(G)}$. If ϕ is the homomorphism of \bar{G} onto the torsion free nilpotent group $G / \gamma_{n}(G)$ then $\phi(\bar{g}) \neq \widetilde{1}$, that is, \bar{G} is a residually torsion free nilpotent group.

Let now g be a generalized torsion element of G of infinite order. Since $\cap_{n=1}^{\infty} \gamma_{n}(G) \subseteq D_{\omega}(R G)$ and the order of $D_{\omega}(R G)$ is finite, it follows that $g \in \cap_{n=1}^{\infty} \gamma_{n}(G)$.

Let Ω denote the set of prime divisors of the orders of the elements $g \gamma_{n}(G) \in$ $G / \gamma_{n}(G)$ for all $n=2,3, \ldots$. It is obvious that Ω is non-empty.

Let $r \in \cap_{p \in \Omega} J_{p}(R)$. Then by Lemma 3.3 it follows that $r(g-1) \in A^{\omega}(R G)$ and therefore $r(g-1)(1-a)=0$ because $A(R G)$ satisfies the intersection theorem. Since R is an integral domain and the order of the element g is infinite, from the above equality it follows that $r=0$. Consequently $\cap_{p \in \Omega} J_{p}(R)=0$.

Now we show that if Λ is a subset of Ω such that Λ is either empty, or $\cap_{p \in \Lambda} J_{p}(R) \neq 0$ then the group \bar{G} is discriminated by the class of groups $\overline{\mathcal{N}}_{\Omega \backslash \Lambda}$.

Let $\bar{h}_{1}=h_{1} D_{\omega}(R G), \bar{h}_{2}=h_{2} D_{\omega}(R G), \ldots, \bar{h}_{m}=h_{m} D_{\omega}(R G), m \geq 2$ be an arbitrary set of a distinct elements of \bar{G}. Note that if $\bar{h}_{i}=\overline{1}$ for a some i then we write $h_{i} D_{\omega}(R G)=D_{\omega}(R G)$ and $h_{i}=1$. Suppose further

$$
K=\left\{g_{n} \mid g_{n}=h_{i}, \text { or } g_{n}=h_{i} h_{j}^{-1}, i \geq j, i=1,2, \ldots, m, j=2,3, \ldots, m\right\} .
$$

Note that $h_{i} h_{j}^{-1} \in D_{\omega}(R G)$ for all $i \neq j$. Since $\pi=\pi^{\star}$, from the construction of the set K it follows that the elements $1 \neq g_{i} \in K$ are of infinite order.

Suppose there exists an element $g_{i} \neq 1$ in K such that

$$
g_{i} \in \bigcap_{n=1}^{\infty} G^{p^{n}} \gamma_{n}(G) D_{\omega}(R G)
$$

for all $p \in \Omega \backslash \Lambda$. Then by Lemma $3.12 g_{i}{ }^{t} \in \cap_{n=1}^{\infty} G^{p^{n}} \gamma_{n}(G)$ for every $p \in \Omega \backslash \Lambda$, where $t=\left|D_{\omega}(R G)\right|$. Therefore

$$
g_{i}^{t}-1 \in \bigcap_{p \in \Omega \backslash \Lambda} \bigcap_{n=1}^{\infty} I\left(G^{p^{n}} \gamma_{n}(G)\right)
$$

For a non-zero element $r \in \cap_{p \in \Lambda} J_{p}(R)$ the element $r(g-1)\left(g_{i}^{t}-1\right)$ is in $A^{\omega}(R G)$ by Lemma 3.3 (if $\Lambda=\emptyset$, then $(g-1)\left(g_{i}^{t}-1\right) \in A^{\omega}(R G)$). Therefore $r(g-1)\left(g_{i}^{t}-1\right)(1-$ $a)=0\left(\right.$ respectively $\left.(g-1)\left(g_{i}^{t}-1\right)(1-a)=0\right)$. The right annihilator of the element g is zero, because g is an element of infinite order. Therefore $\left(g_{i}^{t}-1\right)(1-a) r=0$ (respectively $\left.\left(g_{i}^{t}-1\right)(1-a)=0\right)$. Similarly, since g_{i} is an element of infinite order,
we conclude that the preceding equality implies $(1-a) r=0$. This is a contradiction. Consequently, there exists a prime $p_{\circ} \in \Omega \backslash \Lambda$ such that

