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Remark on Ankeny, Artin and Chowla conjecture

ALEKSANDER GRYTCZUK

Abstract. In this paper we give two new criteria connected with well-known and

still open conjecture of Ankeny, Artin and Chowla.

Introduction

In the paper [2] Ankeny, Artin and Chowla conjectured that, if p ≡ 1
(mod 4) is a prime and ε = 1/2(T + U

√
p) > 1 is the fundamental unit

of the quadratic number field K = Q(
√

p) then p|/U . It was shown by
Mordell [5] in the case p ≡ 5 (mod 8) and by Ankeny and Chowla [3] for
the remaining primes p ≡ 1 (mod 4) that p | U if and only if p|/B p−1

2

,

where B2n is 2n-th Bernoulli number. Another criterion has been given by
T. Agoh in [1]. Beach, Williams and Zarnke [4] verified the conjecture of
Ankeny, Artin and Chowla for all primes p < 6270713. Sheingorn [6], [7]
gave interesting connections between the fundamental solution 〈x0, y0〉 of
the non-Pellian equation

(1) x2 − py2 = −1, p ≡ 1 (mod 4), p is a prime

and the manner of the reflection lines on the modular surface and also of
the

√
p Riemann surface. We prove the following two theorems:

Theorem 1. Let p ≡ 1 (mod 4) be a prime and p = b2 + c2. More-
over, let

√
p = [q0; q1, q2, . . . , qs] be the representation of

√
p as a simple

continued fraction and let 〈x0, y0〉 be the fundamental solution of (1). Then
p | y0 if and only if p | cQr + bQr−1 and p | Qr − cQr−1, where r = s−1

2 and
Pn/Qn is n-th convergent of

√
p.

Theorem 2. Assume that the assumptions of the Theorem 1 are
satisfied. Then p | y0 if and only if p | 4bQrQr−1 − (−1)r+1, where r = s−1

2
and Pn/Qn is n-th convergent of

√
p.

Basic Lemmas

Lemma 1. Let
√

d = [q0; q1, . . . , qs] be the representation of
√

d as a
simple continued fraction. Then

(2) qn =

[

q0 + bn

cn

]

, bn + bn+1 = cnqn, d = b2
n+1 + cncn+1
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(3) if s = 2r + 1 then minimal number k, for which ck+1 = ck is k = s−1
2 ,

dQn−1 = bnPn−1 + cnPn−2,(4)

Pn−1 = bnQn−1 + cnQn−2,(6)

P 2
n−1 − dQ2

n−1 = (−1)ncn,(7)

where Pn/Qn is the n-th convergent of
√

d.

This Lemma is a collection of well-known results of the theory of con-
tinued fractions.

From Lemma 1 we can deduce for the case d = p ≡ 1 (mod 4) and
r = s−1

2
the following:

Lemma 2. Let p ≡ 1 (mod 4) be a prime and let
√

p = [q0; q1, . . . , qs],
where s = 2r + 1 then

p = b2
r+1 + c2

r = b2 + c2; br+1 = b, cr = c(8)

pQr = bPr + cPr−1(9)

Pr = bQr + cQr−1(10)

Pr−1 = cQr − bQr−1(11)

PrQr−1 − QrPr−1 = (−1)r+1(12)

P 2
r − pQ2

r = (−1)r+1c(13)

P 2
r−1 − pQ2

r−1 = (−1)rc(14)

P 2
r−1 + P 2

r = p(Q2
r−1 + Q2

r).(15)

Lemma 3. Let
√

d = [q0; q1, . . . , qs] and s = 2r + 1, then Qs−1 =
Q2

s−1

2
−1

+ Q2
s−1

2

and

Ps−1 = PrQr + Pr−1Qr−1.

Proof. First we prove that for k = 1, 2, . . . , s−1
2 we have

(16) Qs−1 = QkQs−(k+1) + Qk−1Qs−(k+2).

Really, since qs−1 = q1, Q1 = q1, Q0 = 1 then we obtain Qs−1 = qs−1Qs−2+
Qs−3 = Q1Qs−2 + Q0Qs−3 and (16) is true for k = 1. Suppose that (16) is
true for k = m, i.e.

(17) Qs−1 = QmQs−(m+1) + Qm−1Qs−(m+2).



Remark on Ankeny, Artin and Chowla conjecture 25

Then, for k = m + 1 in virtue of Qs−(m+1) = qs−(m+1)Qs−m−2 + Qs−m−3

and qs−(m+1) = qm+1 we get Qs−(m+1) = qm+1Qs−m−2 + Qs−m−3. By (17)
and the last equality it follows that Qs−1 = Qm+1Qs−m−2 + QmQs−m−3

and inductive proof of (16) is finished. Putting k = s−1
2

and ovbserving
that s−k−1 = s−1

2
, s−k−2 = s−1

2
−1, we obatin Qs−1 = Q2

s−1

2
−1

+Q2
s−1

2

.

In similar way we obtain that Ps−1 = PrQr + Pr−1Qr−1 and the proof of
Lemma 3 is complete.

Proof of Theorems

Proof of Theorem 1. Suppose that p | y0. Then by (13) of Lemma
2 we have

(18) c = (−1)r+1(P 2
r − pQ2

r).

From Lemma 2 we also obtain

(19) b = (−1)r+1(pQrQr−1 − PrPr−1).

Let L = cQr + bQr−1. Then by (18) and (19) it follows that

(20) L = (−1)r+1
(

Pr(PrQr − Pr−1Qr−1) − pQr(Q
2
r − Q2

r−1)
)

.

