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On a class of differential equations connected
with number-theoretic polynomials

KRYSTYNA GRYTCZUK

Abstract. In this paper we consider the special class of differential equations of

second order. For this class we find a general solution which is strictly connected with

some number-theoretic polynomials such as Dickson, Chebyschev, Pell and Fibonacci.

1. Introduction

Consider the following class of the polynomials:

(1) Wn(x, c) =

(

x +
√

x2 + c

2

)n

+

(

x −
√

x2 + c

2

)n

with respect to c, where n ≥ 1 is the degree of the polynomial Wn(x, c).
It is known (see[2], p. 94) that the Dickson polynomial Dn(x, a) of degree
n ≥ 1 and integer parameter a can be represent in the form:

(D) Dn(x, a) =

(

x +
√

x2 − 4a

2

)n

+

(

x −
√

x2 − 4a

2

)n

.

We note that the Dickson polynomial belongs to class (1) if we take c = −4a.
Taking c = −1 in (1) we obtain the Chebyschev polynomial of the second
kind. For c = 1 we get the Pell polynomial and for c = 4 the Fibonacci
polynomial.

We prove the following:
Theorem. The general solution of the differential equation

(∗)
(

x2 + c
)

y′′ + xy′ − n2y = 0; x2 + c > 0

is of the form

(∗∗) y = C1

(

x +
√

x2 + c

2

)n

+ C2

(

x −
√

x2 + c

2

)n

,

where C1, C2 are arbitrary constants.
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We remark that the general solution (∗∗) is strictly connected with the
polynomials Wn(x, c) defined by (1).

2. Basic Lemmas

Lemma 1. (see [1], Thm. 2.) Let the real-valued functions s0, t0u, v ∈
C2(J), where J ⊂ R and u 6= 0, v 6= 0. Then the functions

(2) y1 = s0u
λ, y2 = t0v

λ,

where λ is non-zero real constant, are the particular solutions of the differ-
ential equation

(3) D0y
′′ + D1y

′ + D2y = 0,

where

(4) D0 = det

(

s0 s1

t0 t1

)

, D1 = det

(

s2 s0

t2 t0

)

, D2 = det

(

s1 s2

t1 t2

)

and

(5) s1 = s′0 + λs0

u′

u
, t1 = t′0 + λt0

v′

v

(6) s2 = s′1 + λs1

u′

u
, t2 = t′1 + λt1

v′

v
.

Lemma 2. Let λ, s0, t0 be non-zero real constants and let non-zero real
functions u, v ∈ C2(J), J ⊂ R be linearly independent over the real number
field R. Then the general soltution of the differential equation:

(∗ ∗ ∗) det

(

1 u
′

u

1 v
′

v

)

y′′ + det

(

g 1
h 1

)

y′ + λdet

(

u
′

u
g

v
′

v
h

)

y = 0,

where

(7) g =
u′′

u
− (1 − λ)

(

u′

u

)2

, h =
v′′

v
− (1 − λ)

(

v′

v

)2

is of the form

(8) y = C1s0u
λ + C2t0v

λ,
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where C1, C2 are arbitrary constants.

Proof. By the assumptions of Lemma 1 and Lemma 2 it follows that

(9) s1 = λs0

u′

u
, t1 = λt0

v′

v
.

From (9) and (6) we obtain

(10) s2 = s′1 + λs1

u′

u
= λs0

(

u′′

u
− (1 − λ)

(

u′

u

)2
)

and

(11) t2 = t′1 + λt1
v′

v
= λt0

(

v′′

v
− (1 − λ)

(

v′

v

)2
)

.

Let us denote by g = u
′′

u
− (1 − λ)

(

u
′

u

)2

and by h = v
′′

v
− (1 − λ)

(

v
′

v

)2

.

Then the formulae (10) and (11) have the form:

(12) s2 = λs0g, t2 = λt0h.

By (12), (9) and Lemma 1 it follows that the differential equation (3) reduce
to (∗ ∗ ∗). On the other hand from Lemma 1 it follows that the functions
y1 = s0u

λ and y2 = t0v
λ are the particular solutions of (∗ ∗ ∗). Now we

observe that the functions u, v are linearly independent over R if and only
if the functions uλ and vλ are linearly independent over R. Indeed, denote
by W (uλ, vλ) the Wronskian of the functions uλ and vλ and let

D0 = det

(

1 u
′

u

1 v
′

v

)

.

