Pure powers in recurrence sequences

KÁLMÁN LIPTAI* and TIBOR TÓMÁCS

Abstract

Let G be a linear recursive sequence of order k satisfying the recursion $G_{n}=A_{1} G_{n-1}+\cdots+A_{k} G_{n-k}$. In the case $k=2$ it is known that there are only finitely many perfect powers in such a sequence.

Ribenboim and McDaniel proved for sequences with $k=2, G_{0}=0$ and $G_{1}=1$ that in general for a term G_{n} there are only finitely many terms G_{m} such that $G_{n} G_{m}$ is a perfect square. P. Kiss proved that for any n there exists a number q_{0}, depending on G and n, such that the equation $G_{n} G_{x}=w^{q}$ in positive integers x, w, q has no solution with $x>n$ and $q>q_{0}$. We show that for any n there are only finitely many $x_{1}, x_{2}, \ldots, x_{k}, x, w, q$ positive integers such that $G_{n} G_{x_{1}} \cdots G_{x_{k}} G_{x}=w^{q}$ and some conditions hold.

Let $R=R\left(A, B, R_{0}, R_{1}\right)$ be a second order linear recursive sequence defined by

$$
R_{n}=A R_{n-1}+B R_{n-2} \quad(n>1),
$$

where A, B, R_{0} and R_{1} are fixed rational integers. In the sequel we assume that the sequence is not a degenerate one, i.e. α / β is not a root of unity, where α and β denote the roots of the polynomial $x^{2}-A x-B$.

The special cases $R(1,1,0,1)$ and $R(2,1,0,1)$ of the sequence R is called Fibonacci and Pell sequence, respectively.

Many results are known about relationship of the sequences R and perfect powers. For the Fibonacci sequence Cohn [2] and Wylie [23] showed that a Fibonacci number F_{n} is a square only when $n=0,1,2$ or 12 . Pethő [12], furthermore London and Finkelstein $[9,10]$ proved that F_{n} is full cube only if $n=0,1,2$ or 6 . From a result of Ljunggren [8] it follows that a Pell number is a square only if $n=0,1$ or 7 and Pethő [12] showed that these are the only perfect powers in the Pell sequence. Similar, but more general results was showed by McDaniel and Ribenboim [11], Robbins [19,20] Cohn [3,4,5] and Pethő [15]. Shorey and Stewart [21] showed, that any non degenerate binary recurrence sequence contains only finitely many perfect powers which can be effictively determined. This results follows also from a result of Pethő [14].

[^0]Another type of problems was studied by Ribenboim and McDaniel. For a sequence R we say that the terms R_{m}, R_{n} are in the same squareclass if there exist non zero integers x, y such that

$$
R_{m} x^{2}=R_{n} y^{2}
$$

or equivalently

$$
R_{m} R_{n}=t^{2}
$$

where t is a positive rational integer.
A square-class is called trivial if it contains only one element. Ribenboim [16] proved that in the Fibonacci sequence the square-class of a Fi bonacci number F_{m} is trivial, if $m \neq 1,2,3,6$ or 12 and for the Lucas sequence $L(1,1,2,1)$ the square-class of a Lucas number L_{m} is trivial if $m \neq 0,1,3$ or 6 . For more general sequences $R(A, B, 0,1)$, with $(A, B)=1$, Ribenboim and McDaniel [17] obtained that each square class is finite and its elements can be effectively computed (see also Ribenboim [18]).

