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A sieve for all primes of the form x
2 + (x+)2

PANAYIOTIS G. TSANGARIS

Abstract: All composite numbers of the form x
2+(x+1)2 are determined in terms

of suitable (non-homogeneous) linear recurrence sequences of order 2 (Theorem 4.12). As

a consequence, all primes of the same form in a given interval can be determined by a

sieving procedure (Theorem 4.13).

Introduction

The object of this study are the prime and composite numbers of the
form x2 + (x + 1)2. Their study depends heavily on the following

Theorem 1.1. (Sierpinski) [3]) The number x2+(x+1)2 is composite
if and only if there exist natural numbers y, z such that:

(T ) T (x) = T (y) + T (z).

(Here T (x), T (y), T (z) denote triangular numbers.)

The description of all composite numbers of the form x2 + (x + 1)2

is reduced to the study of the integral solutions of the following family of
Diophantine equations of Fermat-Pell type:

(Fk) X2 − 2Y 2 = 2k2 − 1, k = 0, 1, 2, . . . .

Thus the study of equation (T ) is reduced to the study of the family of
equations (Fk) in terms of Gauss type transformations.

The detailed study of all solutions of (Fk) is carried on via Nagell’s
method of equivalence classes, thus avoiding any reference to fundamental
units.

We will consider the Diophantine equation

(1.1) ξ2 − dη2 = −1 (d 6= )

where d 6= (non-square) is a natural number. The sequence of non-negative
(that is ξ2n+1 ≥ 0 and η2n+1 ≥ 0) integral solutions of (1.1) is determined
by the following recursive formulae:

(1.2)
ξ2n+3 = 2x1ξ2n+1 − ξ2n−1, where ξ1 = ξ1 and ξ3 = ξ3

1 + 3dξ1η
2
1

η2n+3 = 2x1η2n+1 − η2n−1, where η1 = η1 and η3 = 3ξ2
1η1 + dη3

1 ,
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(n = 1, 2, . . .) where ξ1 + η1

√
d is the fundamental solution of (1.1) and

x1 + y1

√
d is the fundamental solution of

(P ) x2 − dy2 = 1 (d 6= ).

The following Theorems can be found in [5] (cf. also [4]).

Theorem 1.2. Consider the Diophantine equation

(F ) X2 − dY 2 = C. (d 6= , C > 0).

Let X∗

r
+Y ∗

r

√
d be the fundamental solution of a class Ar of integral solutions

of (F ) with X∗

r
> 0 Let xn + yn

√
d, where n = 0, 1, . . ., be the sequence of

all non-negative integral solutions of (P ). Let

Xn + Yn

√
d ≡ (X∗

r + Y ∗

r

√
d)(xn + yn

√
d) for all n = 0, 1, . . . ,

X
′

n + Y
′

n

√
d ≡ (X∗

r − Y ∗

r

√
d)(xn + yn

√
d) for all n = 1, 2, . . .

(for a typical r).
Then the following hold true:

(i) Yn+1 > Yn ≥ 0 for every n = 0, 1, . . ..
(ii) Let Y ∗

r
> 0. Then Y

′

n+1 ≥ Yn > Y
′

n
> 0 for every n = 1, 2, . . ..

(iii) Let Y ∗

r
= 0. Then Yn = Y

′

n
for every n = 0, 1, . . ..

(iv) Let Ar be genuine (= non-ambiguous). Then

Y
′

n+1 > Yn > Y
′

n > 0 for all n = 1, 2, . . . .

(v) Let Ar be ambiguous. Then for every m there exist n such that:

X
′

m
= Xn and Y

′

m
= Yn.

(vi) Let X∗

r + Y ∗

r

√
d, where r = 1, 2, . . . ,m, be the only integral solutions

of (F ) such that

0 < X∗

r
≤

√

(x1 + 1)C/2 and 0 ≤ Y ∗

r
≤ y1

√
C/

√

2(x1 + 1).

Then the set of all non-negative integral solutions of (F ) consists of all pairs
(Xn, Yn) together with all pairs (X

′

n
, Y

′

n
) for all respective genuine classes

Ar in addition to all pairs (Xn, Yn) for all respective ambiguous classes
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Br. Moreover, Xn, Yn,X
′

n and Y
′

n are determined by the following recursive
formulae:

(1.3)

Xn+1 = 2x1Xn − Xn−1 for n = 1, 2, . . .

with X0 = X∗

r , X1 = x1X
∗

r + dy1Y
∗

r and r = 1, 2, . . . ,m.

