
Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae, 24. (1997) pp. 35–40

Pure powers in recurrence sequences

KÁLMÁN LIPTAI⋆ and TIBOR TÓMÁCS

Abstract. Let G be a linear recursive sequence of order k satisfying the recursion

Gn=A1Gn−1+···+AkGn−k. In the case k=2 it is known that there are only finitely many

perfect powers in such a sequence.

Ribenboim and McDaniel proved for sequences with k=2, G0=0 and G1=1 that in

general for a term Gn there are only finitely many terms Gm such that GnGm is a perfect

square. P. Kiss proved that for any n there exists a number q0, depending on G and

n, such that the equation GnGx=wq in positive integers x,w,q has no solution with x>n

and q>q0. We show that for any n there are only finitely many x1,x2,...,xk,x,w,q positive

integers such that GnGx1
···Gxk

Gx=wq and some conditions hold.

Let R = R(A,B,R0, R1) be a second order linear recursive sequence
defined by

Rn = ARn−1 + BRn−2 (n > 1),

where A, B, R0 and R1 are fixed rational integers. In the sequel we assume
that the sequence is not a degenerate one, i.e. α/β is not a root of unity,
where α and β denote the roots of the polynomial x2 − Ax − B.

The special cases R(1, 1, 0, 1) and R(2, 1, 0, 1) of the sequence R is called
Fibonacci and Pell sequence, respectively.

Many results are known about relationship of the sequences R and
perfect powers. For the Fibonacci sequence Cohn [2] and Wylie [23] showed
that a Fibonacci number Fn is a square only when n = 0, 1, 2 or 12. Pethő
[12], furthermore London and Finkelstein [9,10] proved that Fn is full cube
only if n = 0, 1, 2 or 6. From a result of Ljunggren [8] it follows that
a Pell number is a square only if n = 0, 1 or 7 and Pethő [12] showed
that these are the only perfect powers in the Pell sequence. Similar, but
more general results was showed by McDaniel and Ribenboim [11], Robbins
[19,20] Cohn [3,4,5] and Pethő [15]. Shorey and Stewart [21] showed, that
any non degenerate binary recurrence sequence contains only finitely many
perfect powers which can be effictively determined. This results follows also
from a result of Pethő [14].

⋆
Research supported by the Hungarian National Research Science Foundation, Operating

Grant Number OTKA T 16975 and 020295.



36 Kálmán Liptai and Tibor Tómács

Another type of problems was studied by Ribenboim and McDaniel.
For a sequence R we say that the terms Rm, Rn are in the same square-
class if there exist non zero integers x, y such that

Rmx2 = Rny2,

or equivalently

RmRn = t2,

where t is a positive rational integer.

A square-class is called trivial if it contains only one element. Riben-
boim [16] proved that in the Fibonacci sequence the square-class of a Fi-
bonacci number Fm is trivial, if m 6= 1, 2, 3, 6 or 12 and for the Lucas
sequence L(1, 1, 2, 1) the square-class of a Lucas number Lm is trivial if
m 6= 0, 1, 3 or 6. For more general sequences R(A,B, 0, 1), with (A,B) = 1,
Ribenboim and McDaniel [17] obtained that each square class is finite and
its elements can be effectively computed (see also Ribenboim [18]).

Further on we shall study more general recursive sequences.

Let G = G(A1, . . . , Ak, G0, . . . , Gk−1) be a kth order linear recursive
sequence of rational integers defined by

Gn = A1Gn−1 + A2Gn−2 + · · · + AkGn−k (n > k − 1),

where A1, . . . , Ak and G0, . . . , Gk−1 are not all zero integers. Denote by
α = α1, α2, . . . , αs the distinct zeros of the polynomial xk − A1x

k−1 −
A2x

k−2−· · ·−Ak. Assume that α,α2, . . . , αs has multiplicity 1,m2, . . . ,ms

respectively and |α| > |αi| for i = 2, . . . , s. In this case, as it is known, the
terms of the sequence can be written in the form

(1) Gn = aαn + r2(n)αn
2 + · · · + rs(n)αn

s (n ≥ 0) ,

where ri(i = 2, . . . , s) are polynomials of degree mi − 1 and the coeffi-
cients of the polynomials and a are elements of the algebraic number field
Q(α,α2, . . . , αs). Shorey and Stewart [21] prowed that the sequence G does
not contain qth powers if q is large enough. This result follows also from [7]
and [22], where more general theorems where showed.