Further on we shall study more general recursive sequences.
Let $G=G\left(A_{1}, \ldots, A_{k}, G_{0}, \ldots, G_{k-1}\right)$ be a $k^{\text {th }}$ order linear recursive sequence of rational integers defined by

$$
G_{n}=A_{1} G_{n-1}+A_{2} G_{n-2}+\cdots+A_{k} G_{n-k} \quad(n>k-1)
$$

where A_{1}, \ldots, A_{k} and G_{0}, \ldots, G_{k-1} are not all zero integers. Denote by $\alpha=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}$ the distinct zeros of the polynomial $x^{k}-A_{1} x^{k-1}-$ $A_{2} x^{k-2}-\cdots-A_{k}$. Assume that $\alpha, \alpha_{2}, \ldots, \alpha_{s}$ has multiplicity $1, m_{2}, \ldots, m_{s}$ respectively and $|\alpha|>\left|\alpha_{i}\right|$ for $i=2, \ldots, s$. In this case, as it is known, the terms of the sequence can be written in the form

$$
\begin{equation*}
G_{n}=a \alpha^{n}+r_{2}(n) \alpha_{2}^{n}+\cdots+r_{s}(n) \alpha_{s}^{n} \quad(n \geq 0) \tag{1}
\end{equation*}
$$

where $r_{i}(i=2, \ldots, s)$ are polynomials of degree $m_{i}-1$ and the coefficients of the polynomials and a are elements of the algebraic number field $\mathbf{Q}\left(\alpha, \alpha_{2}, \ldots, \alpha_{s}\right)$. Shorey and Stewart [21] prowed that the sequence G does not contain $q^{\text {th }}$ powers if q is large enough. This result follows also from [7] and [22], where more general theorems where showed.

Kiss [6] generalized the square-class notion of Ribenboim and McDaniel. For a sequence G we say that the terms G_{m} and G_{n} are in the same $q^{\text {th }}$ power class if $G_{m} G_{n}=w^{q}$, where w, q rational integers and $q \geq 2$.

In the above mentioned paper Kiss proved that for any term G_{n} of the sequence G there is no terms G_{m} such that $m>n$ and G_{n}, G_{m} are elements of the same $q^{\text {th }}$-power class if q sufficiently large.

The purpose of this paper to generalize this result. We show that the under certain conditions the number of the solutions of equation

$$
G_{n} G_{x_{1}} G_{x_{2}} \cdots G_{x_{k}} G_{x}=w^{q}
$$

where n is fixed, are finite.
We use a well known result of Baker [1].
Lemma. Let $\gamma_{1}, \ldots, \gamma_{v}$ be non-zero algebraic numbers. Let M_{1}, \ldots, M_{v} be upper bounds for the heights of $\gamma_{1}, \ldots, \gamma_{v}$, respectively. We assume that M_{v} is at least 4. Further let b_{1}, \ldots, b_{v-1} be rational integers with absolute values at most B and let b_{v} be a non-zero rational integer with absolute value at most B^{\prime}. We assume that B^{\prime} is at least three. Let L defined by

$$
L=b_{1} \log \gamma_{1}+\cdots+b_{v} \log \gamma_{v}
$$

where the logarithms are assumed to have their principal values. If $L \neq 0$, then

$$
|L|>\exp \left(-C\left(\log B^{\prime} \log M_{v}+B / B^{\prime}\right)\right)
$$

where C is an effectively computable positive number depending on only the numbers $M_{1}, \ldots, M_{v-1}, \gamma_{1}, \ldots, \gamma_{v}$ and v (see Theorem 1 of [1] with $\left.\delta=1 / B^{\prime}\right)$.

Theorem. Let G be a $k^{\text {th }}$ order linear recursive sequence satisfying the above conditions. Assume that $a \neq 0$ and $G_{i} \neq a \alpha^{i}$ for $i>n_{0}$. Then for any positive integer n, k and K there exists a number q_{0}, depending on n, G, K and k, such that the equation

$$
\begin{equation*}
G_{n} G_{x_{1}} G_{x_{2}} \cdots G_{x_{k}} G_{x}=w^{q} \quad\left(n \leq x_{1} \leq \cdots \leq x_{k}<x\right) \tag{2}
\end{equation*}
$$

in positive integer $x_{1}, x_{2}, \ldots, x_{k}, x, w, q$ has no solution with $x_{k}<K n$ and $q>q_{0}$.