Yn+1 = 2x1Yn − Yn−1 for n = 1, 2, . . .

with Y0 = Y ∗

r
, Y1 = y1X

∗

r
+ x1Y

∗

r
and r = 1, 2, . . . ,m.

(1.4)

X
′

n+1 = 2x1X
′

n − X
′

n−1 for n = 1, 2, . . .

with X
′

0 = X∗

r
, X

′

1 = x1X
∗

r
− dy1Y

∗

r
and r = 1, 2, . . . ,m.

Y
′

n+1 = 2x1Y
′

n − Y
′

n−1 for n = 1, 2, . . .

with Y
′

0 = −Y ∗

r , Y
′

1 = y1X
∗

r − x1Y
∗

r and r = 1, 2, . . . ,m.

Theorem 1.3. Consider the Diophantine equation (F ), C 6= 0. Let
X∗

r + Y ∗

r

√
d be the fundamental solution of a class Ar of integral solutions

of (F ). Let x1 + y1

√
d be the fundamental solutions of (P ) and

Xn + Yn

√
d ≡ (X∗

r + Y ∗

r

√
d)(x1 + y1

√
d)n ≡ (X∗

r + Y ∗

r

√
d)(xn + yn

√
d),

X
′

n
+ Y

′

n

√
d ≡ (X∗

r
− Y ∗

r

√
d)(x1 + y1

√
d)n for all n = 0, 1, . . . .

Let Rn ≡ Y 2
n

+ k2 and R
′

n
≡ Y

′2

n
+ k2, where k is a fixed integer. Then the

numbers Rn and R
′

n
are determined by the following recursive formulae:

Rn+1 = 2x2Rn − Rn−1 − 2k2(x2 − 1) + 2y2
1C,

where R0 = Y ∗
2

r + k2 and R1 = (y1X
∗

r + x1Y
∗

r )2 + k2.

R
′

n+1 = 2x2R
′

n
− R

′

n−1 − 2k2(x2 − 1) + 2y2
1C,

where R
′

0 = Y ∗
2

r
+ k2 and R

′

1 = (y1X
∗

r
− x1Y

∗

r
)2 + k2.

2. Reduction of the Diophantine equation

x(x + 1) = y(y + 1) + z(z + 1) to a family of Fermat equations

Theorem 2.1 below aims at reducing the problem of solving the Dio-
phantine equation

(E) x(x + 1) = y(y + 1) + z(z + 1)
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to that of solving each one of the Diophantine equations (Fk).

Theorem 1.3. Consider the Diophantine equations (E) and (Fk). Then
the following hold true:
(i)1 Let (x, y, z) be an integral solution of (E) with y ≥ z. Let

X ≡ 2x + 1 and Y ≡ 2y − (k − 1), where k ≡ y − z.
Then X + Y

√
2 is an integral solution of (Fk).

(i)2 If y 6= 0,−1 and z 6= 0,−1 then |Y | 6= k ± 1.
(ii)1 Let X + Y

√
2 be an integral solution of (Fk). Let

(2.1) x = (X − 1)/2, y = (Y + k − 1)/2 and z = (Y − k − 1)/2.

Then (x, y, z) is an integral solution of (E).
(ii)2 If |Y | 6= k ± 1, then y 6= 0,−1 and z 6= 0,−1.

Proof. (i)1 By direct computation.
(i)2 Clear because |Y | = k ± 1 implies (y = 0,−1) or (z = 0,−1).
(ii)1 Let X + Y

√
2 be an integral solution of (Fk). Then it is easily

proved by parity considerations that the numbers (2.1) are integers. Also

X = 2x + 1, Y = 2y − (k − 1) and k = y − z,

whence (Fk) implies

(2x + 1)2 − 2(2y − (y − z − 1))2 = 2(y − z)2 − 1,

that is
x(x + 1) = y(y + 1) + z(z + 1).

(ii)2 Is proved in a way similar to the proof of (i)2, namely (y = 0,−1)
or (z = 0,−1) imply |Y | = k ± 1.

Note. The transformation leading from (E) to (Fk) emanate from Gauss

(Art. 216 in [1])

3. Determination of all integral solutions of the equation

X2 − 2Y 2 = 2k2 − 1, where k = 0, 1, . . .