Then we have

(13) D0 = (uv)−1 det

(

u v

u′ v′

)

,

and

(14) W
(

uλ, vλ
)

= det

(

uλ vλ

(

uλ
)′ (

vλ
)′

)

= λ(uv)λ det

(

1 1
u
′

u

v
′

v

)

.
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Since det

(

1 1
u
′

u

v
′

v

)

= det

(

1 u
′

u

1 v
′

v

)

, from the definition of D0, (13) and

(14) we get

(15) W
(

uλ, vλ
)

= λ(uv)λD0 = λ(uv)λ−1 det

(

u v

u′ v′

)

.

From (15) easily follows that the functions uλ, vλ are linearly independent
over R if and only if the functions u, v have the same property. Using the
assumption of Lemma 2 about the functions u, v we obtain that the functions
uλ, vλ and also y1 = s0u

λ, y2 = t0v
λ are linearly independent over R. Since

the functions y1, y2 are the particular solutions of (∗ ∗ ∗), the function y =
C1y1 + C2y2 = C1s0u

λ + C2t0v
λ is a general solution of (∗ ∗ ∗). The proof

of Lemma 2 is complete.

3. Proof of the Theorem

Let λ = n be natural number and let s0 = t0 = 1. Moreover, let
u = a(x)+b(x)

√
k and v = a(x)−b(x)

√
k, where k is fixed non-zero constant.

If the functions u, v are linearly independent over R then by Lemma 2 it
follows that the general solution of the differential equation

(16) det

(

1 u
′

u

1 v
′

v

)

y′′ + det

(

g 1
h 1

)

y′ + n det

(

u
′

u
g

v
′

v
h

)

y = 0

is of the form

(17) y = C1

(

a(x) + b(x)
√

k
)n

+ C2

(

a(x) − b(x)
√

k
)n

,

where g = u
′′

u
− (1 − n)

(

u
′

u

)2

and h = v
′′

v
− (1 − n)

(

v
′

v

)2

and C1, C2 are

arbitrary constants. Now, we put a(x) = x

2
, b(x) =

√
x2+c

2
, k = 1, where

x2 + c > 0. Then we have

(18) u =
x +

√
x2 + c

2
, v =

x −
√

x2 + c

2
.

From (18) we obtain

(19) u′ =
1

2

(

x +
√

x2 + c√
x2 + c

)

, v′ = −1

2

(

x −
√

x2 + c√
x2 + c

)

.
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By (18) and (19) easily follows that the functions u, v are linearly indepen-
dent over R, because the Wronskian W (u, v) 6= 0. On the other hand from
(19) we obtain

(20) u′′ =
1

2

c

(x2 + c)
√

x2 + c
, v′′ = −1

2

c

(x2 + c)
√

x2 + c
.

From (19) and (18) we get

(21)
u′

u
=

1√
x2 + c

,
v′

v
= − 1√

x2 + c
,

hence by (21) it follows that

(22)

(

u′

u

)2

=

(

v′

v

)2

=
1

x2 + c
.

Simlarly from (20) and (18) we obtain

u′′

u
=

c

(x2 + c)
(

x +
√

x2 + c
)√

x2 + c
,

(23)
v′′

v
= − c

(x2 + c)
(

x −
√

x2 + c
)√

x2 + c
.

From (21) we calculate that

(24) D0 = det

(

1 u
′

u

1 v
′

v

)

=
v′

v
− u′

u
= − 2√

x2 + c
.

In similar way from (22) and (23) we get

(25) D1 = det

(

g 1
h 1

)

= g − h = − 2x

(x2 + c)
√

x2 + c
.

On the other hand by (21) and (23) it follows that

(26) D2 = det

(

u
′

u
g

v
′

v
h

)

= h
u′

u
− g

v′

v
=

2n

(x2 + c)
√

x2 + c
.
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Now, we see that from (24), (25) and (26) the differential equation (16)
has the following form:

(27)
(

x2 + c
)

y′′ + xy′ − n2y = 0,

so denote that (27) is the same equation as in our Theorem. Thus, by Lemma
2 it follows that the general solution of (27) is given by the formula

y = C1

(

x +
√

x2 + c

2

)n

+ C2

(

x −
√

x2 + c

2

)n

and the proof of the Theorem is complete.

Remark. Consider the following functional matrix;

M(x) =
1

2

(

x
√

x2 + c√
x2 + c x

)

.

Then we can calculate that the functions u = x+
√

x2+c

2
and v = x−

√
x2+c

2
are

the characteristic roots of this matrix. Hence, we observe that the general
solution of the differential equation (16) is linear combination of the powers
such roots.
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