On a conjecture about the equation

$$
A^{m x}+A^{m y}=A^{m z}
$$

ALEKSANDER GRYTCZUK

Abstract. Let A be a given integral 2×2 matrix. We prove that the equation

$$
A^{m x}+A^{m y}=A^{m z}
$$

has a solution in positive integers x, y, z and $m>2$ if and only if the matrix A is a nilpotent matrix or the matrix A has an eigenvalue $\alpha=\frac{1+i \sqrt{3}}{2}$.

1. Introduction

First we note that (\star) is equivalent to the following Fermat's equation

$$
\begin{equation*}
X^{m}+Y^{m}=Z^{m}, \quad m>2 \tag{1}
\end{equation*}
$$

where $X=A^{x}, Y=A^{y}$ and $Z=A^{z}$.
It has been recently proved by A. Wiles [12], R. Taylor and A. Wiles [11] that (1) has no solution in nonzero integers X, Y, Z if $m>2$. But, in contrast to the classical case, the Fermat's equation (1) has infinitely many solutions in 2×2 integral matrices X, Y, Z for $m=4$. This fact was discovered by R. Z. Domiaty [2] in 1966. Namely, he proved that, if

$$
X=\left(\begin{array}{ll}
0 & 1 \\
a & 0
\end{array}\right), \quad Y=\left(\begin{array}{ll}
0 & 1 \\
b & 0
\end{array}\right) \quad \text { and } \quad Z=\left(\begin{array}{ll}
0 & 1 \\
c & 0
\end{array}\right)
$$

where a, b, c are integer solutions of the Pythagorean equation $a^{2}+b^{2}=c^{2}$, then

$$
X^{4}+Y^{4}=Z^{4}
$$

Other results connected with Fermat's equation in the set of matrices are given in monograph [10] by P. Ribenboim. In these investigations it is an important problem to give a necessary and sufficient condition for the solvability of (1) in the set of matrices. Such type results were proved recently by A. Khazanov [7], when the matrices X, Y, Z belong to $S L_{2}(Z)$, $S L_{3}(Z)$ or $G L_{3}(Z)$. In particular, he proved that there are solutions of (1) in $X, Y, Z \in S L_{2}(Z)$ if and only if m is not a multiple of 3 or 4 . We proved
in [4] a necessary condition for the solvability of (1) in 2×2 integral matrices X, Y, Z having a determinant form. More precisely, we proved (see [4], Thm. 2) that the equation (\star) does not hold in positive integers x, y, z and $m \geq 2$, if $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$. Another proof of this cited result was given by D. Frejman [3].
M. H. LE and CH. Li [8] proved the following generalization of our result: Let $A=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ be a given integral matrix such that $r=\operatorname{Tr} A=$ $a+d>0$ and $\operatorname{det} A=a d-b c<0$, then (\star) does not hold.

In their paper they posed the following
Conjecture. Let A be an integral 2×2 matrix. The equation (\star) has a solution in natural numbers x, y, z and $m>2$ if and only if the matrix A is a nilpotent matrix.

A corrected version of this Conjecture was proved by the same authors in [9].

In the present paper we prove the following
Theorem. The equation (\star) has a solution in positive integers x, y, z and $m>2$ if and only if the matrix A is a nilpotent matrix or the matrix A has an eigenvalue $\alpha=\frac{1+i \sqrt{3}}{2}$.

We note that the condition matrix A has an eigenvalue $\alpha=\frac{1+i \sqrt{3}}{2}$ is equivalent to $\operatorname{Tr} A=\operatorname{det} A=1$ (cf. [9]). On the other hand it is easy to see that the condition $\operatorname{det} A=1$ implies that the matrix A cannot be a nilpotent matrix, thus the original Conjecture of $\mathrm{M} . \mathrm{H} . \mathrm{LE}$ and $\mathrm{CH} . \mathrm{Li}$ is not true.