Proposition 3.1 is crucial for the location of the fundamental solutions of
(Fk). Further, Theorem 3.4 characterizes the classes of solutions of (Fk), (as
regards genuiness or ambiguity) in terms of their representing fundamental
solutions. Special attention is given to the case of 2k2 − 1 being a square
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number (cf. Theorem 3.5). The set of all non-negative solutions of (Fk) is
determined recursively by Theorem 3.6 together with Corollary 3.7.

Proposition 3.1. Consider the Diophantine equation (Fk) where k is
a natural number. Let X∗+Y ∗

√
2 be a solution of (Fk). Then X∗+Y ∗

√
2 is

the fundamental solution of a class of integral solutions of (Fk) if and only
if the following (equivalent) inequalities are satisfied:

0 < |X∗| ≤ 2k − 1,(3.1)

0 ≤ Y ∗ ≤ k − 1.(3.2)

Proof. By using Theorem 109 in [2].

Note. The fundamental solution of (F0) is X∗ + Y ∗

√
2 = 1 +

√
2.

Proposition 3.2. Let k be a natural number. Then 2k−1+(k−1)
√

2
is the fundamental solution of a class of integral solutions of (Fk).

Proof. Evident by Proposition 3.1.

Proposition 3.3. Let A be a class of integral solutions of the Diophan-
tine equation (F ), C 6= 0. Let X + Y

√
d be a representative of A and

L = (−X2 − dY 2)/C and M = −2XY/C.

Then the following hold true:
(i) A is a genuine if and only if at least one of the numbers L, M is not

integral.
(ii) A is ambiguous if and only if both numbers L and M are integral.

Proof. Immediate by using Nagell’s criterion (p. 205, [2]).

Theorem 3.4. Let X∗ + Y ∗

√
2 be the fundamental solution of a class

A of integral solutions of (Fk), where k = 1, 2, . . .. Then the following hold
true:
(i) A is genuine if and only if Y ∗ > 0.
(ii) A is ambiguous if and only if Y ∗ = 0.

Proof. (i) (a) If A is genuine, then the previous Proposition 3.3 easily
implies Y ∗ > 0.

(b) Let now Y ∗ > 0 and assume that A is ambiguous. Then, by the
same Proposition, the numbers

L = (−X∗
2 − 2Y ∗

2

)/(2k2 − 1) and M = −2X∗Y ∗/(2k2 − 1)
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are integers. In particular, because L is an integer it follows that

(2k2 − 1) | X∗
2

+ 2Y ∗
2

= 4Y ∗
2

+ 2k2 − 1.

Thus
(2k2 − 1) | 4Y ∗

2

.

Also, Y ∗ ≤
√

(2k2 − 1)/2, i.e.

4Y ∗
2

< 2(2k2 − 1).

Hence
2k2 − 1 < 4Y ∗

2

= h(2k2 − 1) < 2(2k2 − 1),

where h is a natural number. Hence 1 < h < 2, which is impossible. Hence
A is genuine.

(ii) Immediate by (i).

Note: (F0) has only one class of integral solutions, which is ambiguous.

Theorem 3.5. Let k be a natural number. Then the following are
equivalent:
(i) 2k2 − 1 is a square number.
(ii) The totality of ambiguous classes of integral solutions of (Fk) consists

of a single class.
In consequence, if 2k2 − 1 is not a square number, then every class of

integral solutions of (Fk) is genuine.

Proof. By using Proposition 3.1 and Theorem 3.4.

Theorem 3.6. Consider the Diophantine equation (Fk), where k is a
natural number. Let xn + yn

√
2, where n = 0, 1, 2, . . ., be the sequence of

all non-negative integral solutions of

x2 − 2y2 = 1.

Let X∗

r + Y ∗

r

√
2, (where r = 1, 2, . . . ,m), be the only integral solutions of

(Fk) such that:

0 < X∗

r
≤ 2k − 1 and 0 ≤ Y ∗

r
≤ k − 1.

Let

Xn + Yn

√
2 ≡ (X∗

r
+ Y ∗

r

√
2)(xn + yn

√
2) for all n = 0, 1, . . . ,

X
′

n + Y
′

n

√
2 ≡ (X∗

r − Y ∗

r

√
2)(xn + yn

√
2) for all n = 1, 2, . . . ,
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(for a typical r). Then the following hold true:
(i) Let Y ∗

r > 0 and k ≥ 2. (Case of genuine classes of integral solutions of
(Fk)). Then the pairs (Xn, Yn) and (X

′

n, Y
′

n) are determined by (1.3)
and (1.4) (for x1 = 3, y1 = 2 and d = 2).

