On a class of differential equations connected with number-theoretic polynomials

KRYSTYNA GRYTCZUK

Abstract

In this paper we consider the special class of differential equations of second order. For this class we find a general solution which is strictly connected with some number-theoretic polynomials such as Dickson, Chebyschev, Pell and Fibonacci.

1. Introduction

Consider the following class of the polynomials:

$$
\begin{equation*}
W_{n}(x, c)=\left(\frac{x+\sqrt{x^{2}+c}}{2}\right)^{n}+\left(\frac{x-\sqrt{x^{2}+c}}{2}\right)^{n} \tag{1}
\end{equation*}
$$

with respect to c, where $n \geq 1$ is the degree of the polynomial $W_{n}(x, c)$. It is known (see[2], p. 94) that the Dickson polynomial $D_{n}(x, a)$ of degree $n \geq 1$ and integer parameter a can be represent in the form:

$$
\begin{equation*}
D_{n}(x, a)=\left(\frac{x+\sqrt{x^{2}-4 a}}{2}\right)^{n}+\left(\frac{x-\sqrt{x^{2}-4 a}}{2}\right)^{n} . \tag{D}
\end{equation*}
$$

We note that the Dickson polynomial belongs to class (1) if we take $c=-4 a$. Taking $c=-1$ in (1) we obtain the Chebyschev polynomial of the second kind. For $c=1$ we get the Pell polynomial and for $c=4$ the Fibonacci polynomial.

We prove the following:
Theorem. The general solution of the differential equation

$$
\begin{equation*}
\left(x^{2}+c\right) y^{\prime \prime}+x y^{\prime}-n^{2} y=0 ; \quad x^{2}+c>0 \tag{*}
\end{equation*}
$$

is of the form

$$
\begin{equation*}
y=C_{1}\left(\frac{x+\sqrt{x^{2}+c}}{2}\right)^{n}+C_{2}\left(\frac{x-\sqrt{x^{2}+c}}{2}\right)^{n}, \tag{**}
\end{equation*}
$$

where C_{1}, C_{2} are arbitrary constants.

We remark that the general solution $(* *)$ is strictly connected with the polynomials $W_{n}(x, c)$ defined by (1).

2. Basic Lemmas

Lemma 1. (see [1], Thm. 2.) Let the real-valued functions $s_{0}, t_{0} u, v \in$ $C^{2}(J)$, where $J \subset \mathbf{R}$ and $u \neq 0, v \neq 0$. Then the functions

$$
\begin{equation*}
y_{1}=s_{0} u^{\lambda}, \quad y_{2}=t_{0} v^{\lambda}, \tag{2}
\end{equation*}
$$

where λ is non-zero real constant, are the particular solutions of the differential equation

$$
\begin{equation*}
D_{0} y^{\prime \prime}+D_{1} y^{\prime}+D_{2} y=0, \tag{3}
\end{equation*}
$$

where

$$
D_{0}=\operatorname{det}\left(\begin{array}{cc}
s_{0} & s_{1} \tag{4}\\
t_{0} & t_{1}
\end{array}\right), \quad D_{1}=\operatorname{det}\left(\begin{array}{cc}
s_{2} & s_{0} \\
t_{2} & t_{0}
\end{array}\right), \quad D_{2}=\operatorname{det}\left(\begin{array}{cc}
s_{1} & s_{2} \\
t_{1} & t_{2}
\end{array}\right)
$$

and

$$
\begin{array}{ll}
s_{1}=s_{0}^{\prime}+\lambda s_{0} \frac{u^{\prime}}{u}, & t_{1}=t_{0}^{\prime}+\lambda t_{0} \frac{v^{\prime}}{v} \tag{5}\\
s_{2}=s_{1}^{\prime}+\lambda s_{1} \frac{u^{\prime}}{u}, & t_{2}=t_{1}^{\prime}+\lambda t_{1} \frac{v^{\prime}}{v} .
\end{array}
$$