$$
\bigcap_{n=1}^{\infty} G^{p^{\circ}{ }^{n}} \gamma_{n}(G) D_{\omega}(R G) \bigcap K=M
$$

where either M is the empty set or $M=\{1\}$. Then for all $g_{i} \in K$ there exists n such that

$$
g_{i} \in G^{p_{\circ}{ }^{n}} \gamma_{n}(G) D_{\omega}(R G) .
$$

Therefore

$$
h_{i} G^{p_{\circ}{ }^{n}} \gamma_{n}(G) D_{\omega}(R G) \neq h_{j} G^{p_{\circ}{ }^{n}} \gamma_{n}(G) D_{\omega}(R G)
$$

whenever $i \neq j$. Then by the homomorphism

$$
\phi: G / D_{\omega}(R G) \rightarrow G / G^{p_{\circ}{ }^{n}} \gamma_{n}(G) D_{\omega}(R G)
$$

we obtain that

$$
\phi\left(h_{i} D_{\omega}(R G)\right) \neq \phi\left(h_{j} D_{\omega}(R G)\right)
$$

whenever $i \neq j$. Consequently \bar{G} is discriminated by the class of groups $\overline{\mathcal{N}}_{\Omega \backslash \Lambda}$. The proof is complete.

Theorem 3.1. Let R be a commutative integral domain. The intersection theorem holds for $A(R G)$ if and only if $D_{\omega}(R G)$ is the largest finite subgroup of G of order invertible in R and at least one of the following conditions holds:

1) $G / D_{\omega}(R G)$ is a residually torsion free nilpotent group;
2) there exists a subset Ω of primes such that $G / D_{\omega}(R G)$ is discriminated by the class of groups $\overline{\mathcal{N}}_{\Omega}, \cap_{p \in \Omega} J_{p}(R)=0$ and for an arbitrary subset Λ of Ω, $\cap_{p \in \Lambda} J_{p}(R)=0$ or $G / D_{\omega}(R G)$ is discriminated by the class of groups $\overline{\mathcal{N}}_{\Omega \backslash \Lambda}$;
3) the set of the elements of finite order of G forms a finite normal subgroup $T(G)$, and for every prime divisor p of $|T(G)|$, which is not invertible in R, the group $W_{p}\left(G / D_{\omega}(R G)\right)$ is finite with no p-elements and $J_{p}(R)=0$.
Proof. Let the conditions 1) or 2) be satisfied. Then by Theorems 2.3 and 3.1 $A^{\omega}(R \bar{G})=0$ and therefore $A^{\omega}(R G) \subseteq I\left(D_{\omega}(R G)\right)$. The order $t=\left|D_{\omega}(R G)\right|$ is invertible in R and the element $a=1-t^{-1} \sum_{g \in D_{\omega}(R G)} g$ is in $A(R G)$. By Lemma 2.3 the element $1-a$ satisfies the equality

$$
A^{\omega}(R G)(1-a) \subseteq I\left(D_{\omega}(R G)(1-a)=0\right.
$$

that is in these cases the intersection theorem holds for $A(R G)$.
Case 3. Let $\bar{G}=G / D_{\omega}(R G)$. By Lemma 3.2 $T(G) \supseteq D_{\omega}(R G)$ and because

$$
D_{\omega}(R G) \supseteq \cap_{n=1}^{\infty} \gamma_{n}(G),
$$

by the isomorphism $T(\bar{G}) \cong T(G) / D_{\omega}(R G)$ we conclude that $T(\bar{G})$ is a finite nilpotent group.