(ii) Let Y ∗

r = 0. (Case of ambiguous classes). Then the pairs (Xn, Yn) are
determined by (1.3).
Moreover, in case (i) all pairs (Xn, Yn) together with all pairs (X

′

n, Y
′

n)
constitute the set of all non-negative integral solutions of (Fk) which belong
to the class with typical fundamental solution X∗

r +Y ∗

r

√
2. Also, in case (ii)

all pairs (Xn, Yn) constitute the set of all non-negative integral solutions of
(Fk) which belong to the class with typical fundamental solution X∗

r +0
√

2.

Proof. By using Theorems 3.4, 3.5, 1.2(vi) and Proposition 3.1.

Corollary 3.7. The sequence of all positive integral solutions (Xn, Yn)
of (F0) is determined by (1.2) (for Xn ≡ ξ2n+1, Yn ≡ η2n+1, ξ1 = 1, ξ3 =
7, η1 = 1 and η3 = 5).

4. Determination of all prime and composite numbers

of the form x2 + (x + 1)2.

In Theorem 4.2 it is shown that every positive (integral) solution of (T )
leads to a non-negative solution of a certain (Fk) and vice-versa. Theorems
4.6, 4.7 together with Corollary 4.8 determine all (Fk) whose non-negative
solutions (taken together) lead to all positive solutions of (T ).

In Theorem 1.1 a primality criterion is given for numbers of the form
N(x) = x2+(x+1)2. Composite numbers of the form N(x) are characterized
(in terms of a suitable solution of (Fk)) in Theorem 4.9. The recursive deter-
mination of all composite numbers of the form N(x) is given by Theorems
4.10, 4.11 and 4.12. This leads to our final Theorem 4.13, which constitutes
an algorithm (sieve) for the determination of all primes of the form N(x).

Lemma 4.1. Let X +Y
√

2 be a non-negative integral solution of (Fk).
Let

x ≡ (X − 1)/2, y ≡ (Y + k − 1)/2 and z ≡ (Y − k − 1)/2.

Then x, y, z are natural numbers if and only if Y > k + 1.

Proof. Easy and so omitted.

Theorem 4.2. Consider the Diophantine equations (Fk) and (T ). Then
the following hold true:
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(i) Let X + Y
√

2 be a (non-negative) integral solution of (Fk), with Y >
k + 1. Let

x ≡ (X − 1)/2, y ≡ (Y + k − 1)/2 and z ≡ (Y − k − 1)/2.

Then (x, y, z) is a triad of positive integral solutions of (T ).
(ii) Let (x, y, z) be a triad of positive integral solutions of (T ) with y ≥ z.

Let
k ≡ y − z, X ≡ 2x + 1 and Y ≡ 2y − (k − 1).

Then X +Y
√

2 is a (non-negative) integral solution of (Fk) with Y > k +1.

Proof. By using Theorem 2.1, Lemma 4.1 and the fact that the Dio-
phantine equation (T ) is equivalent to the equation (E).

Proposition 4.3. Let k be a natural number. Let X + Y
√

2 be a
non-negative integral solution of (Fk). Then the following hold true:
(i) Let 0 ≤ Y ≤ k− 1. Then X + Y

√
2 is a fundamental solution of a class

of integral solutions of (Fk).
(ii) Y 6= k.
(iii) Let Y = k+1. Then X = 2k+1. Moreover, X +Y

√
2 = (2k+1)+(k+

1)
√

2 is obtained from the fundamental solution (X∗ = 2k − 1, Y ∗ =
k − 1) as follows:

X + Y
√

2 = (2k − 1 + (k − 1)
√

2)(3 + 2
√

2) for k = 1 and

X + Y
√

2 = (2k − 1 − (k − 1)
√

2)(3 + 2
√

2) for k > 1.

Proof. By direct computations.

Proposition 4.4. Consider the Diophantine equation (Fk), where k >
1. Let X∗ + Y ∗

√
2 be the fundamental solution of a class A of (Fk) with

X∗ > 0. Let 3 + 2
√

2 be the fundamental solution of the equation

x2 − 2y2 = 1.

Let

Zn ≡ Xn + Yn

√
2 ≡ (X∗ + Y ∗

√
2)(3 + 2

√
2)n for all n = 0, 1, . . . , and

Z
′

n ≡ X
′

n + Y
′

n

√
2 ≡ (X∗ − Y ∗

√
2)(3 + 2

√
2)n for all n = 1, 2, . . . .

