Remark on Ankeny, Artin and Chowla conjecture

ALEKSANDER GRYTCZUK

Abstract. In this paper we give two new criteria connected with well-known and still open conjecture of Ankeny, Artin and Chowla.

Introduction

In the paper [2] Ankeny, Artin and Chowla conjectured that, if $p \equiv 1 \pmod{4}$ is a prime and $\varepsilon = 1/2(T + U\sqrt{p}) > 1$ is the fundamental unit of the quadratic number field $K = Q(\sqrt{p})$ then $p \nmid U$. It was shown by Mordell [5] in the case $p \equiv 5 \pmod{8}$ and by Ankeny and Chowla [3] for the remaining primes $p \equiv 1 \pmod{4}$ that $p \mid U$ if and only if $p \nmid B_{\frac{p-1}{2}}$, where B_{2n} is 2n-th Bernoulli number. Another criterion has been given by T. Agoh in [1]. Beach, Williams and Zarnke [4] verified the conjecture of Ankeny, Artin and Chowla for all primes p < 6270713. Sheingorn [6], [7] gave interesting connections between the fundamental solution $\langle x_0, y_0 \rangle$ of the non-Pellian equation

(1)
$$x^2 - py^2 = -1, \ p \equiv 1 \pmod{4}, \ p \text{ is a prime}$$

and the manner of the reflection lines on the modular surface and also of the \sqrt{p} Riemann surface. We prove the following two theorems:

Theorem 1. Let $p \equiv 1 \pmod{4}$ be a prime and $p = b^2 + c^2$. Moreover, let $\sqrt{p} = [q_0; \overline{q_1, q_2, \ldots, q_s}]$ be the representation of \sqrt{p} as a simple continued fraction and let $\langle x_0, y_0 \rangle$ be the fundamental solution of (1). Then $p \mid y_0$ if and only if $p \mid cQ_r + bQ_{r-1}$ and $p \mid Q_r - cQ_{r-1}$, where $r = \frac{s-1}{2}$ and P_n/Q_n is n-th convergent of \sqrt{p} .

Theorem 2. Assume that the assumptions of the Theorem 1 are satisfied. Then $p \mid y_0$ if and only if $p \mid 4bQ_rQ_{r-1} - (-1)^{r+1}$, where $r = \frac{s-1}{2}$ and P_n/Q_n is n-th convergent of \sqrt{p} .

Basic Lemmas

Lemma 1. Let $\sqrt{d} = [q_0; \overline{q_1, \ldots, q_s}]$ be the representation of \sqrt{d} as a simple continued fraction. Then

(2)
$$q_n = \left[\frac{q_0 + b_n}{c_n}\right], \quad b_n + b_{n+1} = c_n q_n, \quad d = b_{n+1}^2 + c_n c_{n+1}$$

(3) if s = 2r + 1 then minimal number k, for which $c_{k+1} = c_k$ is $k = \frac{s-1}{2}$,

(4)
$$dQ_{n-1} = b_n P_{n-1} + c_n P_{n-2},$$

(6)
$$P_{n-1} = b_n Q_{n-1} + c_n Q_{n-2},$$

(7)
$$P_{n-1}^2 - dQ_{n-1}^2 = (-1)^n c_n,$$

where P_n/Q_n is the *n*-th convergent of \sqrt{d} .

This Lemma is a collection of well-known results of the theory of continued fractions.

From Lemma 1 we can deduce for the case $d = p \equiv 1 \pmod{4}$ and $r = \frac{s-1}{2}$ the following:

Lemma 2. Let $p \equiv 1 \pmod{4}$ be a prime and let $\sqrt{p} = [q_0; \overline{q_1, \ldots, q_s}]$, where s = 2r + 1 then