Proof of the theorem. We can assume, without loss of generality, that the terms of the sequence G are positive. We can also suppose that $n>n_{0}$ and n sufficiently large since otherwise our result follows from [20] and [7].

Let $x_{1}, x_{2}, \ldots, x_{k}, x, w, q$ positive integers satisfying (2) with the above conditions. Let ε_{m} be defined by
$\varepsilon_{m}:=\frac{1}{a} r_{2}(m)\left(\frac{\alpha_{2}}{\alpha}\right)^{m}+\frac{1}{a} r_{3}(m)\left(\frac{\alpha_{3}}{\alpha}\right)^{m}+\cdots+\frac{1}{a} r_{s}(m)\left(\frac{\alpha_{s}}{\alpha}\right)^{m} \quad(m \geq 0)$.

By (1) we have

$$
\left(1+\varepsilon_{n}\right)\left(1+\varepsilon_{x}\right) \prod_{i=1}^{k}\left(1+\varepsilon_{x_{i}}\right) a^{k+2} \alpha^{n+x+x_{1}+\cdots+x_{k}}=w^{q}
$$

from which

$$
\begin{align*}
q \log w & =(k+2) \log a+\left(n+x+\sum_{i=1}^{k} x_{i}\right) \log \alpha+\log \left(1+\varepsilon_{n}\right) \\
& +\log \left(1+\varepsilon_{x}\right)+\sum_{i=1}^{k} \log \left(1+\varepsilon_{x_{i}}\right) \tag{3}
\end{align*}
$$

follows. It is obvious that $x<n+x+\sum_{i=1}^{k} x_{i}<(k+2) x$. Using that $\log \left|1+\varepsilon_{m}\right|$ is bounded and $\lim _{m \rightarrow \infty} \frac{1}{a} r_{i}(m)\left(\frac{\alpha_{i}}{\alpha}\right)^{m}=0 \quad(i=2, \ldots, s)$, we have

$$
\begin{equation*}
c_{1} \frac{x}{q}<\log w<c_{2} \frac{x}{q} \tag{4}
\end{equation*}
$$

where c_{1} and c_{2} are constants.
Let L be defined by

$$
L:=\left|\log \frac{w^{q}}{G_{n} G_{x_{1}} G_{x_{2}} \cdots G_{x_{k}} a \alpha^{x}}\right|=\left|\log \left(1+\varepsilon_{x}\right)\right|
$$

By the definition of ε_{x} and the properties of logarithm function there exists a constant c_{3} that

$$
\begin{equation*}
L<e^{-c_{3} x} \tag{5}
\end{equation*}
$$

On the other hand, by the Lemma with $v=k+4, M_{k+4}=w, B^{\prime}=q$ and $B=x$ we obtain the estimation

$$
\begin{equation*}
L=\left|q \log w-\log G_{n}-\sum_{i=1}^{k} \log G_{x_{i}}-\log a-x \log \alpha\right|>e^{-C(\log q \log w+x / q)} \tag{6}
\end{equation*}
$$

where C depends on heights. By $x_{k}<K n$ heights depend on $G_{n}, \ldots, G_{K n}$, i.e. on n, K, k and on the parameters of the recurrence. By (4), (5) and (6) we have $c_{3} x<C(\log q \log w+x / q)<c_{4} \log q \log w$, i.e.

$$
\begin{equation*}
x<c_{5} \log q \log w \tag{7}
\end{equation*}
$$

with some c_{3}, c_{4}, c_{5}. Using (4) and (7) we get $c_{6} q \log w<x<c_{5} \log q \log w$, i.e. $q<c_{7} \log q$, where c_{6} and c_{7} are constants. But this inequality does not hold if $q>q_{0}=q_{0}(G, n, K, k)$, which proves the theorem.