On the other hand from Lemma 2 we have

(21) PrQr − Pr−1Qr−1 = b(Q2
r + Q2

r−1).

Substituting (21) to (20) we obtain

(22) L = (−1)r+1
(

bPr(Q
2
r + Q2

r−1) − pQr(Q
2
r − Q2

r−1)
)

.

By Lemma 3 it follows that y0 = Qs−1 = Q2
r + Q2

r−1 and therefore from
(22) we get p | L. From (10) and (11) of Lemma 2 we have

(23) P 2
r + P 2

r−1 = (bQr + cQr−1)
2 + (cQr − bQr−1)

2.

On the other hand it is well-known the following indentity:

(24) (bQr +cQr−1)
2 +(cQr −bQr−1)

2 = (cQr +bQr−1)
2 +(bQr −cQr−1)

2.

From (23) and (24) we obtain

(25) P 2
r + P 2

r−1 = (cQr + bQr−1)
2 + (bQr − cQr−1)

2.
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From (15) of Lemma 2 and the assumption that p | y0 we obtain

(26) p2 | P 2
r + P 2

r−1.

By (25), (26) and the fact that p | L,L = cQr + bQr−1 it follows that
p | bQr − cQr−1. Now, we can prove the converse of the theorem. Assume
that

(27) p | cQr + bQr−1, p | bQr − cQr−1.

From (15) of Lemma 2 and Lemma 3 we obtain

(28) P 2
r + P 2

r−1 = p(Q2
r + Q2

r−1) = pQs−1 = py0.

By (27) and (25) it follows that p2 | P 2
r + P 2

r−1 and therefore from (28) we
get p | y0. The proof of the Theorem 1 is complete.

Proof of the Theorem 2. From Lemma 3 we have Ps−1 = PrQr +
Pr−1Qr−1. Substituting (10) and (11) of Lemma 2 to this equality we obtain

(29) Ps−1 = b(Q2
r − Q2

r−1) + 2cQrQr−1.

By (29) easily follows that

(30) P 2
s−1+1 = b2(Q2

r−Q2
r−1)

2+4bcQrQr−1(Q
2
r−Q2

r−1)+4c2Q2
rQ

2
r−1+1.

On the other hand from Lemma 2 we can deduce that

(31) c(Q2
r − Q2

r−1) + (−1)r+1 = 2bQrQr−1.

From (30) and (31) we obtain

(32) c2(P 2
s−1+1) = (b2+c2)

(

4(b2 + c2)Q2
rQ

2
r−1 − 4b(−1)r+1QrQr−1 + 1

)

.

Since 〈x0, y0〉 = 〈Ps−1, Qs−1〉 then P 2
s−1 + 1 = pQ2

q−1. Suppose that p | y0.
Then we have

(33) p3 | P 2
s−1 + 1.

By (33) and (32) it follows that

(34) p | 4bQrQr−1 − (−1)r+1,
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because p = b2 + c2. Now, we can assume that the relation (34) is satisfied.
Using (32) we obtain

(35) p2 | c2(P 2
s−1 + 1).

Since p = b2 + c2 and (p, c) = 1, by (35) it follows that

(36) p2 | P 2
s−1 + 1.

But P 2
s−1 + 1 = pQ2

s−1 and consequently from (36) we obtain p | Qs−1,
Qs−1 = y0. The proof of the Theorem 2 is complete.

From Theorem 1 we obtain the following:

Corollary. Let 〈x0, y0〉 be fundamtental solution of the equation x2 −
py2 = −1, where p ≡ 1 (mod 4) is a prime such that p = b2 + c2 and
let

√
p = [q0; q1, q2, . . . , qs], s = 2r + 1 be the representation of

√
p as

a simple continued fraction. If p | y0 then ordp(cQr − bQr−1) = 1 or
ordp(bQr − cQr−1) = 1.

Proof. If p | y0 then by the Theorem 1 it follows that α = ordp(cQr +
bQr−1) ≥ 1 and β = ordp(bQr − cQr−1) ≥ 1. Suppose that α ≥ 2 and
β ≥ 2. Then we have

(37) p2 | cQr + bQr−1, p2 | bQr − cQr−1.

From (37) we obtain p2 | c2Qr + bcQr−1 and p2 | b2Qr − bcQr−1. Hence

(38) p2 | (b2 + c2)Qr.

Since p = b2 + c2 then by (38) it follows that p | Qr. By y0 = Qs−1 =
Q2

r + Q2
r−1 and virtue of p | y0, p | Qr we get p | Qr−1. On the other hand

from Lemma 2 we have Pr = bQr + cQr−1 and therefore we obtain p | Pr.
Hence we have p | Pr and p | Qr, which is impossible because (Pr, Qr) = 1.
The proof is complete.

Remark. If the representation of
√

d as a simple continued fraction
has the period s = 3 then d|/y0, where 〈x0, y0〉 is the fundamental solution
of the non-Pellian equation x2 − dy2 = −1. Really, putting s = 3 in Lemma
3 we obtain

(39) y0 = Q2
0 + Q2

1 = 1 + q2
1.
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On the other hand it is well-known (see, [8]; Thm. 4, p. 323) that all natural
numbers d, for which the representation of

√
d as a simple continued fraction

has the period s = 3 are given by the formula:

(40) d
(

(

q2
1 + 1

)

k +
q1

2

)2

+ 2q1k + 1,

where q1 is an even natural number and k = 1, 2, 3, . . . Suppose that d | y0,
then we have d ≤ y0. By (39) and (40) it follows that d > y0 and we get a
contradiction.

From this observation follows that A-A-C conjecture is true for all
primes p ≡ 1 (mod 4), having the representation in the form (40).
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