We also note that X . Chen [1] proved that if A_{n} is the companion matrix for the polynomial $f(x)=x^{n}-x^{n-1}-\ldots-x-1$ then the equation (\star) with $A=A_{n}$ has no solution in positive integers x, y, z and $m \geq 2$ for any fixed integer $n \geq 2$.

Futher result of this type is contained by [5]. Namely, we proved the following:

Let $A=\left(a_{i j}\right)_{n \times n}$ be a matrix with at least one real eigenvalue $\alpha>\sqrt{2}$. If the equation

$$
\begin{equation*}
A^{r}+A^{s}=A^{t} \tag{2}
\end{equation*}
$$

has a solution in positive integers r, s and t then $\max \{r-t, s-t\}=-1$.
From this cited result one can obtain the corresponding results of the papers [1], [3], [4], [8] as particular cases.

2. Basic Lemmas

Lemma 1. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be an integral matrix such that $\operatorname{Tr} A \neq 0$ or $\operatorname{det} A \neq 0$ and let

$$
r=a+d=\operatorname{Tr} A, \quad s=-\operatorname{det} A, \quad A_{0}=r, \quad A_{1}=r A_{0}+s
$$

and

$$
A_{n}=r A_{n-1}+s A_{n-2} \quad \text { if } \quad n \geq 2
$$

Then for every natural number $n \geq 2$, we have

$$
A^{n}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{n}=\left(\begin{array}{cc}
a A_{n-2}+s A_{n-3} & b A_{n-2} \\
c A_{n-2} & d A_{n-2}+s A_{n-3}
\end{array}\right)
$$

where we put $A_{-1}=1$.
The proof of this Lemma immediately follows from Theorem 1 of [6].
Lemma 2. Let A be an integral matrix satisfying the assumptions of Lemma 1 and let A_{n} be the recurrence sequence associated with the matrix A as in Lemma 1. Moreover, let Δ_{n} be the discriminant of the characteristic polynomial of A^{n} if $n \geq 2$ and let $\Delta_{1}=\Delta=r^{2}+4 s$. Then for every natural number $n \geq 2$ we have $\Delta_{n}=\Delta A_{n-2}^{2}$.

The proof of Lemma 2 is given in [4].
Lemma 3. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be an integral matrix and let $f(x)=$ $x^{2}-(\operatorname{Tr} A) x+\operatorname{det} A$ be the characteristic polynomial of A with the roots $\alpha, \beta \neq \frac{1+i \sqrt{3}}{2}$ and the discriminant $\Delta=r^{2}+4 s$, where $r=a+d=\operatorname{Tr} A$ and $s=-\operatorname{det} A$. If $s \neq 0$ and $\Delta \neq 0$ then the equation (\star) has no solutions in natural numbers x, y, z and $m>2$.

Proof. If $x=z$ and (\star) is satisfied then $A^{m y}=0$, thus $\operatorname{det} A=0$, which contradicts to our assumption. Similarly we obtain a contradiction when $y=z$. If $x=y$ then by (\star) it follows that $2 A^{m x}=A^{m z}$, hence $4(\operatorname{det} A)^{m x}=(\operatorname{det} A)^{m z}$ and so we obtain a contradiction, because the last equality is impossible in natural numbers x, y, z and $m>2$ with integer $\operatorname{det} A \neq 0$.

Further on we can assume that if (\star) is satisfied, then x, y and z are distinct natural numbers. Since $s=-\operatorname{det} A \neq 0$, therefore there exists the inverse matrix A^{-1} and from (\star) we obtain

$$
\begin{array}{lll}
A^{m(x-z)}+A^{m(y-z)}=I, & \text { if } & \min \{x, y, z\}=z \\
A^{m(x-y)}+I=A^{m(z-y)}, & \text { if } \quad \min \{x, y, z\}=y \\
I+A^{m(y-x)}=A^{m(z-x)}, & \text { if } & \min \{x, y, z\}=x \tag{5}
\end{array}
$$

where $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
Let $\left\{A_{n}\right\}$ be the recurrence sequence associated with the matrix A. Then applying Lemma 1 to (3) we obtain

