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Some congruences concerning second
order linear recurrences

JAMES P. JONES and PÉTER KISS⋆

Abstract. Let Un and Vn (n=0,1,2,...) be sequences of integers satisfying a second

order linear recurrence relation with initial terms U0=0, U1=1, V0=2, V1=A. In this paper

we investigate the congruence properties of the terms Unk and Vnk, where the moduli are

powers of Un and Vn.

Let Un and Vn (n = 0, 1, 2, . . .) be second order linear recursive se-
quences of integers defined by

Un = AUn−1 − BUn−2 (n > 1)

and

Vn = AVn−1 − BVn−2 (n > 1),

where A and B are nonzero rational integers and the initial terms are U0 = 0,
U1 = 1, V0 = 2, V1 = A. Denote by α, β the roots of the characteristic
equation x2 − Ax + B = 0 and suppose D = A2 − 4B 6= 0 and hence that
α 6= β. In this case, as it is well known, the terms of the sequences can be
expressed as

(1) Un =
αn − βn

α − β
and Vn = αn + βn

for any n ≥ 0.
Many identities and congruence properties are known for the sequences

Un and Vn (see, e.g. [1], [4], [5] and [6]). Some congruence properties are
also known when the modulus is a power of a term of the sequences (see [2],
[3], [7] and [8]). In [3] we derived some congruences where the moduli was
U3

n, V 2
n or V 3

n . Among other congruences we proved that

Unk ≡ kBn k−1
2 Un (mod U3

n)

⋆
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when k is odd and a similar congruence for even k. In this paper we extend
the results of [3]. We derive congruences in which the moduli are product
of higher powers of Un and Vn.

Theorem. Let Un and Vn be second order linear recurrences defined

above and let D = A2 − 4B be the discriminant of the characteristic equa-

tion. Then for positive integers n and k we have

1. Unk≡kB
k−1
2

n
Un+

k(k
2
−1)

24 DB
k−3

2
n

U3
n

(mod D2U5
n
), k odd,

2. Unk≡
k

2 B
k−2
2

n
VnUn+

k(k
2
−4)

48 DB
k−4
2

n
VnU3

n
(mod D2VnU5

n
), k even,

3. Vnk≡k(−1)
k−1

2 B
k−1
2

n
Vn+

k(k
2
−1)

24 (−1)
k−3
2 B

k−3
2

n
V 3

n
(mod V 5

n
), k odd,

4. Vnk≡2(−1)
k

2 B
k

2
n+ k

2

4 (−1)
k−2
2 B

k−2
2

n
V 2

n
(mod V 4

n
), k even,

5. Unk≡Un(−1)
k−1
2 B

k−1
2

n+ k
2
−1
8 (−1)

k−3
2 B

k−3
2

n
UnV 2

n
(mod UnV 4

n
), k odd,

6. Unk≡
k

2 (−1)
k−2
2 B

k−2
2

n
UnVn+

k(k
2
−4)

48 (−1)
k−4
2 B

k−4
2

n
UnV 3

n
(mod UnV 5

n
), k even,

7. Vnk≡B
k−1

2
n

Vn+ k
2
−1
8 DB

k−3
2

n
VnU2

n
(mod D2VnU4

n
), k odd,

8. Vnk≡2B
k

2
n+ k

2

4 B
k−2

2
n

DU2
n

(mod D2U4
n
), k even.

We note that the congruences of [3] follow as consequences of this the-
orem.

For the proof of the Theorem we need some auxiliary results which are
known (see e.g. [6]) but we show short proofs for them. In the followings
we suppose that A > 0 and hence that

α =
A +

√
D

2
and β =

A −
√

D

2
,

so that α − β =
√

D, α + β = A, αβ = B and hence by (1)

(2) Un =
αn − βn

√
D

Lemma 1. For any integer n ≥ 0 we have

U3n = 3UnBn + DU3
n.

Proof. By (2), using that αβ = B, we have to prove that

α3n − β3n

√
D

= 3 · αn − βn

√
D

(αβ)n + D

(

αn − βn

√
D

)3

,
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which follows from α3n − β3n = 3(αn − βn)αnβn + (αn − βn)3.

Lemma 2. For any non-negative integers m and n we have

Um+2n = VnUm+n − BnUm.

Proof. Similarly as in the proof of Lemma 1,

αm+2n − βm+2n

√
D

= (αn + βn)
αm+n − βm+n

√
D

− (αβ)n αm − βm

√
D

is an identity which by (1) and (2), implies the lemma.

Lemma 3. For any n ≥ 0 we have

V2n = 2Bn + DU2
n = V 2

n − 2Bn and U2n = UnVn.

Proof. The identities

α2n +β2n = 2(αβ)n + D

(

αn − βn

√
D

)2

and
α2n− β2n

√
D

=
αn− βn

√
D

(αn + βn)

prove the lemma.

Proof of the Theorem. We prove the first congruence of the Theorem
by double induction on k. For k = 1 and k = 3, by Lemma 1, the congruence
is an identity. Suppose the congruence holds for k and k + 2, where k ≥ 1
is odd. Then by Lemma 2 and 3 we have

(3)

Un(k+4) = Unk+4n = V2nUnk+2n − B2nUnk

= (2Bn + DU2
n)Un(k+2) − B2nUnk

≡ (2Bn + DU2
n)Q − B2nR (mod D2U5

n),

where

(4) Q = (k + 2)B
k+1
2 nUn +

(k + 2)((k + 2)2 − 1)

24
DB

k−1
2 nU3

n

and

(5) R = kB
k−1
2 nUn +

k(k2 − 1)

24
DB

k−3
2 nU3

n.
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After some calculation (3), (4) and (5) imply

(6) Un(k+4) ≡ UnT + U3
nS (mod D2U5

n),

where
T = (2(k + 2) − k)B

k+3
2 n = (k + 4)B

(k+4)−1
2

and

S = (k + 2)DB
k+1
2 n + 2

(k + 2)
(

(k + 2)2 − 1
)

24
DB

k+1
2 n

− k(k2 − 1)

24
DB

k+1
2 n =

(k + 4)
(

(k + 4)2 − 1
)

24
DB

(k+4)−3
2 n,

and so by (6),

Un(k+4) ≡ (k + 4)B
(k+4)−1

2 Un

+
(k + 4)

(

(k + 4)2 − 1
)

24
DB

(k+4)−3
2 nU3

n (mod D2U5
n).

Hence the congruence holds also for k + 4 and for any odd positive integer
k.

The other congruences in the Theorem can be proved similarly using
Lemma 1, 2, 3 and the identities

U2n = VnUn,

V2n = V 2
n − 2Bn = 2Bn + DU2

n,

U3n = UnV 2
n − BnUn,

V3n = V 3
n − 3BnVn = BnVn + DVnU2

n,

U4n = UnV 3
n − 2BnUnVn,

V4n = V 4
n − 4BnV 2

n + 2B2n.
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