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The generalization of Pascal’s triangle from
algebraic point of view

GÁBOR KALLÓS⋆

Abstract. In this paper we generalize Pascal’s Triangle and examine the connecti-

ons between the generalized triangles and powering integers and polynomials respectively.

The interesting and really romantic Pascal’s Triangle is a favourite
research field of mathematicians for a very long time. The table of binomial
coefficients has been named after Blaise Pascal, a French scientist, but was
known already by the ancient Chinese and others before Pascal (Edwards
[1]).

Among the elements of the triangle a lot of interesting connections
exist. One of them is that from the n-th row of the triangle with positional
addition we get the n-th power of 11 (Figure 1.), where n is a non-negativ
integer, and the indices in the rows and columns run from 0.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

· · ·

1 = 110, 11 = 111, 121 = 112, 1331 = 113, 14641 = 114, 161051 = 115, . . .

Figure 1: The powers of 11 in Pascal’s triangle

This comes immediately from the binomial equality
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100 = 11n

An interesting way of generalizing is if we construct triangles in which
the powers of other numbers appear. To achieve this, let us consider Pascal’s
Triangle as the 11-based triangle, and take the following.

⋆
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Germany in summer 1996.
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Definition. Let a and b integers, with 0 ≤ a, b ≤ 9. Then we can
get the k-th element in the n-th row of the ab-based triangle if we add the
k − 1-th elemetn in the n − 1-th row b-times to the k-th element in the
n − 1-th row a-times. If k − 1 < 0 or k > n − 1 (id est the element in the
n − 1-th row does not exist according to the traditional implementation)
then we consider this element to be 0 (Figure 2.). The indices in the rows
and columns of the triangle run from 0.

1
4 7

16 56 49
64 336 588 343

· · ·

Figure: 2: The 47-based triangle

Example. In the third row of the 47-based triangle 64 = 7 · 0 + 4 · 16
and 336 = 7 · 16 + 4 · 56.

Proposition 1. By positional addition from the n-th row of the ab-
based triangle we get the n-th power of ab(10a + b).

Proof. From the expansion of (10a + b)n we get

(10a+b)n =

(
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0

)

an10n+

(

n

1

)

an−1b10n−1+· · ·+
(

n
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)

abn−110+

(

n

n

)

bn.

This is exactly the number we get after positional addition from the n-th
row.

The structure of the ab-based triangle is relatively simple. We have the
following.

Proposition 2. The k-th element in the n-th row of the ab-based
triangle is an−kbkCk

n, where Ck
n (the number of combinations of n things

taken k at a times) is the k the element in the n-th row of Pascal’s Triangle.

Proof. We prove by induction. In the first row we have a = a1 · 1 and
b = b1 · 1. Let us now assume, that the k− 1-th element in the n− 1-th row
is an−kbk−1Ck−1

n−1 and the k-th element in the n−1-th row is an−k−1bkCk
n−1.

Then the k-th element in the n-th row by definition is

ban−kbk−1Ck−1
n−1 + aan−k−1bkCk

n−1 = an−kbkCk−1
n−1 + an−kbkCk

n−1

= an−kbk
(

Ck−1
n−1 + Ck

n−1

)

= an−kbkCk
n.
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Proposition 3. Connection with the binomial theorem.
The elements in the n-th row of the ab-based triangle are the coefficients

of the polynomials (ax + by)n.

Proof. If we substitute ax with 10a and by with b in the Proof of
Proposition 1, and use that the k-th element in the n-th row of the ab-
based triangle is an−kbkCk

n we get the statement.

Example. From the 47-based triangle (4x + 7y)3 = 64x3 + 336x2y +
588xy2 + 343y3.

The base-number of the triangle can consist of not only 2, but arbitrar-
ily many digits.

Definition. Let 0 ≤ a0, a1, a2, . . . , am−2, am−1 ≤ 9 be integers. Then
we can get the k-th element in the n-th row of the a0a1a2 . . . am−2am−1-
based triangle if we multiply the k − m-th element in the n − 1-th row by
am−1, the k − m + 1-th element in the n − 1-th row by a0, and add the
products. If for some i we have k − m + i < 0 or k − m + i > n − 1 (id est
some element in the n−1-th row does not exists according to the traditional
implementation) then we consider this element to be 0. The indices in the
rows and columns of the triangle run from 0 (Figure 3.).

1
4 3 5

16 24 49 30 25
64 144 348 387 435 225 125

· · ·

Figure 3: The 435-based triangle

Remarks. In the above definition we can allow for the base-number
not only 0 ≤ a0, a1, a2, . . . , am−2, am−1 ≤ 9 digits, but arbitrary integers,
rational and irrational numbers. Thus for example we can build triangles
with base of root expressions (Figure 4.).
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In the combinatorical literature the 11 . . . 1-based triangles (k pieces of
1 digits) with name order k (Vilenkin [2]) or k-th Pascal’s triangle (Gerőcs
[3]) can be found. The authors gave this different definition because of
different approach.