(8)
$$p = b_{r+1}^2 + c_r^2 = b^2 + c^2; \quad b_{r+1} = b, \quad c_r = c$$

$$(9) pQ_r = bP_r + cP_{r-1}$$

$$(10) P_r = bQ_r + cQ_{r-1}$$

(11)
$$P_{r-1} = cQ_r - bQ_{r-1}$$

(12)
$$P_r Q_{r-1} - Q_r P_{r-1} = (-1)^{r+1}$$

(13)
$$P_r^2 - pQ_r^2 = (-1)^{r+1}c$$

(14)
$$P_{r-1}^2 - pQ_{r-1}^2 = (-1)^r c$$

(15)
$$P_{r-1}^2 + P_r^2 = p(Q_{r-1}^2 + Q_r^2).$$

Lemma 3. Let $\sqrt{d} = [q_0; \overline{q_1, \ldots, q_s}]$ and s = 2r + 1, then $Q_{s-1} = Q_{\frac{s-1}{2}-1}^2 + Q_{\frac{s-1}{2}}^2$ and

$$P_{s-1} = P_r Q_r + P_{r-1} Q_{r-1}.$$

Proof. First we prove that for $k = 1, 2, \ldots, \frac{s-1}{2}$ we have

(16)
$$Q_{s-1} = Q_k Q_{s-(k+1)} + Q_{k-1} Q_{s-(k+2)}$$

Really, since $q_{s-1} = q_1$, $Q_1 = q_1$, $Q_0 = 1$ then we obtain $Q_{s-1} = q_{s-1}Q_{s-2} + Q_{s-3} = Q_1Q_{s-2} + Q_0Q_{s-3}$ and (16) is true for k = 1. Suppose that (16) is true for k = m, i.e.

(17)
$$Q_{s-1} = Q_m Q_{s-(m+1)} + Q_{m-1} Q_{s-(m+2)}.$$

Then, for k = m + 1 in virtue of $Q_{s-(m+1)} = q_{s-(m+1)}Q_{s-m-2} + Q_{s-m-3}$ and $q_{s-(m+1)} = q_{m+1}$ we get $Q_{s-(m+1)} = q_{m+1}Q_{s-m-2} + Q_{s-m-3}$. By (17) and the last equality it follows that $Q_{s-1} = Q_{m+1}Q_{s-m-2} + Q_mQ_{s-m-3}$ and inductive proof of (16) is finished. Putting $k = \frac{s-1}{2}$ and ovbserving that $s - k - 1 = \frac{s-1}{2}$, $s - k - 2 = \frac{s-1}{2} - 1$, we obtain $Q_{s-1} = Q_{\frac{s-1}{2}-1}^2 + Q_{\frac{s-1}{2}}^2$. In similar way we obtain that $P_{s-1} = P_rQ_r + P_{r-1}Q_{r-1}$ and the proof of Lemma 3 is complete.

Proof of Theorems

Proof of Theorem 1. Suppose that $p \mid y_0$. Then by (13) of Lemma 2 we have

(18)
$$c = (-1)^{r+1} (P_r^2 - pQ_r^2).$$

From Lemma 2 we also obtain

(19)
$$b = (-1)^{r+1} (pQ_r Q_{r-1} - P_r P_{r-1}).$$

Let $L = cQ_r + bQ_{r-1}$. Then by (18) and (19) it follows that

(20)
$$L = (-1)^{r+1} \left(P_r (P_r Q_r - P_{r-1} Q_{r-1}) - p Q_r (Q_r^2 - Q_{r-1}^2) \right).$$

On the other hand from Lemma 2 we have

(21)
$$P_r Q_r - P_{r-1} Q_{r-1} = b(Q_r^2 + Q_{r-1}^2).$$

Substituting (21) to (20) we obtain

(22)
$$L = (-1)^{r+1} \left(b P_r (Q_r^2 + Q_{r-1}^2) - p Q_r (Q_r^2 - Q_{r-1}^2) \right).$$

By Lemma 3 it follows that $y_0 = Q_{s-1} = Q_r^2 + Q_{r-1}^2$ and therefore from (22) we get $p \mid L$. From (10) and (11) of Lemma 2 we have

