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A note on the products of the terms
of linear recurrences

LÁSZLÓ SZALAY

Abstract. For an integer ν>1 let G(i) (i=1,...,ν) be linear recurrences defined by

G(i)
n =A

(i)
1 G

(i)
n−1

+···+A
(i)

ki
Gn−ki

(n≥ki).

In the paper we show that the equation

dG(1)
x1

···G(ν)
xν

=swq,

where d,s,w,q,xi are positive integers satisfying some conditions, implies the inequality

q<q0 with some effectively computable constant q0. This result generalizes some earlier

results of Kiss, Pethő, Shorey and Stewart.

1. Introduction

Let G(i) = {G
(i)
n }∞n=0 (i = 1, 2, . . . , ν) be linear recurrences of order ki

(ki ≥ 2) defined by

(1) G(i)
n = A

(i)
1 G

(i)
n−1 + · · · + A

(i)
ki

G
(i)
n−ki

(n ≥ ki),

where the initial values G
(i)
j (j = 0, 1, . . . , ki − 1) and the coefficients A

(i)
l

(l = 1, 2, . . . , ki) of the sequences are rational integers. We suppose, that

A
(i)
ki

6= 0 and there is at least one non-zero initial value for any recurrences.

By α
(i)
1 = γi, α

(i)
2 , . . . , α

(i)
ti

we denote the distinct roots of the charac-
teristic polynomial

pi(x) = xki − A
(i)
1 xki−1 − · · · − A

(i)
ki

of the sequence G(i), and we assume that ti > 1 and |γi| > |α
(i)
j | for j > 1.

Consequently |γi| > 1. Suppose that the multiplicity of the roots γi are 1.
Then the terms of the sequences G(i) (i = 1, 2, . . . , ν) can be written in the
form

(2) G(i)
n = aiγ

n
i + p

(i)
2 (n)

(

α
(i)
2

)n

+ · · · + p
(i)
ti

(n)
(

α
(i)
ti

)n

(n ≥ 0),
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where ai 6= 0 are fixed numbers and p
(i)
j (j = 1, 2 . . . , ti) are polynomials of

Q(γi, α
(i)
2 , . . . , α

(i)
ti

)[x]

(see e.g. [8]).

A. Pethő [4,5,6], T. N. Shorey and C. L. Stewart [7] showed that a
sequence G(= G(i)) does not contain q-th powers if q is large enough. Similar
result was obtained by P. Kiss in [2]. In [3] we investigated the equation

(3) GxHy = wq

where G and H are linear recurrences satisfying some condititons, and
showed that if x and y are not too far from each other then q is (effec-
tively computable) upper bounded: q < q0.

2. Theorem

Now we shall investigate the generalization of equation (3). Let d ∈ Z

be a fixed non-zero rational integer, and let p1, . . . , pt be given rational
primes. Denote by S the set of all rational integers composed of p1, . . . , pt:

(4) S = {s ∈ Z : s = ±pe1
1 · · · pet

t , ei ∈ N} .

In particular 1 ∈ S (e1 = · · · = et = 0). Let

(5) G(x1, . . . , xν) = G(1)
x1

. . . G(ν)
xν

be a function defined on the set Nν . By the definitions of the sequences
G(i)’s G takes integer values. With a given d let us consider the equation

dG(x1, . . . , xν) = swq

in positive integers w > 1, q, xi (i = 1, 2, . . . , ν) and s ∈ S. We will
show under some conditions for G that q < q0 is also fulfilled if q satisfies
the equation above. Exactly, using the Baker-method, we will prove the
following

Theorem. Let G(x1, . . . , xν) be the function defined in (5). Futher let
0 6= d ∈ Z be a fixed integer, and let δ be a real number with 0 < δ < 1.

Assume that G(x1, . . . , xν) 6=
ν
∏

i=1

aiγ
xi

i if xi > n0 (i = 1, 2, . . . , ν). Then the

equation

(6) dG(x1, . . . , xν) = swq
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in positive integers w > 1, q, x1, . . . , xν and s ∈ S for which xj >

δ maxi{xi} (j = 1, 2, . . . , ν), implies that q < q0, where q0 is an effectively
computable number depending on n0, δ,G

(1) , . . . , G(ν).

3. Lemmas

In the proof of our Theorem we need a result due to A. Baker [1].

Lemma 1. Let π1, π2, . . . , πr be non-zero algebraic numbers of heights
not exceeding M1,M2, . . . ,Mr respectively (Mr ≥ 4). Further let b1, b2, . . .,
br−1 be rational integers with absolute values at most B and let br be a
non-zero rational integer with absolute value at most B′ (B′ ≥ 3). Suppose,
that

∑r
i=1 bi log πi 6= 0. Then there exists an effectively computable constant

C = C(r,M1, . . . ,Mr−1, π1, . . . , πr) such that

(7)

∣

∣

∣

∣

∣

r
∑

i=1

bi log πi

∣

∣

∣

∣

∣

> e−C(log Mr log B′+ B

B′ ),

where logarithms have their principal values.

We need the following auxiliary result.