Then the following hold true:
(i) Let A be genuine. Then the only (non-negative) integral solutions X +

Y
√

2 of (Fk) which belong to A or to A and satisfy the inequality
Y > k + 1 are the following:
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(a) Zn ∈ A and Z
′

n ∈ A for all n ≥ 1 if and only if Y ∗ < k − 1.

(b) Zn ∈ A for all n ≥ 1 and Z
′

n ∈ A for all n ≥ 2 if and only if
Y ∗ = k − 1.

(ii) Let A be ambiguous, (whence Y ∗ = 0, while 2k2−1 is a square number).
Then the only (non-negative) integral solutions X + Y

√
2 of (Fk) which

belong to A and satisfy the inequality Y > k + 1 are all Zn for every n ≥ 1.

Proof. (i) By Theorem 1.2 (iv) we have:

Y
′

n+1 > Yn > Y
′

n > 0 for all n ≥ 1, where Y
′

1 = 2X∗ − 3Y ∗.

(a) Hence, we have Y
′

1 = 2X∗ − 3Y ∗ > k + 1 if and only if (2X∗)2 >
(3Y ∗ + k + 1)2, that is if and only if (Y ∗ − (k − 1))(Y ∗ + 7k + 5) < 0, and
so if and only if Y ∗ < k − 1.

Consequently, by Proposition 4.3, the only (non-negative) integral so-
lution X + Y

√
2 of (Fk), which belong to A or A and satisfy the inequality

Y > k+1 are all Zn ∈ A and all Z
′

n ∈ A, n = 1, 2, . . ., for which Y ∗ < k−1.

(b) Hence, Y
′

1 = 2X∗ − 3Y ∗ = k + 1 if and only if Y ∗ = k − 1.

Thus, the only (non-negative) integral solutions X+Y
√

2 of (Fk), which
belong to A or A and satisfy the inequality Y > k + 1 are all Zn ∈ A for all
n ≥ 1 and all Z

′

n
∈ A for all n ≥ 2 if and only if Y ∗ = k − 1.

(ii) By Theorem 1.2 (i) the following hold true: Yn+1 > Yn ≥ 0 for all
n = 0, 1, . . ., while Y ∗ = Y0 = 0 and Y1 = 2

√
2k2 − 1.

Also, (by direct computations) we show that Y1 > k +1. Consequently,
the only (non-negative) integral solutions X + Y

√
2 of (Fk), which belong

to A and satisfy the inequality Y > k + 1 are all Zn for every n ≥ 1.

Proposition 4.5. Consider the Diophantine equation (F1). Let

Xn + Yn

√
2 ≡ (1 + 0

√
2)(3 + 2

√
2)n for all n = 0, 1, . . . .

Then the only (non-negative) integral solutions X +Y
√

2 of (F1), such that
Y > 2, are all Xn + Yn

√
2 for every n ≥ 2.

Proof. By using Theorem 1.2 (i).

Theorem 4.6. Let k be a natural number. Consider the Diophantine
equation (Fk). Let Z∗

r ≡ X∗

r + Y ∗

r

√
2, (where r = 1, 2, . . . ,m) be the only

integral solutions of (Fk) such that:

X∗

r > 0 and 0 ≤ Y ∗

r ≤ k − 1.
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Let Ar be the corresponding classes of integral solutions of (Fk) with fun-
damental solutions Z∗

r . Let

Zn ≡ Xn + Yn

√
2 ≡ (X∗

r
+ Y ∗

r

√
2)(3 + 2

√
2)n for all n = 0, 1, . . . ,

Z
′

n ≡ X
′

n + Y
′

n

√
2 ≡ (X∗

r − Y ∗

r

√
2)(3 + 2

√
2)n for all n = 1, 2, . . . .

for an (arbitrary) typical r. Then the only (non-negative) integral solutions
X + Y

√
2 of (Fk), which satisfy the inequality Y > k + 1, are the following:

(i) All Zn ∈ Ar and all Z
′

n ∈ Ar for every n ≥ 1 if and only if 0 < Y ∗

r <
k − 1.

(ii) All Zn ∈ Ar for every n ≥ 1 and all Z
′

n ∈ Ar for every n ≥ 2 if and
only if 0 < Y ∗ = k − 1.

(iii) All Zn ∈ Ar for every n ≥ 1 if and only if Y ∗

r
= 0 for k ≥ 2.