(23)
$$P_r^2 + P_{r-1}^2 = (bQ_r + cQ_{r-1})^2 + (cQ_r - bQ_{r-1})^2.$$

On the other hand it is well-known the following indentity:

(24)
$$(bQ_r + cQ_{r-1})^2 + (cQ_r - bQ_{r-1})^2 = (cQ_r + bQ_{r-1})^2 + (bQ_r - cQ_{r-1})^2.$$

From (23) and (24) we obtain

(25)
$$P_r^2 + P_{r-1}^2 = (cQ_r + bQ_{r-1})^2 + (bQ_r - cQ_{r-1})^2.$$

From (15) of Lemma 2 and the assumption that $p \mid y_0$ we obtain

(26)
$$p^2 \mid P_r^2 + P_{r-1}^2$$

By (25), (26) and the fact that $p \mid L, L = cQ_r + bQ_{r-1}$ it follows that $p \mid bQ_r - cQ_{r-1}$. Now, we can prove the converse of the theorem. Assume that

(27)
$$p \mid cQ_r + bQ_{r-1}, \quad p \mid bQ_r - cQ_{r-1}.$$

From (15) of Lemma 2 and Lemma 3 we obtain

(28)
$$P_r^2 + P_{r-1}^2 = p(Q_r^2 + Q_{r-1}^2) = pQ_{s-1} = py_0.$$

By (27) and (25) it follows that $p^2 | P_r^2 + P_{r-1}^2$ and therefore from (28) we get $p | y_0$. The proof of the Theorem 1 is complete.

Proof of the Theorem 2. From Lemma 3 we have $P_{s-1} = P_rQ_r + P_{r-1}Q_{r-1}$. Substituting (10) and (11) of Lemma 2 to this equality we obtain

(29)
$$P_{s-1} = b(Q_r^2 - Q_{r-1}^2) + 2cQ_rQ_{r-1}.$$

By (29) easily follows that

(30)
$$P_{s-1}^2 + 1 = b^2 (Q_r^2 - Q_{r-1}^2)^2 + 4bcQ_rQ_{r-1}(Q_r^2 - Q_{r-1}^2) + 4c^2Q_r^2Q_{r-1}^2 + 1.$$

On the other hand from Lemma 2 we can deduce that

(31)
$$c(Q_r^2 - Q_{r-1}^2) + (-1)^{r+1} = 2bQ_rQ_{r-1}.$$

From (30) and (31) we obtain

(32)
$$c^2(P_{s-1}^2+1) = (b^2+c^2) \left(4(b^2+c^2)Q_r^2Q_{r-1}^2 - 4b(-1)^{r+1}Q_rQ_{r-1} + 1\right).$$

Since $\langle x_0, y_0 \rangle = \langle P_{s-1}, Q_{s-1} \rangle$ then $P_{s-1}^2 + 1 = pQ_{q-1}^2$. Suppose that $p \mid y_0$. Then we have

(33)
$$p^3 \mid P_{s-1}^2 + 1.$$

By (33) and (32) it follows that

(34)
$$p \mid 4bQ_rQ_{r-1} - (-1)^{r+1},$$

because $p = b^2 + c^2$. Now, we can assume that the relation (34) is satisfied. Using (32) we obtain

(35)
$$p^2 \mid c^2(P_{s-1}^2 + 1).$$

Since $p = b^2 + c^2$ and (p, c) = 1, by (35) it follows that

(36)
$$p^2 \mid P_{s-1}^2 + 1.$$

But $P_{s-1}^2 + 1 = pQ_{s-1}^2$ and consequently from (36) we obtain $p \mid Q_{s-1}$, $Q_{s-1} = y_0$. The proof of the Theorem 2 is complete.

From Theorem 1 we obtain the following:

Corollary. Let $\langle x_0, y_0 \rangle$ be fundamental solution of the equation $x^2 - py^2 = -1$, where $p \equiv 1 \pmod{4}$ is a prime such that $p = b^2 + c^2$ and let $\sqrt{p} = [q_0; \overline{q_1, q_2, \ldots, q_s}]$, s = 2r + 1 be the representation of \sqrt{p} as a simple continued fraction. If $p \mid y_0$ then $\operatorname{ord}_p(cQ_r - bQ_{r-1}) = 1$ or $\operatorname{ord}_p(bQ_r - cQ_{r-1}) = 1$.