Theorem 1. From the n-th row of the a0a1a2 . . . am−2am−1-based
triangle after positional addition we get the n-th power of the base-number
a0a1a2 . . . am−2am−1 is obviously in the first row of the triangle.

Let us now assume, that in the n−1-th row (n > 1) we have the elements
b0, b1, b2, . . . , bp−1, bp (where p equals to m+(m−1)(n−2)−1 = mn−m−
n+1, because in the first row there are m pieces of elements and in every new
row there are m − 1 pieces more), and from these elements with positional
addition we get the n − 1-th power of the number a0a1a2 . . . am−2am−1.
Then we can write out (a010

m−1 + a110
m−2 + · · · + am−210 + am−1)

n as

(b010
p + b110

p + b110
p−1 + · · · + bp−110 + bp)a010

m−1

+ (b010
p + b110

p−1 + · · · + bp−110 + bp)a110
m−2

· · ·
+ (b010

p + b110
p−1 + · · · + bp−110 + bp)am−210

+ (b010
p + b110

p−1 + · · · + bp−110 + bp)am−1.

By adding these expressions (using that p = mn − m − n + 1) we get

a0b010
mn−n + (a0b1 + a1b0)10

mn−n−1 + (a0b2 + a1b1 + a2b0)10
mn−n−2

+ · · · + (am−1b0 + am−2b1 + am−3b2 · · · + a1bm−2 + a0bm−1)10
mn−m−n−1

+ · · · + (am−2bp + am−1bp−1)10 + am−1bp.

And this is exactly the number we get after positional addition from the
n-th row of the triangle.

Consideration of effectivity. This method is easy to algorithmize, it
is enough to store the proceeding row and the base-number to determine one
row of the triangle. In the row we work with relatively small numbers (com-
pare with the final result), and we have to multiply only with digits. How-
ever, to reach the n-th row we need to determine (2 + (n − 1)(m − 1)) n

2 =
O(n2m) elements. So obviously, if we need only the nthe power of the base-
number some other methods are more effective (Knuth [4]). However, if we
need all the (non-negative integer) powers up to n of the base-number this
method is competitive. It is especially interesting that with this method the
first some powers of a base number of a few digits can even be determined
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by heart. It is similar to some methods of by heart calculate artists (Surányi
[5]).

In Proposition 3 we have seen a connection of the ab-based triangle with
the binomial theorem. Thus, we expect for the a0a1a2 . . . am−2am−1-based
triangle a relation with the polynomial theorem. However, the structure of
the latter triangle is much more complicated. See for example the triangle
with abc base-number (Figure 5.) The elements in the n-th row are some
sums of the coefficients of the polynomials (ax + by + cz)n.

1

a b c

a2 2ab 2ac+b2 2bc c2

a3 2a2b 3a2c+3ab2 6abc+b3 3ac2+3b2c 3bc2 c3

· · ·

Figure 5: The abc-based triangle

To discover the connection of the general triangle with the polynomial
theorem we need the following.

Definition. For the digits of the base-number let he weight of a digit be
its distance from the centerline. So w(a0) = −w(am−1), w(a1) = −w(am−2),
etc. If the base number is odd, then w(a(m−1)/2) = 0. Let the unit of the
weights be the distance of two neighbouring elements in the triangle, id est
w(ai) = w(ai+1) = 1.

Example. In the abc-based triangle w(a) = −1, w(b) = 0 and w(c) =
1, in the abcd-based triangle w(a) = −1.5, w(b) = −0.5, w(c) = 0.5 and
w(d) = 1.5.

We would like to extend this idea to the elements of the other rows.
Because the elements of the triangle are sums, consider first the parts of
them. For such an expression let the weight of the part be the sum of the
weights of its digits. If a digit is on the i-th power then we count its weight
i-times.

Example. One part of the third element in the third row of the abc-
based triangle is 3a2c (Figure 5.). For this expression we have q(3a2c) =
2w(a) + w(c) = −1.

Lemma 1. In an element of the general triangle the weights of the
parts are identical, and this weight is the distance of the element from the
centerline.
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Proof. We get this result by induction immediately from the construc-
tion of the triangle.

Lemma 2. Let us consider an expression ai0
0 ai1

1 · · · aim−2

m−2a
im−1

m−1 , for
which i0 + i1 + · · · + im−2 + im−1 = n. Then we can find this expression
with some coefficient as a part of the element with the same weight in the
n-th row of the general triangle.

Proof. Let us assume indirectly that this expression does not exist in
the n-th row of the general triangle as a part of the element with corre-
sponding weight. We should get this expression from parts of elements of
the previous row

(

ai0−1
0 ai1

1 · · · aim−2

m−2a
im−1

m−1 , ai0
0 ai1−1

1 · · · aim−2

m−2a
im−1

m−1 ,

ai0
0 ai1

1 · · · aim−2−1
m−2 a

im−1

m−1 , ai0
0 ai1

1 · · · aim−2

m−2a
im−1−1
m−1

)

with multiplication (by a0, a1, . . . , am−2, am−1). Thus, these parts of the
elements can’t exist in the previous row. Proceeding backwards with this
method we conclude that in the first line some digits of the base-number do
not exist, and this is a contradiction.