(iv) All Zn ∈ Ar for every n ≥ 2 if and only if Y ∗

r
= 0 for k = 1.

Proof. By using Propositions 4.4, 4.5 and Theorem 3.6.

Theorem 4.7. Let k be a natural number. Consider the Diophantine
equation (Fk). Let X∗

r + Y ∗

r

√
2, (where r = 1, 2, . . . ,m) be the only integral

solutions of (Fk) such that:

X∗

r > 0 and 0 ≤ Y ∗

r ≤ k − 1.

Let

Xn + Yn

√
2 ≡ (X∗

r + Y ∗

r

√
2)(3 + 2

√
2)n for all n = 0, 1, . . . and r = 1, 2, . . . ,m,

X
′

n
+ Y

′

n

√
2 ≡ (X∗

r
− Y ∗

r

√
2)(3 + 2

√
2)n for all n = 1, 2, . . . and r = 1, 2, . . . ,m.

Then the only (non-negative) integral solutions X + Y
√

2 of (Fk) such that
Y > k + 1 are the following:
(i) All Xn + Yn

√
2 and all X

′

n
+ Y

′

n

√
2 (with n ≥ 1) for every Y ∗

r
with

0 < Y ∗

r
< k − 1, when k ≥ 2.

(ii) All Xn + Yn

√
2 (with n ≥ 1) and all X

′

n
+ Y

′

n

√
2 (with n ≥ 2) for

0 < Y ∗

r = k − 1, when k ≥ 2.
(iii) All Xn + Yn

√
2 (with n ≥ 1) for Y ∗

r = 0, when k ≥ 2.
(iv) All Xn + Yn

√
2 (with n ≥ 2) for Y ∗

r = 0, when k = 1.

Proof. By using Theorems 3.6 and 4.6.

By Corollary 3.7 it follows that

Corollary 4.8. The only non-negative integral solutions X + Y
√

2 of
(F0) such that Y > 1 are:

Xn + Yn

√
2 for every n = 1, 2, . . . .
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Theorem 4.9. Consider the Diophantine equation (Fk), k = 0, 1, . . ..
Let X +Y

√
2 be a non-negative integral solution of (Fk). Let x ≡ (X−1)/2

and N(x) ≡ x2 + (x + 1)2. Then N(x) = Y 2 + k2. Moreover, the following
are equivalent:
(i) N(x) is composite.
(ii) Y > k + 1.

Proof. The equality N(x) = Y 2 + k2 follows by direct computations,
while the equivalence of (i) and (ii) follows from Theorems 4.2 and 1.1.

Theorem 4.10. Let N(x) ≡ x2 + (x + 1)2. Consider the Diophantine
equation (Fk), k = 0, 1, . . .. Let X∗

r + Y ∗

r

√
2, (where r = 1, 2, . . . ,m) be the

only non-negative integral solutions of (Fk) such that:

0 ≤ Y ∗

r
≤ k − 1 for k ≥ 1,

while, for k = 0 we have: X∗

r
= Y ∗

r
= 1 for all r = 1, 2, . . . ,m. Let

Xn + Yn

√
2 ≡ (X∗

r + Y ∗

r

√
2)(3 + 2

√
2)n,

X
′

n + Y
′

n

√
2 ≡ (X∗

r − Y ∗

r

√
2)(3 + 2

√
2)n for all n = 0, 1, . . . ,

(for a typical r). Let x̃n ≡ (Xn − 1)/2 and x̃
′

n ≡ (X
′

n − 1)/2 for every
n = 0, 1, . . .. Let Rn, R

′

n, where n = 0, 1, . . ., be the sequences defined by
the recursive formmulae:

Rn+1 = 34Rn − Rn−1 − 8(2k2 + 1) for all n = 1, 2, . . . ,

where R0 = Y ∗
2

r + k2, R1 = (2X∗

r + 3Y ∗

r )2 + k2 (for a typical r).

R
′

n+1 = 34R
′

n − R
′

n−1 − 8(2k2 + 1) for all n = 1, 2, . . . ,

where R
′

0 = Y ∗
2

r
+ k2, R

′

1 = (2X∗

r
− 3Y ∗

r
)2 + k2 (for a typical r).

Then the following hold true:
(i) Let k = 0. The for every integer n there exists an integer m such that:

Rn = R
′

m
= N(x̃n) for every n ≥ 0.