Proof. If $p \mid y_0$ then by the Theorem 1 it follows that $\alpha = \operatorname{ord}_p(cQ_r + bQ_{r-1}) \geq 1$ and $\beta = \operatorname{ord}_p(bQ_r - cQ_{r-1}) \geq 1$. Suppose that $\alpha \geq 2$ and $\beta \geq 2$. Then we have

(37)
$$p^2 | cQ_r + bQ_{r-1}, \qquad p^2 | bQ_r - cQ_{r-1}.$$

From (37) we obtain $p^2 \mid c^2Q_r + bcQ_{r-1}$ and $p^2 \mid b^2Q_r - bcQ_{r-1}$. Hence

(38)
$$p^2 \mid (b^2 + c^2)Q_r.$$

Since $p = b^2 + c^2$ then by (38) it follows that $p \mid Q_r$. By $y_0 = Q_{s-1} = Q_r^2 + Q_{r-1}^2$ and virtue of $p \mid y_0, p \mid Q_r$ we get $p \mid Q_{r-1}$. On the other hand from Lemma 2 we have $P_r = bQ_r + cQ_{r-1}$ and therefore we obtain $p \mid P_r$. Hence we have $p \mid P_r$ and $p \mid Q_r$, which is impossible because $(P_r, Q_r) = 1$. The proof is complete.

Remark. If the representation of \sqrt{d} as a simple continued fraction has the period s = 3 then $d|y_0$, where $\langle x_0, y_0 \rangle$ is the fundamental solution of the non-Pellian equation $x^2 - dy^2 = -1$. Really, putting s = 3 in Lemma 3 we obtain

(39)
$$y_0 = Q_0^2 + Q_1^2 = 1 + q_1^2.$$

On the other hand it is well-known (see, [8]; Thm. 4, p. 323) that all natural numbers d, for which the representation of \sqrt{d} as a simple continued fraction has the period s = 3 are given by the formula:

(40)
$$d\left(\left(q_1^2+1\right)k+\frac{q_1}{2}\right)^2+2q_1k+1,$$

where q_1 is an even natural number and k = 1, 2, 3, ... Suppose that $d | y_0$, then we have $d \leq y_0$. By (39) and (40) it follows that $d > y_0$ and we get a contradiction.

From this observation follows that A-A-C conjecture is true for all primes $p \equiv 1 \pmod{4}$, having the representation in the form (40).

References

- T. Agoh, A note on unit and class number of real quadratic fields Acta Math. Sinica 5 (1989), 281–288.
- [2] N. C. ANKENY, E. ARTIN and S. CHOWLA, The class number of real quadratic number fields Annals of Math. 51 (1952), 479–483.
- [3] N. C. ANKENY and S. CHOWLA, A note on the class number of real quadratic fields, Acta Arith. VI. (1960), 145–147.
- [4] B. D. BEACH, H. C. WILLIMS and C. R. ZARNKE, Some computer results on units in quadratic and cubic fields, Proc. 25 Summer Mitting Canad. Math. Congr. (1971), 609–649.
- [5] L. J. MORDELL, On a Pellian equation conjecture, Acta Arith. VI. (1960), 137–144.
- [6] M. SHEINGORN, Hyperbolic reflections on Pell's equation, Theory 33. (1989), 267–285.
- [7] M. SHEINGORN, The \sqrt{p} Riemann surface, Acta. Arith. LXIII. 3. (1993), 255–266.
- [8] W. SIERPINSKI, Elementary Thory of Numbers, PWN-Warszawa, (1987)

Aleksander Grytczuk Intitute of Mathematics Department of Algebra and Number Theory T. Kotarbiński Pedagogical University Pl. Słowiański 9, 65-069 Zielona Góra Poland