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Functions having quadratic differences
in a given class

GYULA MAKSA

Abstract. Starting from a problem of Z. Daróczy we define the quadratic difference

property and show that the class of all real-valued continuous functions on R and some of

its subclasses have this property while the class of all bounded functions does not have.

1. Introduction

For a function f :R → R (the reals) and for a fixed y ∈ R define the
function ∆yf on R by ∆yf(x) = f(x + y) − f(x), x ∈ R. The functions
A,N :R → R are said to be additive and quadratic if

A(x + y) = A(x) + A(y) x, y ∈ R

and

N(x + y) + N(x − y) = 2N(x) + 2N(y) x, y ∈ R,

respectively. It is well-known (see [1], [5], [2]) that, if an additive function
is bounded from one side on an interval of positive length then A(x) = cx,
x ∈ R for some c ∈ R and there are discontinuous additive functions.
Similarly, if a quadratic function is bounded on an interval of positive length
then N(x) = dx2, x ∈ R for some d ∈ R and there are discontinuous
quadratic functions.

In [4] Z. Daróczy asked that for which properties T the following state-
ment is true:

(∗) Let f :R → R be a function such that for all fixed y ∈ R the
function ∆y∆−yf has the property T . Then

(1) f = f⋆ + N + A on R
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where f⋆ has the property T , N is a quadratic function and A is an additive
function.

In this note we prove that, if T is the k-times continuously differentia-
bility (k ≥ 0 integer) or k-times differentiability (k > 0 integer or k = +∞)
or being polynomial then the statement (∗) is true while if T is the bound-
edness then (∗) is not true.

2. Preliminary results

The following lemma will play an important role in our investigations.

Lemma 1. For all functions f :R → R and for all u, v, x ∈ R we have

(2)

∆u∆vf(x) = ∆u−v

2

∆−u−v

2

f

(

x +
u + v

2

)

− ∆u+v

2

∆−u+v

2

f

(

x +
u + v

2

)

.

The proof is a simple computation therefore it is omitted.
An other basic tool we will use is the following result of de Bruijn ([3]

Theorem 1.1.)

Theorem 1. Suppose that f :R → R is a function such that the func-

tion ∆yf is continuous for all fixed y ∈ R. Then f = f⋆ + A on R with

some continuous f⋆:R → R and additive A:R → R.

Finally we will need the following two lemmata.

Lemma 2. Let f :R → R be a function such that ∆u∆vf is continuous

for all fixed u, v ∈ R. Define

(3) H(x, u, v) = ∆u∆vf(x) − f(u + v) + f(u) + f(v) x, u, v ∈ R.

Then the function (x, u) → H(x, u, v), (x, u) ∈ R
2 is continuous for all fixed

v ∈ R.

Proof. Let v ∈ R be fixed. Since ∆u(∆vf) is continuous for all fixed
u ∈ R, Theorem 1 implies that ∆vf = f⋆

v + Av on R where f⋆
v :R → R is

continuous and Av is additive. Thus, by (3),

H(x, u, v) = ∆vf(x + u) − ∆vf(x) − ∆vf(u) + f(v)

= f⋆
v (x + u) − f⋆

v (x) − f⋆
v (u) + f(v)

whence the continuity of (x, u) → H(x, u, v), (x, u) ∈ R
2 follows.
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Lemma 3. Suppuse that L is one of the classes of the real-valued

functions defined on R which are k-times continuously differentiable for

some k ≥ 0 integer or k-times differentiable for some 1 ≤ k ≤ +∞ or

polynomials. If f :R → R is continuous and ∆yf ∈ L for all fixed y ∈ R

then f ∈ L.

Proof. If L is the class of the continuous functions (k = 0) or of the
polynomials, furthermore f is continuous and ∆yf ∈ L for all fixed y ∈ R

then, by Theorem 1 and by [3] page 203, respectively, f = f⋆ + A for some
f⋆ ∈ L and additive function A. Therefore, by continuity of f , A(x) = cx,
x ∈ R with some c ∈ R whence f ∈ L follows.

The remaining statement of Lemma 3 is just Lemma 3.1. in [3].

3. The main results

For the formulation of our main results let us begin with the following

Definition. A subset E of the set of all functions f :R → R is said to
have the quadratic difference property if for all f :R → R, with ∆y∆−yf ∈
E for all y ∈ R, the decomposition (1) holds true on R where f⋆ ∈ E, N is
a quadratic function and A is an additive function.

First we prove the following

Theorem 2. The class of all continuous functions f :R → R has the

quadratic difference property.

Proof. By (2) in Lemma 1 we have that ∆u∆vf is continuous for all
fixed u, v ∈ R. In particular, ∆u(∆1f) is continuous for all fixed u ∈ R.
Applying Theorem 1 to ∆1f we have

(4) ∆1f = f0 + a on R

with some continuous f0:R → R and additive a:R → R. Define the func-
tion B on R

2 by

(5) B(u, v) =

1
∫

0

∆u∆vf −

u+v
∫

0

f0 +

u
∫

0

f0 +

v
∫

0

f0, (u, v) ∈ R
2.