Kiss [6] generalized the square-class notion of Ribenboim and McDaniel.
For a sequence G we say that the terms Gm and Gn are in the same qth-
power class if GmGn = wq , where w, q rational integers and q ≥ 2.

In the above mentioned paper Kiss proved that for any term Gn of the
sequence G there is no terms Gm such that m > n and Gn, Gm are elements
of the same qth-power class if q sufficiently large.
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The purpose of this paper to generalize this result. We show that the
under certain conditions the number of the solutions of equation

GnGx1
Gx2

· · ·Gxk
Gx = wq

where n is fixed, are finite.
We use a well known result of Baker [1].

Lemma. Let γ1, . . . , γv be non-zero algebraic numbers. Let M1, . . . ,Mv

be upper bounds for the heights of γ1, . . . , γv , respectively. We assume that

Mv is at least 4. Further let b1, . . . , bv−1 be rational integers with absolute

values at most B and let bv be a non-zero rational integer with absolute

value at most B′. We assume that B′ is at least three. Let L defined by

L = b1 log γ1 + · · · + bv log γv,

where the logarithms are assumed to have their principal values. If L 6= 0,
then

|L| > exp(−C(log B′ log Mv + B/B′)),

where C is an effectively computable positive number depending on only

the numbers M1, . . . ,Mv−1, γ1, . . . , γv and v (see Theorem 1 of [1] with
δ = 1/B′).

Theorem. Let G be a kth order linear recursive sequence satisfying

the above conditions. Assume that a 6= 0 and Gi 6= aαi for i > n0. Then

for any positive integer n, k and K there exists a number q0, depending on

n,G,K and k, such that the equation

(2) GnGx1
Gx2

· · ·Gxk
Gx = wq (n ≤ x1 ≤ · · · ≤ xk < x)

in positive integer x1, x2, . . . , xk, x, w, q has no solution with xk < Kn and

q > q0.

Proof of the theorem. We can assume, without loss of generality,
that the terms of the sequence G are positive. We can also suppose that
n > n0 and n sufficiently large since otherwise our result follows from [20]
and [7].

Let x1, x2, . . . , xk, x, w, q positive integers satisfying (2) with the above
conditions. Let εm be defined by

εm :=
1

a
r2(m)

(α2

α

)m

+
1

a
r3(m)

(α3

α

)m

+ · · ·+
1

a
rs(m)

(αs

α

)m

(m ≥ 0).
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By (1) we have

(1 + εn) (1 + εx)

k
∏

i=1

(1 + εxi
) ak+2αn+x+x1+···+xk = wq

from which

(3)

q log w = (k + 2) log a +

(

n + x +

k
∑

i=1

xi

)

log α + log (1 + εn)

+ log (1 + εx) +
k
∑

i=1

log (1 + εxi
)

follows. It is obvious that x < n + x +
k
∑

i=1

xi < (k + 2)x. Using that

log |1 + εm| is bounded and lim
m→∞

1
a
ri(m)

(

αi

α

)m
= 0 (i = 2, . . . , s), we

have

(4) c1

x

q
< log w < c2

x

q

where c1 and c2 are constants.
Let L be defined by

L :=

∣

∣

∣

∣

log
wq

GnGx1
Gx2

· · ·Gxk
aαx

∣

∣

∣

∣

= |log (1 + εx)| .

By the definition of εx and the properties of logarithm function there exists
a constant c3 that

(5) L < e−c3x.

On the other hand, by the Lemma with v = k + 4,Mk+4 = w,B′ = q and
B = x we obtain the estimation

(6) L=

∣

∣

∣

∣

q log w−log Gn−

k
∑

i=1

log Gxi
−log a−x log α

∣

∣

∣

∣

>e−C(log q log w+x/q)

where C depends on heights. By xk < Kn heights depend on Gn, . . . , GKn,
i.e. on n,K, k and on the parameters of the recurrence. By (4), (5) and (6)
we have c3x < C(log q log w + x/q) < c4 log q log w, i.e.

(7) x < c5 log q log w
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with some c3, c4, c5. Using (4) and (7) we get c6q log w < x < c5 log q log w,
i.e. q < c7 log q, where c6 and c7 are constants. But this inequality does not
hold if q > q0 = q0(G,n,K, k), which proves the theorem.
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