$$
\begin{aligned}
& a\left(A_{m(x-z)-2}+A_{m(y-z)-2}\right)-(\operatorname{det} A)\left(A_{m(x-z)-3}+A_{m(y-z)-3}\right)=1 \\
& b\left(A_{m(x-z)-2}+A_{m(y-z)-2}\right)=0 \\
& c\left(A_{m(x-z)-2}+A_{m(y-z)-2}\right)=0 \\
& d\left(A_{m(x-z)-2}+A_{m(y-z)-2}\right)-(\operatorname{det} A)\left(A_{m(x-z)-3}+A_{m(y-z)-3}\right)=1
\end{aligned}
$$

From Lemma 1, (4) and (5) we obtain similar formulae to (6).
Suppose that $b \neq 0$ or $c \neq 0$. Then from (6) we get $\operatorname{det} A= \pm 1$. On the other hand since $\Delta \neq 0$, therefore from Lemma 2 we can deduce that

$$
\begin{equation*}
A_{n-2}=\frac{1}{\sqrt{\Delta}}\left(\alpha^{n}-\beta^{n}\right) \tag{7}
\end{equation*}
$$

Substituting (7) to (6) we obtain

$$
\begin{equation*}
\alpha^{m(x-z)}+\alpha^{m(y-z)}=\beta^{m(x-z)}+\beta^{m(y-z)}=1 . \tag{8}
\end{equation*}
$$

By (4) and (5) we similarly have

$$
\begin{equation*}
\alpha^{m(z-y)}-\alpha^{m(x-y)}=\beta^{m(z-y)}-\beta^{m(x-y)}=1 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha^{m(z-x)}-\alpha^{m(y-x)}=\beta^{m(z-x)}-\beta^{m(y-x)}=1 \tag{10}
\end{equation*}
$$

From (8)-(10) it follows that in all cases

$$
\begin{equation*}
\alpha^{m x}+\alpha^{m y}=\alpha^{m z} \quad \text { and } \quad \beta^{m x}+\beta^{m y}=\beta^{m z} \tag{11}
\end{equation*}
$$

for natural numbers x, y, z and $m>2$, which can be written in the forms

$$
\begin{equation*}
\alpha^{m(x-z)}+\alpha^{m(y-z)}=1 \quad \text { and } \quad \beta^{m(x-z)}+\beta^{m(y-z)}=1 \tag{12}
\end{equation*}
$$

Since $\Delta \neq 0$, thus we consider two cases: $\Delta>0$ or $\Delta<0$. Let us suppose that $\Delta>0$. Since $\Delta=r^{2}+4 s$ and $s=-\operatorname{det} A= \pm 1$, so we have $\Delta \geq 5$. If $r>0$ then we obtain

$$
\begin{equation*}
\alpha=\frac{r+\sqrt{\Delta}}{2} \geq \frac{1+\sqrt{5}}{2}>\sqrt{2}>1 \tag{13}
\end{equation*}
$$

From (13) and (12) it follows that both exponents $m(x-z)$ and $m(y-z)$ must be negative. On the other hand fom (13) we have $\alpha^{-2}<\frac{1}{2}$ and by (12) it follows that it cannot happen that both exponents $m(x-z)$ and $m(y-z)$ are ≤-2. Therefore one of them must be equal to -1 and we obtain $m(x-z)=-1$ or $m(y-z)=-1$. But this is impossible, because $m>2$ and x, y, z are positive integers.