Lemma 2. Let λ, s_{0}, t_{0} be non-zero real constants and let non-zero real functions $u, v \in C^{2}(J), J \subset \mathbf{R}$ be linearly independent over the real number field \mathbf{R}. Then the general soltution of the differential equation:
$(* * *) \quad \operatorname{det}\left(\begin{array}{cc}1 & \frac{u^{\prime}}{u} \\ 1 & \frac{v^{\prime}}{v}\end{array}\right) y^{\prime \prime}+\operatorname{det}\left(\begin{array}{cc}g & 1 \\ h & 1\end{array}\right) y^{\prime}+\lambda \operatorname{det}\left(\begin{array}{cc}\frac{u^{\prime}}{u} & g \\ \frac{v^{\prime}}{v} & h\end{array}\right) y=0$,
where

$$
\begin{equation*}
g=\frac{u^{\prime \prime}}{u}-(1-\lambda)\left(\frac{u^{\prime}}{u}\right)^{2}, \quad h=\frac{v^{\prime \prime}}{v}-(1-\lambda)\left(\frac{v^{\prime}}{v}\right)^{2} \tag{7}
\end{equation*}
$$

is of the form

$$
\begin{equation*}
y=C_{1} s_{0} u^{\lambda}+C_{2} t_{0} v^{\lambda}, \tag{8}
\end{equation*}
$$

where C_{1}, C_{2} are arbitrary constants.
Proof. By the assumptions of Lemma 1 and Lemma 2 it follows that

$$
\begin{equation*}
s_{1}=\lambda s_{0} \frac{u^{\prime}}{u}, \quad t_{1}=\lambda t_{0} \frac{v^{\prime}}{v} . \tag{9}
\end{equation*}
$$

From (9) and (6) we obtain

$$
\begin{equation*}
s_{2}=s_{1}^{\prime}+\lambda s_{1} \frac{u^{\prime}}{u}=\lambda s_{0}\left(\frac{u^{\prime \prime}}{u}-(1-\lambda)\left(\frac{u^{\prime}}{u}\right)^{2}\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{2}=t_{1}^{\prime}+\lambda t_{1} \frac{v^{\prime}}{v}=\lambda t_{0}\left(\frac{v^{\prime \prime}}{v}-(1-\lambda)\left(\frac{v^{\prime}}{v}\right)^{2}\right) \tag{11}
\end{equation*}
$$

Let us denote by $g=\frac{u^{\prime \prime}}{u}-(1-\lambda)\left(\frac{u^{\prime}}{u}\right)^{2}$ and by $h=\frac{v^{\prime \prime}}{v}-(1-\lambda)\left(\frac{v^{\prime}}{v}\right)^{2}$. Then the formulae (10) and (11) have the form:

$$
\begin{equation*}
s_{2}=\lambda s_{0} g, \quad t_{2}=\lambda t_{0} h \tag{12}
\end{equation*}
$$

By (12), (9) and Lemma 1 it follows that the differential equation (3) reduce to $(* * *)$. On the other hand from Lemma 1 it follows that the functions $y_{1}=s_{0} u^{\lambda}$ and $y_{2}=t_{0} v^{\lambda}$ are the particular solutions of $(* * *)$. Now we observe that the functions u, v are linearly independent over \mathbf{R} if and only if the functions u^{λ} and v^{λ} are linearly independent over \mathbf{R}. Indeed, denote by $W\left(u^{\lambda}, v^{\lambda}\right)$ the Wronskian of the functions u^{λ} and v^{λ} and let

$$
D_{0}=\operatorname{det}\left(\begin{array}{cc}
1 & \frac{u^{\prime}}{u} \\
1 & \frac{v^{\prime}}{v}
\end{array}\right) .
$$

Then we have

$$
D_{0}=(u v)^{-1} \operatorname{det}\left(\begin{array}{cc}
u & v \tag{13}\\
u^{\prime} & v^{\prime}
\end{array}\right),
$$

and

$$
W\left(u^{\lambda}, v^{\lambda}\right)=\operatorname{det}\left(\begin{array}{cc}
u^{\lambda} & v^{\lambda} \tag{14}\\
\left(u^{\lambda}\right)^{\prime} & \left(v^{\lambda}\right)^{\prime}
\end{array}\right)=\lambda(u v)^{\lambda} \operatorname{det}\left(\begin{array}{cc}
1 & 1 \\
\frac{u^{\prime}}{u} & \frac{v^{\prime}}{v}
\end{array}\right) .
$$