Moreover, the numbers R1, R2, . . ., are all composite.
(ii) Let k = 1, whence X∗

r = 1, Y ∗

r = 0 for every r = 1, 2, . . . ,m. Then

Rn = R
′

n = N(x̃n) for every n ≥ 0.
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Moreover, the numbers R2, R3, . . ., are all composite.
(iii) Let k ≥ 2 and Y ∗

r
= 0 Then

Rn = R
′

n
= N(x̃n) for every n ≥ 0.

Moreover, the numbers R1, R2, . . ., are all composite.
(iv) Let k ≥ 2 and Y ∗

r = k − 1. Then

Rn = N(x̃n) and R
′

n
= N(x̃

′

n
) for every n ≥ 0.

Moreover, the numbers R1, R2, . . ., and also the numbers R
′

2, R
′

3, . . .,
are all composite.

(v) Let k ≥ 2 and 0 < Y ∗

r < k − 1. Then

Rn = N(x̃n) and R
′

n
= N(x̃

′

n
) for every n ≥ 0.

Moreover, the numbers R1, R2, . . ., and also the numbers R
′

1, R
′

2, . . .,
are all composite.

Note: For the cases (iv) and (v) we have:

Rm 6= R
′

n for any m,n.

Proof. (i) The unique class of integral solutions of (F0) is ambiguous.
By Theorem 2.4 in [5] and Corollary 4.8 we have:

Xn + Yn

√
2 ≡ ξ2n+1 + η2n+1

√
2 = (1 +

√
2)(xn + yn

√
2) = (1 +

√
2)2n+1

for all n = 0, 1, . . ..
Hence, by the definition of ambiguous class and Theorem 1.3, for every

integer n there exists an integer m such that:

Rn = R
′

m
= N(x̃n), where x̃n = (ξ2n+1 − 1)/2.

According to Corollary 4.8, the only (non-negative) integral solutions X +
Y
√

2 of (F0) such that Y > 1 are all Yn+1 = η2n+3 for every n ≥ 0. Hence
by Theorem 4.9, the numbers R1, R2, . . . are all composite.

(ii) Obviously X∗

r
= 1, Y ∗

r
= 0 for every r = 1, 2, . . . ,m because k = 1.

Hence, Rn = R
′

n
for all n = 0, 1, . . .. Now, Theorem 1.3 implies

Rn = N(x̃n) = Y 2
n + k2 = Y 2

n + 1 for all n ≥ 0.
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Also, by Theorem 4.7 (iv), we deduce that Xn+1+Yn+1

√
2, where n ≥ 1, are

the only (non-negative) integral solutions of (F1) such that Yn+1 > k+1 = 2.
Hence, according to Theorem 4.9, the numbers R2, R3, . . . are all composite.

(iii) We have Rn = R
′

n for every n = 0, 1, . . . because Y ∗

r = 0. By
Theorem 4.7 (iii) the numbers Xn+1 + Yn+1

√
2, where n ≥ 0, are the only

(non-negative) integral solutions of (Fk) such that Yn+1 > k + 1. This com-
pletes the proof by invoking Theorems 1.3 and 4.9.
(iv) By Theorem 4.7 (ii) the numbers Xn+1 +Yn+1

√
2 with n ≥ 0, together

with the numbers X
′

n+1 + Y
′

n+1

√
2, with n ≥ 1, are the only (non-

negative) integral solutions of (Fk) such that Yn+1 > k +1 and Y
′

n+1 >
k + 1. Thus the proof is completed by Theorem 1.3 and 4.9.

(v) By Theorem 4.7 (i), the numbers Xn+1 + Yn+1

√
2 together with the

numbers X
′

n+1 + Y
′

n+1

√
2, where n ≥ 0, are the only (non-negative)

integral solutions of (Fk) such that Yn+1 > k + 1 and Y
′

n+1 > k + 1.
This finishes the proof of the whole Theorem, again in view of Theorems
1.3 and 4.9.

Theorem 4.11. Consider the Diophantine equation (Fk), k = 0, 1, . . ..
Let X∗

r + Y ∗

r

√
2, (where r = 1, 2, . . . ,m) be the only non-negative integral

solutions of (Fk) such that:

0 ≤ Y ∗

r
≤ k − 1 for k ≥ 1,

While, for k = 0 we have: X∗

r
= Y ∗

r
= 1 for all r = 1, 2, . . . ,m. Let Rn, R

′

n

be the sequences, defined by the recursive formulae:

Rn+1 = 34Rn − Rn−1 − 8(2k2 + 1) for all n = 1, 2, . . . ,

where R0 = Y ∗
2

r + k2, R1 = (2X∗

r + 3Y ∗

r )2 + k2 (for a typical r).