Lemma 3. For the coefficient e of the expression eai0
0 ai1

1 · · · aim−1

m−1 with
i0 + i1 + · · · + im−1 = n in the n-th row of the general triangle we have
e = n!

i0!i1!···im−1!
.

Proof. We prove with induction. In the first row the statement is
true. Let us now assume that in the n − 1-th row there are the following
expressions as parts of the elements:

e0a
i0−1
0 ai1

1 · · · aim−1

m−1 , e1a
i0
0 ai1−1

1 · · · aim−1

m−1 , . . . , em−1a
i0
0 ai1

1 · · · aim−1−1
m−1 ,

with coefficients

e0 =
(n − 1)!

(i0 − 1)!i1! · · · im−1!
, e1 =

(n − 1)!

i0!(i1 − 1)! · · · im−1!
, . . . ,

em−1 =
(n − 1)!

i0!i1! · · · (im−1 − 1)!

(by the induction assumption). Thus, the coefficient e of the expression
eai0

0 ai1
1 · · · aim−1

m−1 is the sum of the coefficients ei (0 ≤ i ≤ m − 1)

e = e0 + e1 + · · · + em−1 =
(n − 1)!

(i0 − 1)!(i1 − 1)! · · · (im−1 − 1)!
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(

1

i1i2 · · · im−1
+

1

i0i2 · · · im−3im−1
+ · · · +

1

i0 · · · im−3im−2

)

=

(n − 1)!

(i0 − 1)!(i1 − 1)! · · · (im−1 − 1)!

(

i0 + i1 + · · · + im−1

i0i1 · · · im−1

)

=
n!

i0!i1! · · · im−1!
.

By these three Lemmas we have proved the following.

Theorem 2. The elements in the n-th row of the a0a1a2 · · · am−2am−1-
based triangle are exactly the sums of the coefficients of the polynomial
(a0x0 +a1x1 +a2x2 + · · ·+am−2xm−2 +am−1xm−1)

n, in which the weights
of the parts are identical.

Like among the binomial coefficients in Pascal’s triangle (for example
Edwards [1] and Vilenkin [2]), in the general triangle there are also interest-
ing connecitons among the elements. One of them comes immediately from
the second Theorem.

Corollary. In the n-th row of the a0a1a2 . . . am−2am−1-based triangle
the sum of the elements (with normal addition) is (a0 + a1 + a2 + · · · +
am−2 + am−1)

n.

Proof. If we set in the polynomial

(a0x0 + a1x1 + a2x2 + · · · + am−2xm−2 + am−1xm−1)
n,

1 = x0 = x1 = x2 = · · · = xm−2 = xm−1, then from Theorem 2 in
the n-th row of the triangle there are the coefficients of the “polynomial”
(a0 + a1 + a2 + · · · + am−2 + am−1)

2.

Remark. In Pascal’s triangle from this Corollary we get the well
known combinatorical equality

(

n

0

)

+

(

n

1

)

+

(

n

2

)

+ · · · +
(

n

n

)

= 2n.

Another possibility to power polynomials is that we extend the property
for the general triangle, that the elements in the n-th row of Pascal’s Triangle
are the coefficients of the binomial 1 + x.

Proposition 4. The elements in the n-th row of the general triangle
are exactly the coefficients of the polynomials (a0 + a1x + a2x

2 + · · · +
am−2x

m−2 + am−1x
m−1)n, the k-th element is the coefficient of xk.

Proof. We prove by induction. In the first row the statement is true.
Let us now assume, that in the n − 1-th row there are the coefficients of
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the polynomial (a0 + a1x + a2x
2 + · · · + am−2x

m−2 + am−1x
m−1)n−1, the

k-th element is the coefficient of xk. If we multiply this polynomial by
a0 + a1x + a2x

2 + · · · + am−2x
m−2 + am−1x

m−1, and add up the results
(similarly as in the proof of Theorem 1), we get the n-th power of the
basic polynomial. But according to the forming rules of the triangle, the
coefficients of this polynomial are exactly the elements of the n-th row.

Example. From the third row of the 435-based triangle (Figure 3.)

(4 + 3x + 5x2)3 = 64 + 144x + 348x2 + 387x3 + 435x4 + 225x5 + 125x6.

Consideration of effectivity. The powering of polynomials is consid-
erably more complex operation as powering of (integer) numbers. However,
the consideration above applies here, too. So if we need only the n-th power
of the base-polynomial some other methods are more effective (Knuth [4],
Geddes [6].) However, if we need all the (non-negativ integer) powers up to
n then this method is competitive.
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