Let $\bar{g} \in T(\bar{G})$ and let the prime p divides $|T(G)|$ and let p be not invertible in R. Then \bar{g} is an element of infinite order. By the conditions of our theorem $W_{p}(\bar{G})$ and $T(\bar{G})$ are finite subgroups of \bar{G}. It is clear that

$$
\bar{g} \in \cap_{n=1}^{\infty} \bar{G}^{p^{n}} \gamma_{n}(\bar{G}) T(\bar{G})
$$

because in the antipodal case by Lemma 3.12

$$
\bar{g}^{|T(\bar{G})|} \in \cap_{n=1}^{\infty} \bar{G}^{p^{n}} \gamma_{n}(\bar{G})=W_{p}(\bar{G}),
$$

which is a contradiction, since the order of the element \bar{g} is infinite. Therefore there exists an integer n such that $\bar{g} \in \bar{G}^{p^{n}} \gamma_{n}(\bar{G}) T(\bar{G})$. It is easy to see that $\widetilde{H}=$ $\bar{G} / \bar{G}^{p^{n}} \gamma_{n}(\bar{G}) T(\bar{G})$ is a nilpotent p-group of finite exponent and $\bar{g} \bar{G}^{p^{n}} \gamma_{n}(\bar{G}) T(\bar{G})$ is a nontrivial element of \widetilde{H}. Therefore $\bar{G} / T(\bar{G})$ is a residually nilpotent p-group of finite exponent. Since $J_{p}(R)=0$ and the class of nilpotent p-groups of finite exponent is closed under taking subgroup and finite direct product, from Lemma 2.1 and Theorem 2.2 it follows that $A^{\omega}(R \bar{G} / T(\bar{G}))=\overline{0}$. Since $\left.R \bar{G}\right)$ satisfies the conditions of Lemma 3.5, there exists $\bar{b} \in A(R \bar{G})$ with $A^{\omega}(R \bar{G})(1-\bar{b})=0$. Then $A^{\omega}(R G)(1-$ $b) \subseteq I\left(D_{\omega}(R G)\right)$ for a suitable element $b \in A(R G)$. If $c=1-t^{-1} \sum_{g \in D_{\omega}(R G)} g$ $\left(t=\left|D_{\omega}(R G)\right|\right)$ then $c \in A(R G)$ and the element $1-a=(1-b)(1-c)$ satisfies the equality $A^{\omega}(R G)(1-a)=0$.

Sufficiency is proved in Lemmas 3.2 and 3.10. The proof is complete.

References

[1] Bovdi, A. A., Group rings, UMK VO, KIEV, 1988.
[2] Nouazè, Y. and Gabriel, P., Indéaux primiers de l'algebra anveloppante d'une algebra de Lie nilpotente, J. Algebra, 6, (1967), 77-99.
[3] Hartley, B., The residual nilpotence of wreath products, Proc. London Math. Soc., 20 (3), (1970), 365-392.
[4] Király, B., The residual nilpotency of the augmentation ideal, Publ. Math. Debrecen, 45 1-2, (1994), 133-144.
[5] Malcev, A. I., Generalized nilpotent algebras and their adjoint, groups, Mat. Sbornik, 25 (67), (1949), 347-366 (Amer. Math. Soc. Transl. 69 (2), (1968), 1-121).
[6] Parmenter, M .M. and Sehgal, S. K., Idempotent elements and ideals in group ring and the intersection theorem, Arc. Math., 24, (1973), 586-600.
[7] Passi, I. B., Group ring and their augmentation ideals, Lecture notes in Math., 715, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
[8] Sehgal, S. K., Topics in group rings, Marcel Dekker, Inc., New York and Basel, 1978.
[9] Smith, P. F., On the intersection theorem, London Math. Soc., 21, (1970), 22-27.

Bertalan Király

Department of Mathematics and Informatics
Eszterházy Károly Teachers Training College
H-3301 Eger, Pf. 43., Hungary
E-mail: kiraly@gemini.ektf.hu

[^0]: Research supported by the Hungarian National Foundation for Scientific Research Grant, No T029132.

