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On a class of differential equations connected
with number-theoretic polynomials

KRYSTYNA GRYTCZUK

Abstract. In this paper we consider the special class of differential equations of
second order. For this class we find a general solution which is strictly connected with

some number-theoretic polynomials such as Dickson, Chebyschev, Pell and Fibonacci.

1. Introduction
Consider the following class of the polynomials:
Wh(z,c) = <7x+ ;2 +C>n+ (790— v’ +C>n

(1) ;

with respect to ¢, where n > 1 is the degree of the polynomial W, (z,c).
It is known (see[2], p. 94) that the Dickson polynomial D, (z,a) of degree
n > 1 and integer parameter a can be represent in the form:

(D) Dn@,a):(@) +<@) |

We note that the Dickson polynomial belongs to class (1) if we take ¢ = —4a.
Taking ¢ = —1 in (1) we obtain the Chebyschev polynomial of the second
kind. For ¢ = 1 we get the Pell polynomial and for ¢ = 4 the Fibonacci
polynomial.

We prove the following:
Theorem. The general solution of the differential equation

(%) (2 +c)y +ay —n*y=0; 2°+c>0
is of the form

(o) O (L v2$2+6> Lo (ﬂf—i WH) |

where C7, (5 are arbitrary constants.
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We remark that the general solution () is strictly connected with the
polynomials W, (z, ¢) defined by (1).

2. Basic Lemmas

Lemma 1. (see [1], Thm. 2.) Let the real-valued functions s, tou,v €
C?(J), where J C R and u # 0,v # 0. Then the functions

(2) y1 = sou”, Yo = tov’,

where X is non-zero real constant, are the particular solutions of the differ-
ential equation

(3) Doy" + D1y' + Doy = 0,

where

_ S0 S1 _ S2 S0 _ S1 S2
(4) Do—det<t0 t1>’ Dl—det<t2 t0>’ Dg—det<t1 t2>

and

/ /

u v
(5) slzsg+/\soz, tlztg+/\t0;

/ /

u v
(6) 82:8/1—1')\815, t2:tg_+>\t1;.

Lemma 2. Let A, sq, g be non-zero real constants and let non-zero real
functions u,v € C?(J), J C R be linearly independent over the real number
field R. Then the general soltution of the differential equation:

’ ’

(5 % %) det<i Z>y//+det<z 1>y/+)\det<z Z)y:O,

v

where

is of the form

(8) y = C1sou™ + Catgv™,
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where C7, (5 are arbitrary constants.
Proof. By the assumptions of Lemma 1 and Lemma 2 it follows that

/ ,U/

(9) S1 = /\SOZ, t1 = /\t(]— .
u (Y

From (9) and (6) we obtain

/ " I\ 2
(10) 82:834—/\31% :ASO <u__(1_/\) <£> )

u

and

’ " N\ 2
11 b=t M =AM [ —1=N(Z) ).
1) o=t + 0 ( =% (%

4

’ 2 17 ’ 2
Let us denote by g = “~ — (1 — ) (%) and by h = 2= — (1 — X) (%) .
Then the formulae (10) and (11) have the form:

(12) So = )\Sog, to = /\t(]h.

By (12), (9) and Lemma 1 it follows that the differential equation (3) reduce
to (* % x). On the other hand from Lemma 1 it follows that the functions
y1 = sou” and ys = tov® are the particular solutions of (% *). Now we
observe that the functions w,v are linearly independent over R if and only
if the functions u* and v* are linearly independent over R. Indeed, denote

by W (u*,v*) the Wronskian of the functions u* and v* and let

1 u_
DO:det< u>

1 v

v

(13) Do = (uv) ™! det <;‘, ;’,) :

Then we have

and

(14) W (v}, o) = det ( (5;), (;’f),> = Auv)* det (% i) .
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Since det (i i) = det <i 3), from the definition of Dy, (13) and
(14) we get "
(15) W (uA,UA) = AMuv) Dy = Auwv) ! det <5, :j,) .

From (15) easily follows that the functions u*, v* are linearly independent

over R if and only if the functions u,v have the same property. Using the
assumption of Lemma 2 about the functions u, v we obtain that the functions
u?, v and also y; = sou’, yo = tov> are linearly independent over R. Since
the functions yi,ys are the particular solutions of (x * %), the function y =
Cry1 + Caya = Cysou™ + Catov? is a general solution of (* * *). The proof
of Lemma 2 is complete.

3. Proof of the Theorem

Let A = n be natural number and let s = t5 = 1. Moreover, let
u = a(z)+b(z)Vk and v = a(x)—b(z)Vk, where k is fixed non-zero constant.
If the functions u,v are linearly independent over R then by Lemma 2 it
follows that the general solution of the differential equation

1Ly, g 1\, © 9,
(16) det<1 %,>y +det<h 1>y + ndet %, W)=

is of the form

(17) y=C1 (al@) + b@)VE) "+ (alx) — b@)VE)

where g = “T” —(1—-n) (%)2 and h = 2 — (1 —n) <%) and C1,Cy are

v
arbitrary constants. Now, we put a(z) = 3, b(z) = z2tc | =1, where
22 4+ ¢ > 0. Then we have

r+vVa2+ec r—Vat+c
I L
2 ’ 2

(18) u=
From (18) we obtain

, 1z +vVa?+e A N R
(19) u—iﬁ,v—— — .
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By (18) and (19) easily follows that the functions w, v are linearly indepen-
dent over R, because the Wronskian W (u,v) # 0. On the other hand from
(19) we obtain

c " 1 c

1
222 +c)VaZ+c  2(a2+o)Va2tc

From (19) and (18) we get

(20) u =

21 v R ,
(21) U NaZ 4+ v vz? 4 e

hence by (21) it follows that

o)

Simlarly from (20) and (18) we obtain

u' c

u (:1:2+c)(;v—|—\/332—|—c)\/$2+c’

(23)

v c
v (332—1—0)(3:—\/:1:24—0)\/332—1—0'
From (21) we calculate that

1 % v 2
(24) Dgzdet<1 %)ZZ_Z__\/;EQ—H'
In similar way from (22) and (23) we get

1 2z
(25) Dlzdet<z 1>:g_h:_(ac2—|—c)\/a:2——|—c'
On the other hand by (21) and (23) it follows that
(26) D2=¢m<% g):hﬂ—gﬁzz 2n

~ h u v (22 +e)Vatte
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Now, we see that from (24), (25) and (26) the differential equation (16)
has the following form:

(27) (2% + )y +ay —n’y =0,

so denote that (27) is the same equation as in our Theorem. Thus, by Lemma
2 it follows that the general solution of (27) is given by the formula

y=C, <x+\/2x2+c)n+02 (m—\/2x2+c>n

and the proof of the Theorem is complete.

Remark. Consider the following functional matrix;

M(z) = 1 x Va2 +ec
T2\ VzZ+ec x :
Then we can calculate that the functions u = LEYz +c V;uc and v = T=¥ETC V29”2+C are

the characteristic roots of this matrix. Hence, we observe that the general
solution of the differential equation (16) is linear combination of the powers
such roots.
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