After this we consider the case $r \leq 0$. Let us suppose that $r<0$ and put $r=-r^{\prime}$, where $r^{\prime}>0$. Then we have

$$
\beta=\frac{r-\sqrt{\Delta}}{2}=-\frac{r^{\prime}+\sqrt{\Delta}}{2}=-\beta
$$

and

$$
\beta=r^{\prime}+\sqrt{\frac{\Delta}{2}} \geq \frac{1+\sqrt{5}}{2}>\sqrt{2}>1 .
$$

Substituting $\beta=-\beta$ to the second equation of (12) we obtain

$$
\begin{equation*}
(-1)^{m(x-z)}\left(\beta^{\prime}\right)^{m(x-z)}+(-1)^{m(y-z)}\left(\beta^{\prime}\right)^{m(y-z)}=1 . \tag{14}
\end{equation*}
$$

If m is even then as in our previous case we obtain a contradiction. So, we can assume that m is an odd natural number greater than 2 . If $x-z$ and $y-z$ are odd then it is easy to see that (14) does not hold. Therefore one of them must be even and from (14) we obtain

$$
\begin{equation*}
\left(\beta^{\prime}\right)^{m(x-z)}-\left(\beta^{\prime}\right)^{m(y-z)}=1, \quad \text { if } \quad x-z \quad \text { is even and } \quad y-z \text { is odd } \tag{15}
\end{equation*}
$$ and

$$
\begin{equation*}
\left(\beta^{\prime}\right)^{m(y-z)}-\left(\beta^{\prime}\right)^{m(x-z)}=1, \quad \text { if } y-z \text { is even and } x-z \text { is odd. } \tag{16}
\end{equation*}
$$

Because of the symmetry, it is sufficient to consider one of these equations. Let us suppose that (15) is satisfied. If $x-z>0$ and $y-z>0$ then, by(15), it follows that $x-z>y-z$. On the other hand, (15) can be represented in the form

$$
\begin{equation*}
\left(\beta^{\prime}\right)^{m(y-z)}\left(\left(\beta^{\prime}\right)^{m(x-z)}-1\right)=1 . \tag{17}
\end{equation*}
$$

The condition $x-z>y-z$ implies $x>y$ and since $\beta^{\prime}>\sqrt{2}, m>2, x-z>0$ and $y-z>0$, therefore (17) is impossible. Hence we get that one of the differences $x-z$ so $y-z$ must be negative. Suppose that $x-z<0$ and $y-z>0$. Then from (15)

$$
\begin{equation*}
\left(\beta^{\prime}\right)^{m(x-z)}=\left(\beta^{\prime}\right)^{m(y-z)}+1 \tag{18}
\end{equation*}
$$

follows. It is easy to see that $\left(\beta^{\prime}\right)^{m(x-z)}=\left(\left(\beta^{\prime}\right)^{-2}\right)^{\frac{m(z-x)}{2}}$. On the other hand we have $\left(\beta^{\prime}\right)^{-2}<\frac{1}{2}$ and we obtain

$$
\left(\beta^{\prime}\right)^{m(x-z)}=\left(\left(\beta^{\prime}\right)^{-2}\right)^{\frac{m(z-x)}{2}}<\left(\frac{1}{2}\right)^{\frac{m(z-x)}{2}}<\frac{1}{2}
$$

because $\frac{m(z-x)}{2}>1$. Therefore from (18) we get

$$
\left(\beta^{\prime}\right)^{m(y-z)}+1=\left(\beta^{\prime}\right)^{m(x-z)}<\frac{1}{2}
$$

which is impossible. In a similar way we obtain a contradiction in the case $x-z>0$ and $y-z<0$. It remains to consider the case when both differences $x-z$ and $y-z$ are negative. From (15) we have

$$
\begin{equation*}
1=\left|\left(\beta^{\prime}\right)^{m(x-z)}-\left(\beta^{\prime}\right)^{m(y-z)}\right| \leq\left(\beta^{\prime}\right)^{m(x-z)}+\left(\beta^{\prime}\right)^{m(y-z)} \tag{19}
\end{equation*}
$$

On the other hand we have

$$
\begin{equation*}
\left(\beta^{\prime}\right)^{m(x-z)}=\left(\left(\beta^{\prime}\right)^{-2}\right)^{\frac{m(z-x)}{2}}<\left(\frac{1}{2}\right)^{\frac{m(z-x)}{2}}<\frac{1}{2} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\beta^{\prime}\right)^{m(y-z)}+\left(\left(\beta^{\prime}\right)^{-2}\right)^{\frac{m(z-y)}{2}}<\left(\frac{1}{2}\right)^{\frac{m(z-y)}{2}}<\frac{1}{2} \tag{21}
\end{equation*}
$$

Hence, by (19)-(21), we get a contradiction.
Further on we have to consider the case $r=0$. But in this case we have $\alpha=1, \beta=-1$ and we can can observe that (12) is impossible.