Since $\operatorname{det}\left(\begin{array}{cc}1 & 1 \\ \frac{u^{\prime}}{u} & \frac{v^{\prime}}{v}\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}1 & \frac{u^{\prime}}{u} \\ 1 & \frac{v^{\prime}}{v}\end{array}\right)$, from the definition of $D_{0},(13)$ and (14) we get

$$
W\left(u^{\lambda}, v^{\lambda}\right)=\lambda(u v)^{\lambda} D_{0}=\lambda(u v)^{\lambda-1} \operatorname{det}\left(\begin{array}{cc}
u & v \tag{15}\\
u^{\prime} & v^{\prime}
\end{array}\right) .
$$

From (15) easily follows that the functions u^{λ}, v^{λ} are linearly independent over \mathbf{R} if and only if the functions u, v have the same property. Using the assumption of Lemma 2 about the functions u, v we obtain that the functions u^{λ}, v^{λ} and also $y_{1}=s_{0} u^{\lambda}, y_{2}=t_{0} v^{\lambda}$ are linearly independent over \mathbf{R}. Since the functions y_{1}, y_{2} are the particular solutions of $(* * *)$, the function $y=$ $C_{1} y_{1}+C_{2} y_{2}=C_{1} s_{0} u^{\lambda}+C_{2} t_{0} v^{\lambda}$ is a general solution of $(* * *)$. The proof of Lemma 2 is complete.

3. Proof of the Theorem

Let $\lambda=n$ be natural number and let $s_{0}=t_{0}=1$. Moreover, let $u=a(x)+b(x) \sqrt{k}$ and $v=a(x)-b(x) \sqrt{k}$, where k is fixed non-zero constant. If the functions u, v are linearly independent over \mathbf{R} then by Lemma 2 it follows that the general solution of the differential equation

$$
\operatorname{det}\left(\begin{array}{cc}
1 & \frac{u^{\prime}}{u} \tag{16}\\
1 & \frac{v^{\prime}}{v}
\end{array}\right) y^{\prime \prime}+\operatorname{det}\left(\begin{array}{cc}
g & 1 \\
h & 1
\end{array}\right) y^{\prime}+n \operatorname{det}\left(\begin{array}{cc}
\frac{u^{\prime}}{u} & g \\
\frac{v^{\prime}}{v} & h
\end{array}\right) y=0
$$

is of the form

$$
\begin{equation*}
y=C_{1}(a(x)+b(x) \sqrt{k})^{n}+C_{2}(a(x)-b(x) \sqrt{k})^{n} \tag{17}
\end{equation*}
$$

where $g=\frac{u^{\prime \prime}}{u}-(1-n)\left(\frac{u^{\prime}}{u}\right)^{2}$ and $h=\frac{v^{\prime \prime}}{v}-(1-n)\left(\frac{v^{\prime}}{v}\right)^{2}$ and C_{1}, C_{2} are arbitrary constants. Now, we put $a(x)=\frac{x}{2}, \quad b(x)=\frac{\sqrt{x^{2}+c}}{2}, \quad k=1$, where $x^{2}+c>0$. Then we have

$$
\begin{equation*}
u=\frac{x+\sqrt{x^{2}+c}}{2}, \quad v=\frac{x-\sqrt{x^{2}+c}}{2} . \tag{18}
\end{equation*}
$$

From (18) we obtain

$$
\begin{equation*}
u^{\prime}=\frac{1}{2}\left(\frac{x+\sqrt{x^{2}+c}}{\sqrt{x^{2}+c}}\right), \quad v^{\prime}=-\frac{1}{2}\left(\frac{x-\sqrt{x^{2}+c}}{\sqrt{x^{2}+c}}\right) . \tag{19}
\end{equation*}
$$

By (18) and (19) easily follows that the functions u, v are linearly independent over \mathbf{R}, because the Wronskian $W(u, v) \neq 0$. On the other hand from (19) we obtain

$$
\begin{equation*}
u^{\prime \prime}=\frac{1}{2} \frac{c}{\left(x^{2}+c\right) \sqrt{x^{2}+c}}, \quad v^{\prime \prime}=-\frac{1}{2} \frac{c}{\left(x^{2}+c\right) \sqrt{x^{2}+c}} . \tag{20}
\end{equation*}
$$