References

[1] A. Baker, A sharpening of the bounds for linear forms in logarithms II, Acta Arithm. 24 (1973), 33-36.
[2] J. H. E. Cohn, On square Fibonacci numbers, J. London Math. Soc. 39 (1964), 537-540.
[3] J. H. E. Cohn, Squares in some recurrent sequences, Pacific J. Math. 41 (1972), 631-646.
[4] J. H. E. Сонn, Eight Diophantine equations, Proc. London Math. Soc. 16 (1966), 153-166.
[5] J. h. E. Сонn, Five Diophatine equations, Math. Scand. 21 (1967), 61-70.
[6] P. Kiss, Pure powers and power classes in recurrence sequences, (to appear).
[7] P. Kiss, Differences of the terms of linear recurrences, Studia Sci. Math. Hungar. 20 (1985), 285-293.
[8] W. Ljunggren, Zur Theorie der Gleichung $x^{2}+1=D y^{4}$, Avh. Norske Vid Akad. Oslo 5 (1942).
[9] J. London and R. Finkelstein, On Fibonacci and Lucas numbers which are perfect powers, Fibonacci Quart. 7 (1969) 476-481, 487, errata ibid 8 (1970) 248.
[10] J. London and R. Finkelstein, On Mordell's equation $y^{2}-k=x^{3}$, Bowling Green University Press (1973).
[11] W. L. McDaniel and P. Ribenboim, Squares and double-squares in Lucas sequences, C. R. Math. Acad. Sci. Soc. R. Canada 14 (1992), 104-108.
[12] A. Ретнó, Full cubes in the Fibonacci sequence, Publ. Math. Debrecen 30 (1983), 117-127.
[13] A. Ретнó, The Pell sequence contains only trivial perfect powers, Coll. Math. Soc. J. Bolyai, 60 sets, Graphs and Numbers, Budapest, (1991), 561-568.
[14] A. Ретнô, Perfect powers in second order linear recurrences, J. Number Theory 15 (1982), 5-13.
[15] A. Pethô, Perfect powers in second order recurrences, Topics in Classical Number Theory, Akadémiai Kiadó, Budapest, (1981), 1217-1227.
[16] P. Ribenboim, Square classes of Fibonacci and Lucas numbers, Portugaliae Math. 46 (1989), 159-175.
[17] P. Ribenboim and W. L. McDaniel, Square classes of Fibonacci and Lucas sequences, Portugaliae Math., 48 (1991), 469-473.
[18] P. Ribenboim, Square classes of $\left(a^{n}-1\right) /(a-1)$ and $a^{n}+1$, Sichuan Daxue Xunebar 26 (1989), 196-199.
[19] N. Robbins, On Fibonacci numbers of the form $p x^{2}$, where p is prime, Fibonacci Quart. 21 (1983), 266-271.
[20] N. Robbins, On Pell numbers of the form $P X^{2}$, where P is prime, Fibonacci Quart. 22 (1984), 340-348.
[21] T. N. Shorey and C. L. Stewart, On the Diophantine equation $a x^{2 t}+$ $b x^{t} y+c y^{2}=d$ and pure powers in recurrence sequences, Math. Scand. 52 (1983), 24-36.
[22] T. N. Shorey and C. L. Stewart, Pure powers in recurrence sequences and some related Diophatine equations, J. Number Theory 27 (1987), 324-352.
[23] O. Wylie, In the Fibonacci series $F_{1}=1, F_{2}=1, F_{n+1}=F_{n}+F_{n-1}$ the first, second and twelvth terms are squares, Amer. Math. Monthly 71 (1964), 220-222.

Kálmán Liptai and Tibor Tómács
Eszterházy Károly Teachers' Training College
Department of Mathematics
Leányka u. 4.
3301 Eger, Pf. 43.
Hungary
E-mail: liptaik@gemini.ektf.hu tomacs@gemini.ektf.hu

[^0]: * Research supported by the Hungarian National Research Science Foundation, Operating Grant Number OTKA T 16975 and 020295.