R
′

n+1 = 34R
′

n − R
′

n−1 − 8(2k2 + 1) for all n = 1, 2, . . . ,

where R
′

0 = Y ∗
2

r + k2, R
′

1 = (2X∗

r − 3Y ∗

r )2 + k2 (for a typical r).
Suppose that the number N(x) ≡ x2 + (x + 1)2 is composite. Then

N(x) is equal to some of the composite numbers Rn or R
′

n
, for a suitable

index, as stated in cases (i)–(v) of Theorem 4.10 (for some value of k).

Proof. Since N(x) is composite it follows from Theorem 1.1 that there
exist natural numbers y, z such that

T (x) = T (y) + T (z).
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Let y ≥ z. Let also k ≡ y − z, X ≡ 2x + 1 and Y ≡ 2y − (k − 1). Then,
according to Theorem 4.2 (ii), X+Y

√
2 is a (non-negative) integral solution

of (Fk), with Y > k + 1. Hence, X + Y
√

2 is a solution of type (i) or (ii)
or (iii) or (iv) of Theorem 4.7 or it is a solution X + Y

√
2 of (F0) with

Y > 1 (see Corollary 4.8). Also, N(x) = Y 2 + k2. Hence, by Theorem 1.3
N(x) is equal to some Rn or some R

′

n
. Finally, the appropriate index n for

which N(x) = Rn or N(x) = R
′

n
is obtained by applying Theorem 4.6 to

the respective case as in (i)-(v) of Theorem 4.10. This ends the proof of the
Theorem.

Theorem 4.12. (Determination of all composites of the form N(x) ≡
x2 + (x + 1)2) Consider the Diophantine equations

(Fk) X2 − 2Y 2 = 2k2 − 1, where k = 0, 1, . . . .

Let X∗

r + Y ∗

r

√
2, (where r = 1, 2, . . . ,m), be the only non-negative integral

solutions of (Fk) such that:

0 ≤ Y ∗

r
≤ k − 1 for k ≥ 1,

While, for k = 0 we have: X∗

r
= Y ∗

r
= 1 for all r = 1, 2, . . . ,m. Let Rn, R

′

n

be the sequences defined by the recursive formulae:

Rn+1 = 34Rn − Rn−1 − 8(2k2 + 1) for all n = 1, 2, . . . ,

where R0 = Y ∗
2

r
+ k2, R1 = (2X∗

r
+ 3Y ∗

r
)2 + k2 (for a typical r).

R
′

n+1 = 34R
′

n − R
′

n−1 − 8(2k2 + 1) for all n = 1, 2, . . . ,

where R
′

0 = Y ∗
2

r + k2, R
′

1 = (2X∗

r − 3Y ∗

r )2 + k2 (for a typical r).
Then, the only composite numbers of the form N(x) ≡ x2 + (x + 1)2

are the following:
(i) R1, R2, . . . (for k = 0).
(ii) R2, R3, . . . (for k = 1 and Y ∗

r = 0).
(iii) R1, R2, . . . (for k ≥ 2 and Y ∗

r
= 0).

(iv) R1, R2, . . . together with R
′

2, R
′

3, . . . (for k ≥ 2 and Y ∗

r
= k − 1).

(v) R1, R2, . . . together with R
′

1, R
′

2, . . . (for k ≥ 2 and for all Y ∗

r
such that

0 < Y ∗

r
< k − 1).

Proof. By using Theorems 4.10 and 4.11.

Theorem 4.13. (Sieve-algorithm for the determination of all primes of
the form N(x) ≡ x2 + (x + 1)2 in an Interval [5,M], where M is a (positive)
integer)
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Step 1: Determine all numbers N(x) for x = 1, 2, . . . ,
[

(−1 +
√

2M − 1)/2
]

.

Step 2: Determine all Rn and R
′

n
, as in Theorem 4.12 obtained from the

Diophantine equations

X2 − 2Y 2 = 2k2 − 1, where k = 0, 1, . . . ,
[√

M
]

.

Step 3: Delete from the table of the numbers in Step 1, all numbers of Step
2. The remaining numbers are the only prime numbers of the form N(x) in
the interval [5,M].

Proof. By using Theorem 4.12.
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