Obviously, B is symmetric. Now we show that B is additive in its first
variable. For all u, t and v, we have

B(u + t, v) − B(u, v) =

1
∫

0

∆u+t∆vf −

u+t+v
∫

0

f0 +

u+t
∫

0

f0 +

v
∫

0

f0
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−

1
∫

0

∆u∆vf +

u+v
∫

0

f0 −

u
∫

0

f0 −

v
∫

0

f0

=

u+1
∫

u

∆t∆vf −

u+t+v
∫

0

f0 +

u+t
∫

0

f0 +

u+v
∫

0

f0 −

u
∫

0

f0.

Since ∆t∆vf and f0 are continuous functions, the right hand side is contin-
uously differentiable with respect to u then so is the left hand side. Differ-
entiating both sides with respect to u and taking into consideration (4) we
obtain that

∂

∂u
[B(u + t, v) − B(u, v)] = ∆t∆v∆1f(u) − f0(u + t + v) + f0(u + t)

+ f0(u + v) − f0(u)

= ∆t∆v(f0 + a)(u) − ∆t∆vf0(u)

= ∆t∆va(u) = 0 (a being additive).

Therefore

B(u + t, v) − B(u, v) = B(t, v) − B(0, v) = B(t, v),

that is, B is additive in its first (and by the symmetry also in its second)
variable. Thus, it is well-known (see [2]) and easy to see that, the function
N :R → R defined by N(u) = 1

2
B(u, u), u ∈ R is quadratic and

(6) B(u, v) = N(u + v) − N(u) − N(v) u, v ∈ R.

Define the function H:R3 → R by (3) and apply Lemma 2 to get the
continuity of the function (x, u) → H(x, u, v), (x, u) ∈ R

2 for all fixed
v ∈ R. This implies that the function s:R2 → R defined by

s(u, v) =

1
∫

0

H(x, u, v)dx (u, v) ∈ R
2

is continuous in its first variable (for all fixed v ∈ R). Therefore, by (3), (5)
and (6) we have

s(u, v) =

1
∫

0

∆u∆vf − f(u + v) + f(u) + f(v)
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= B(u, v) +

u+v
∫

0

f0 −

u
∫

0

f0 −

v
∫

0

f0 − f(u + v) + f(u) + f(v)

= N(u + v) − f(u + v) − (N(u) − f(u)) − (N(v) − f(v))

+

u+v
∫

0

f0 −

u
∫

0

f0 −

v
∫

0

f0

= −∆v(f − N)(u) − (N(v) − f(v)) +

u+v
∫

0

f0 −

u
∫

0

f0 −

v
∫

0

f0.

This implies that ∆v(f−N) is continuous for all fixed v ∈ R and Theorem 1
can be applied again to get the decomposition f − N = f⋆ + A on R with
some continuous f⋆:R → R and additive function A, that is, (1) holds and
the proof is complete.

Theorem 3. Let L be as in Lemma 3. Then L has the quadratic

difference property.

Proof. If L is the class of all continuous functions then the statement
is proved by Theorem 2. In the remaining cases, since all functions in L are
continuous, Theorem 2 implies the decomposition (1) with continuous f⋆,
quadratic N and additive A. We now prove that f⋆ ∈ L. For all y ∈ R we
get from (1) that

(7) ∆y∆−yf = ∆y∆−yf
⋆ + 2N(y).

Therefore ∆y∆−yf
⋆ ∈ L for all fixed y ∈ R. Applying (2) in Lemma 1

we obtain that ∆u(∆vf⋆) ∈ L for all fixed u, v ∈ R. Obviously ∆vf
⋆ is

continuous thus, by Lemma 3, ∆vf
⋆ ∈ L. Since f⋆ is continuous, Lemma 3

can be applied again to get f⋆ ∈ L.

Remark. The set of all bounded functions f :R → R does not have
the quadratic difference property. Indeed, let

f(x) = x ln(x2 + 1) + 2arc tg x − 2x, x ∈ R.

Applying the Lagrangian mean value theorem with fixed u, v, x ∈ R we
have

(8) ∆u∆vf(x) = u∆vf
′(ξ) = uvf ′′(η)
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for some ξ, η ∈ R. Since |f ′′(η)| = 2|η|
η2+1 ≤ 1, (8) implies that |∆y∆−yf(x)| ≤

y2 for all x, y ∈ R, that is, ∆y∆−yf is bounded for all fixed y ∈ R. Suppose
that f has the decomposition (1) for some bounded f⋆:R → R, quadratic
N and additive A. Then N + A must be bounded on any bounded interval.
Thus N(x) + A(x) = αx2 + βx, x ∈ R for some α, β ∈ R. This and (1)
imply that

(9) f⋆(x) = x ln(x2 + 1) + 2arc tg x − αx2 − (2 + β)x, x ∈ R.

Since f⋆ is bounded, 0 = lim
x→+∞

f⋆(x)
x2 = −α and thus

0 = lim
x→+∞

f⋆(x) − 2 arc tg x

x
= lim

x→+∞

(

ln(x2 + 1) − (2 + β)
)

,

which is a contradiction. This shows that the set of all bounded functions
does not have the quadratic difference property.
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