From (19) and (18) we get

$$
\begin{equation*}
\frac{u^{\prime}}{u}=\frac{1}{\sqrt{x^{2}+c}}, \quad \frac{v^{\prime}}{v}=-\frac{1}{\sqrt{x^{2}+c}} \tag{21}
\end{equation*}
$$

hence by (21) it follows that

$$
\begin{equation*}
\left(\frac{u^{\prime}}{u}\right)^{2}=\left(\frac{v^{\prime}}{v}\right)^{2}=\frac{1}{x^{2}+c} \tag{22}
\end{equation*}
$$

Simlarly from (20) and (18) we obtain

$$
\frac{u^{\prime \prime}}{u}=\frac{c}{\left(x^{2}+c\right)\left(x+\sqrt{x^{2}+c}\right) \sqrt{x^{2}+c}},
$$

$$
\begin{equation*}
\frac{v^{\prime \prime}}{v}=-\frac{c}{\left(x^{2}+c\right)\left(x-\sqrt{x^{2}+c}\right) \sqrt{x^{2}+c}} . \tag{23}
\end{equation*}
$$

From (21) we calculate that

$$
D_{0}=\operatorname{det}\left(\begin{array}{cc}
1 & \frac{u^{\prime}}{u} \tag{24}\\
1 & \frac{v^{\prime}}{v}
\end{array}\right)=\frac{v^{\prime}}{v}-\frac{u^{\prime}}{u}=-\frac{2}{\sqrt{x^{2}+c}} .
$$

In similar way from (22) and (23) we get

$$
D_{1}=\operatorname{det}\left(\begin{array}{ll}
g & 1 \tag{25}\\
h & 1
\end{array}\right)=g-h=-\frac{2 x}{\left(x^{2}+c\right) \sqrt{x^{2}+c}}
$$

On the other hand by (21) and (23) it follows that

$$
D_{2}=\operatorname{det}\left(\begin{array}{ll}
\frac{u^{\prime}}{u} & g \tag{26}\\
\frac{v^{\prime}}{v} & h
\end{array}\right)=h \frac{u^{\prime}}{u}-g \frac{v^{\prime}}{v}=\frac{2 n}{\left(x^{2}+c\right) \sqrt{x^{2}+c}} .
$$

Now, we see that from $(24),(25)$ and (26) the differential equation (16) has the following form:

$$
\begin{equation*}
\left(x^{2}+c\right) y^{\prime \prime}+x y^{\prime}-n^{2} y=0 \tag{27}
\end{equation*}
$$

so denote that (27) is the same equation as in our Theorem. Thus, by Lemma 2 it follows that the general solution of (27) is given by the formula

$$
y=C_{1}\left(\frac{x+\sqrt{x^{2}+c}}{2}\right)^{n}+C_{2}\left(\frac{x-\sqrt{x^{2}+c}}{2}\right)^{n}
$$

and the proof of the Theorem is complete.
Remark. Consider the following functional matrix;

$$
M(x)=\frac{1}{2}\left(\begin{array}{cc}
x & \sqrt{x^{2}+c} \\
\sqrt{x^{2}+c} & x
\end{array}\right) .
$$

Then we can calculate that the functions $u=\frac{x+\sqrt{x^{2}+c}}{2}$ and $v=\frac{x-\sqrt{x^{2}+c}}{2}$ are the characteristic roots of this matrix. Hence, we observe that the general solution of the differential equation (16) is linear combination of the powers such roots.

References

[1] A. Grytczuk and K. Grytczuk, Functional recurrences, Applications of Fibonacci Numbers, Ed. by G. E. Bergum et al., Kluwer Acad. Publ., Dordrecht, 1990, 115-121.
[2] P. Moree and G. L. Mullen, Diskson polynomial discriminators, J. Number Theory, 59 (1996), 88-105.

Institute of Mathematics
Technical University
Zielona Góra, ul. Podgórna 50
Poland