Now, we can consider the case $\Delta<0$. Since $s=-\operatorname{det} A= \pm 1$ and $\Delta=r^{2}+4 s<0$, therefore we have $s=-1$ and the inequality $r^{2}-4<0$ implies $-2<r<2$, that is, $r=-1,0,1$.

The case $r=1$ is impossble by the assumptions on the eigenvalues of the matrix A.

If $r=0$ then we obtain that $\alpha=i, \beta=-i$ and it is easy to check that (12) does not hold.

If $r=-1$ then $\alpha=\frac{-1+i \sqrt{3}}{2}$ is the third root of unity. Analyzing the exponents $m(x-z)$ and $m(y-z)$ modulo 3 in (12) we get a contradiction.

Summarizing, we obtain that in the case $b \neq 0$ or $c \neq 0$ the equation (\star) has no solution in positive integers x, y, z and $m>2$. So, $b=c=0$ and the matrix A can be reduced to a diagonal matrix of the form $A=\left(\begin{array}{cc}a & 0 \\ 0 & d\end{array}\right)$. On the other hand for every natural number k we have

$$
A^{k}=\left(\begin{array}{cc}
a & 0 \tag{22}\\
0 & d
\end{array}\right)^{k}=\left(\begin{array}{cc}
a^{k} & 0 \\
0 & d^{k}
\end{array}\right) .
$$

If (\star) is satisfied then, by (22), it follfows that

$$
\begin{equation*}
a^{m x}+a^{m y}=a^{m z}, \quad d^{m x}+d^{m y}=d^{m z} . \tag{23}
\end{equation*}
$$

From the assumption of Lemma 3 we have $s=-\operatorname{det} A \neq 0$. This condition implies $a d \neq 0$, because $\operatorname{det} A=\operatorname{det}\left(\begin{array}{cc}a & 0 \\ 0 & d\end{array}\right)=a d$. Therefore (23) does not hold.

Considering all of the cases the proof of Lemma 3 is complete.
Now, we can prove the following.
Lemma 4. Let $A=\left(\begin{array}{ll}a & 0 \\ c & d\end{array}\right)$ be an integral matrix and let $r=$ $\operatorname{Tr} A, s=-\operatorname{det} A$ and $\Delta=r^{2}+4 s$. If $s \neq 0$ and $\Delta=0$, then (\star) has no solutions in positive integers x, y, z and $m>2$.

Proof. Since $s \neq 0$, therefore using Lemma 1 in similar way as in the proof of Lemma 3, for the case $b \neq 0$ or $c \neq 0$ we obtain $s=-\operatorname{det} A= \pm 1$. Since, $\Delta=r^{2}+4 s=0$, thus $s=-1$ and consequently $r^{2}-4=0$, so we have $r= \pm 2$. Therefore we get $\alpha=\beta=\frac{r}{2}=1$ if $r=2$ and $\alpha=\beta=-1$ if $r=-2$. From the well-known theorem of Schur it follows that for any given matrix A there is an unitary matrix P such that

$$
\begin{equation*}
A=P^{\star} T P, \tag{24}
\end{equation*}
$$

where T is the upper triangular matrix having on the main diagonal the eigenvalues of the matrix A.

Suppose that the matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with integer entries has the eigenvalues α, β.

