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On some connections between Legendre symbols
and continued fractions

ALEKSANDER GRYTCZUK

Abstract. In this note we give a complement of some results of Friesen given in

[2] about some connections between Legendre symbols and continued fractions.

1. Introduction

In the paper [1] P. Chowla and S. Chowla gave several conjectures
concerning continued fractions and Legendre symbols. Let d = pq, where
p, q are primes such that p ≡ 3 (mod 4), q ≡ 5 (mod 8) and let

√
d =

[q0; q1, . . . , qs] be the representation of
√

d as a simple continued fraction.

Denote by S =
s

∑

i=1

(−1)s−iqi. Then P. Chowla and S. Chowla conjectured

the following relationship:
(

p

q

)

= (−1)s, where
(

p

q

)

is the Legendre’s sym-

bol. This conjecture has been proved by A. Schinzel in [3]. Further interest-
ing results for d = pq ≡ 1 (mod 4) and for d = 2pq was given by C. Friesen
in [2]. From his results summarized in the Table 1 on page 365 of [2] it fol-
lows that in the following cases: p ≡ 3 (mod 8), q ≡ 1 (mod 8) or p ≡ 7
(mod 8), q ≡ 1 (mod 8) or p ≡ 1 (mod 8), q ≡ 3 (mod 8) or p ≡ 1
(mod 8), q ≡ 7 (mod 8) are not known a connection between Legendre’s
symbol and the representation of

√
pq as a simple continued fraction. In

this connection we prove the following Theorem:

Theorem. Let d = pq ≡ 3 (mod 4) and
√

pq = [q0; q1, . . . , qs], then

s = 2m; cm = 2, p, q; and
(

p

q

)

= (−1)m
q−1

2 , if cm = p

(

p

q

)

= (−1)
p−1

2
·

s+q−1

2 , if cm = q

(

2

p

)(

2

q

)

= (−1)m, if cm = 2

where cm is defined by the following recurrent formulas:

qm =

[

q0 + bm

cm

]

, bm + bm+1 = cmqm, d = pq = b2
m+1 + cmcm+1.
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2. Proof of the Theorem

In the proof of the Theorem we use the following lemmas:

Lemma 1. Let
√

d = [q0; q1, . . . , qs] be the representation of
√

d as a

simple continued fraction. Then

(1) qn

[

q0+bn

cn

]

, bn + bn+1 = cnqn, d = b2
n+1 + cncn+1, for any integer

n ≥ 0
(2) if s = 2r+1 then minimal number k, for which ck = ck+1 is k = s−1

2
(3) if s = 2r then minimal number k, for which bk = bk+1 is k = s

2

(4) 1 < cn < 2
√

d, for 1 ≤ n ≤ s − 1
(5) P 2

n−1 − dQ2
n−1 = (−1)ncn, where Pn/Qn

is n-th convergent of
√

d.

This Lemma is a collection of the well-known results of the theory of
continued fractions.

Lemma 2. Let
√

d = [q0; q1, . . . , qs]. The equation x2 − dy2 = −1 is
solvable if and only if the period s is odd. Moreover, if p ≡ 3 (mod 4) and
p is a divisor of d then this equation is unsolvable.

This Lemma is well-known result given by Legendre in 1785.
For the proof of the Theorem we remark that by the condition d =

pq ≡ 3 (mod 4) it follows that p ≡ 3 (mod 4) or q ≡ 3 (mod 4) and
consequently from Lemma 2 we obtain that the period s = 2m. From (5)
of Lemma 1 we get

(6) P 2
m−1 − pqQ2

m−1 = (−1)mcm.

On the other hand by (1) and (3) of Lemma 1 it follows that

(7) 2bm+1 = qmcm, d = pq = b2
m+1 + cmcm+1.

From (7) we obtain

(8) 4pq = cm(q2
mcm + 4cm+1).

By (8) it follows that cm = 1, 2, 4, p, q, pq, 2pq, 4pq. Using (4) of Lemma 1
we get that cm = 1, 2, 4, p, q. If cm = 1 then it is easy to see that (6) is
impossible. If cm = 4 then from (6) we obtain

(9) P 2
m−1 − pqQ2

m−1 = (−1)m4.
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Since (Pm−1, Qm−1) = 1 then by (9) it follows that Pm−1 and Qm−1 are odd
and consequently we obtain P 2

m−1 ≡ Q2
m−1 ≡ 1 (mod 4). Since pq ≡ 3

(mod 4) then by (9) it follows that 1 ≡ P 2
m−1 = pqQ2

m−1 + (−1)m4 ≡ 3
(mod 4) and we get a contradiction. Therefore, we have cm = p, q, 2. Let
cm = p then from (6) we obtain

(10) pX2 − qQ2
m−1 = (−1)m, where Pm−1 = pX.

From (10) and the well-known properties of Legendre’s symbol we obtain

(11)

(

p

q

)

=

(

(−1)m

q

)

=

(

−1

q

)

= (−1)
q−1

2
m.

In similar way, for the case cm = q we get

(12)

(

q

p

)

= (−1)
p−1

2
m.

By (12) and the reciprocity law of Gauss we obtain
(

p

q

)

= (−1)
p−1

2
·

s+q−1

2 .

If cm = 2 then by (6) it follows that
(

2(−1)m

p

)

=
(

2(−1)m

q

)

= 1. Hence, in

virtue of pq ≡ 3 (mod 4) we obtain
(

2
p

) (

2
q

)

= (−1)m and the proof is

complete.
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