From (24) by easy induction we obtain

$$
\begin{equation*}
A^{k}=P^{\star} T^{k} P \tag{25}
\end{equation*}
$$

for every natural number k, where T^{k} is the upper triangular matrix with the eigenvalues α^{k}, β^{k} on the main diagonal. If (\star) is satisfied then, by (25), it follows that

$$
\begin{equation*}
T^{m x}+T^{m y}=T^{m z} \tag{26}
\end{equation*}
$$

and from (26) we have

$$
\begin{equation*}
\alpha^{m x}+\alpha^{m y}=\alpha^{m z}, \quad \beta^{m x}+\beta^{m y}=\beta^{m z} \tag{27}
\end{equation*}
$$

Since in our case $\alpha=\beta= \pm 1$ so we can see that (27) does not hold. Therefore we have $b=c=0$ and we get a contradiction as we have got it in the last step of the proof of Lemma 3. So the proof of Lemma 4 is complete.

Lemma 5. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be an itegral matrix and let $r=\operatorname{Tr} A, s=$ $-\operatorname{det} A$ and $\Delta=r^{2}+4 s$. If $s=0$ and $\Delta \neq 0$ then the equation (\star) has no solution in positive integers x, y, z and $m>2$.

Proof. From the assumptions of Lemma 5 it follows that $r \neq 0$ and therefore we can use Lemma 1 . Since $s=0$ so, by Lemma 1, it follows that

$$
A^{k}=\left(\begin{array}{ll}
a & b \tag{28}\\
c & d
\end{array}\right)^{k}=\left(\begin{array}{ll}
a r^{k-1} & b r^{k-1} \\
c r^{k-1} & d r^{k-1}
\end{array}\right)=r^{k-1}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=r^{k-1} A
$$

If (\star) is satisfied then from (28) we obtain

$$
\begin{equation*}
r^{m x}+r^{m y}=r^{m z} \tag{29}
\end{equation*}
$$

Being $r \neq 0$, it is easy to see that the equation (29) is impossible in positive integers x, y, z and $m>2$. This proves Lemma 5 .

3. Proof of the Theorem

Suppose that the equation (\star) has a solution in postive integers x, y, z and $m>2$. Then by Lemma 3, Lemma 4 and Lemma 5 it follows that $s=\operatorname{det} A=0$ and $r=\operatorname{Tr} A=0$ or the matrix A has an eigenvalue $\alpha=\frac{1+i \sqrt{3}}{2}$. In the case $s=r=0$ we have $a=-d$ and $s=-\operatorname{det} A=$ $-(a d-b c)=-\left(-d^{2}-b c\right)=d^{2}+b c=0$ and also putting $d=-a$ we have $a^{2}+b c=0$. On the other hand we have

$$
A^{2}=\left(\begin{array}{ll}
a & b \tag{30}\\
c & d
\end{array}\right)^{2}=\left(\begin{array}{cc}
a^{2}+b c & b(a+d) \\
c(a+d) & d^{2}+b c
\end{array}\right)=\left(\begin{array}{cc}
a^{2}+b c & b r \\
c r & d^{2}+b c
\end{array}\right)
$$

Substituting

$$
r=0, a^{2}+b c=d^{2}+b c=0
$$

to (30) we obtain that $A^{2}=0$, that is the matrix A is a nilpotent matrix with nilpotency index two.

Now, we suppose that the matrix A is nilpotent matrix, i.e. $A^{k}=0$ for some natural number $k \geq 2$. Then it is easy to see that (\star) is satisfied for all positive integers $x, y, z, m>2$ such that $m x \geq k, m y \geq k, m z \geq k$.

Suppose that the matrix A has an eigenvalue $\alpha=\frac{1+i \sqrt{3}}{2}$. Then it is easy to check that $\alpha^{2}=\frac{-1+i \sqrt{3}}{2}=\varepsilon$ is a third root of unity. By an easy calculation we obtain

$$
\alpha^{n}=\left\{\begin{array}{lll}
1, & \text { if } \quad n=6 k \tag{31}\\
-\varepsilon^{2}, & \text { if } \quad n=6 k+1, \\
\varepsilon, & \text { if } \quad n=6 k+2, \\
-1, & \text { if } \quad n=6 k+3 \\
\varepsilon^{2}, & \text { if } \quad n=6 k+4 \\
-\varepsilon, & \text { if } \quad n=6 k+5
\end{array}\right.
$$

Applying (31) we obtain that (\star) is satisfied if and only if the following relations are satisfied

$$
\begin{equation*}
m x \equiv r_{1}(\bmod 6), \quad m y \equiv r_{2}(\bmod 6), \quad m z \equiv r_{3}(\bmod 6), \tag{32}
\end{equation*}
$$

where

$$
\begin{gathered}
\left\langle r_{1}, r_{2}, r_{3}\right\rangle=\langle 0,2,1\rangle,\langle 0,4,5\rangle,\langle 1,3,2\rangle,\langle 1,5,0\rangle,\langle 2,4,3\rangle,\langle 2,0,1\rangle, \\
\langle 3,1,2\rangle,\langle 3,5,4\rangle,\langle 4,0,5\rangle,\langle 4,2,3\rangle,\langle 5,0,1\rangle,\langle 5,3,4\rangle .
\end{gathered}
$$

The proof of Theorem is complete.
From the proof of Theorem we get the following
Corollary. All soluitions of the equation(\star) in natural numbers x, y, x and $m>2$, when the matrix A has an eigennvalue $\alpha=\frac{1+i \sqrt{3}}{2}$ are given by the congruence formulas (32) with the above restrictions on $\left\langle r_{1}, r_{2}, r_{3}\right\rangle$ and if the matrix A is a nilpotent matrix with nilpotency index $k \geq 2$ then (\star) is satisfied by all positive integers $x, y, z, m>2$ such that $m x \geq k, m y \geq k$ and $m z \geq k$.

Remark. We note that Theorem with Corollary is equivalent to the result presented by M. H. Le and Ch. Li in [9], but our proof is given in another way and it gives more information about the impossibility of the solvability of (\star) in the cases mentioned in Lemma 3, 4, 5 .

References

[1] X. Chen, On Fermat's equation in the set of generalized Fibonacci matrices, Discuss. Math., Algebra and Stochastic Methods 17 (1997), 5-8.
[2] R. Z. Domiaty, Solutions of $x^{4}+y^{4}=z^{4}$ in 2×2 integral matrices, Amer. Math. Monthly. 73 (1966), 631.
[3] D. Frejman, On Fermat's equation in the set of Fibonacci matrices, Discuss. Math. 13 (1993), 61-64.
[4] A. Grytczuk, On Fermat's equation in the set of integral 2×2 matrices, Period. Math. Hungar. 30 (1995), 67-72.
[5] A. Grytczuk, Note on Fermat's type equation in the set of $n \times n$ matrices, Discuss. Math., Algebra and Stochastic Methods, 17 (1997), 19-23.
[6] A. Grytczuk and K. Grytczuk, Functional recurrences Applications of Fibonacci Numbers, Ed. G. E. Bergum et al., by Kluwer Acad. Publ., Dordrecht, 1990, 115121.
[7] A. Khazanov, Fermat's equation in matrices, Serdica Math. J. 21 (1995), 19-40.
[8] M. H. Le and Ch. Li, A note on Fermat's equation in integral 2×2 matrices, Discuss. Math., Algebra and Stochastic Methods, 15 (1995), 135-136.
[9] M. H. Le and Ch. Li, On Fermat's equation in integral 2×2 matrices, Period. Math. Hungar. 31 (1995), 219-222.
[10] P.Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer Verlag, 1979.
[11] R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras, Annals of Math. 141 (1995), 553-572.
[12] A. Wiles, Modular elliptic curves and Fermat's Last Theorem, Annals of Math. 141 (1995), 443-551.

Aleksander Grytczuk
Institute of Mathematics
Department of Algebra and Number Theory
T. Kotarbinski Pedagogical University

65-069 Zielona Góra, Poland