Lemma 2. Let c1, . . . , ck be positive real numbers and 0 < δ < 1
be an arbitrary real number. Further let x1, . . . , xk be natural numbers
with maximum value xm = maxi{xi} (m ∈ {1, . . . , k}). If xj > δxm (j =
1, . . . , k) and xm > x0 then there exists a real number c > 0, which depends
on k, δ,maxi{ci} and x0, for which

(8)

k
∑

i=1

e−cixi < e−c(x1+···+xk) = e−cx,

where x = x1 + · · · + xk.

Proof of Lemma 2. Using the conditions of the lemma we have

k
∑

i=1

e−cixi <

k
∑

i=1

e−ciδxm =
k
∑

i=1

e−dixm ,

where di = δci. If dm = mini{di} then

k
∑

i=1

e−dixm ≤ ke−dmxm = elog k−dmxm .
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Since xm ≥ x0, it follows that

elog k−dmxm ≤ e−d⋆
mxm = e−ckxm ≤ e−cx

with a suitable constant d⋆
m and c =

d⋆
m

k
.

4. Proof of the Theorem

By c1, c2, . . . we denote positive real numbers which are effectively com-
putable. We may assert, without loss of generality, that the terms of the
recurrences G(i) are positive, d > 0, s > 0 and the inequality

(9) |γ1| ≥ |γ2| ≥ · · · ≥ |γν |

also holds.
Let us observe that it is sufficient to consider the case xi > n0 (i =

1, 2, . . . , ν). Otherwise, if we suppose that some xj ≤ n0 (j ∈ {1, 2, . . . , ν})
then xm = maxi{xi} cannot be arbitrary large because of the assertion
xj > δxm. It means that we have finitely many possibilities to choose the
ν-tuples (x1, . . . , xν), and the range of G(x1, . . . , xν) is finite. So with a
fixed d, if inequality (6) is satisfied then q must be bounded.

In the sequel we suppose that xi > n0 (i = 1, 2, . . . , ν). Let x1, . . ., xν ,
w, q and s ∈ S be integers satisfying (6). We may assume that if

(10) s = pe1
1 · · · pet

t

then ej < q, else a part of s can be joined to wq. Using (2), from (6) we
have

(11) swq = d

ν
∏

i=1

ai (γi)
xi

(

1 +
p
(i)
2 (xi)

ai

(

α
(i)
2

γi

)xi

+ · · ·

)

.

A consequence of the assumptions |γi| > |α
(i)
j | (1 < j ≤ ti) is that

(12)

(

1 +
p
(i)
2 (xi)

ai

(

α
(i)
2

γi

)xi

+ · · ·

)

−→ 1 whenever xi −→ ∞.

Hence there exist real constants 0 < ε1, . . . , εν < 1 such that

d

ν
∏

i=1

|ai||γi|
xi(1 − εi) < swq < d

ν
∏

i=1

|ai||γi|
xi(1 + εi),
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and

c1

ν
∏

i=1

|γi|
xi < swq < c2

ν
∏

i=1

|γi|
xi .

As before, let x = x1 + · · · + xν and applying (9) we may write

log c1 + x log |γν | < log s + q log w < log c2 + x log |γ1|.

Since log s ≥ 0, we have

(13) log c3 + x log |γν | < q log w < log c2 + x log |γ1|

with c3 = c1
s

. From (13) it follows that

(14) c4
x

q
< log w < c5

x

q

with some positive constants c4, c5. Ordering the equality (11) and taking
logarithms, by the definition of εi we obtain

Q =

∣

∣

∣

∣

log
swq

d
∏ν

i=1 |ai||γi|xi

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

log

ν
∏

i=1

∣

∣

∣

∣

∣

1 +
p
(i)
2 (xi)

ai

(

α
(i)
2

γi

)xi

+ · · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

<

<

ν
∑

i=1

log |1 + εi| ≤

ν
∑

i=1

e−c⋆
i xi ,

where Q 6= 0 if we assume, that xi > n0 for every i = 1, 2, . . . , ν, and c⋆
i is

a suitable positive constant (i = 1, 2, . . . , ν). Applying Lemma 2 and using
the notation x = x1 + · · · + xν , it yields that

(15) Q < e−c6(x1+···+xν ) = e−c6x.

On the other hand

(16) Q =

∣

∣

∣

∣

∣

log s+q log w− log d− log
ν
∏

i=1

|ai|−x1 log |γ1|− · · ·−xν log |γν |

∣

∣

∣

∣

∣

,

where log s = e1 log p1 + · · · + et log pt (see (10)). Now we may use Lemma
1 with πr = w = Mr, since the ordinary heights of pj (j = 1, 2, . . . , t), d,
∏ν

i=1 |ai| and |γi| (i = 1, 2, . . . , ν) are constants. So B′ = q. In comparison
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the absolute values of the integer coefficients of the logarithms in (16), we
can choose B as B = x. So by (16) and Lemma 1 it follows that

(17) Q > e−c7(log w log q+ x
q ).

Combining (15) and (17) it yields the following inequality:

(18) c6x < c7

(

log w log q +
x

q

)

,

and by (14) it follows that

(19) c6x < c7

(

log w log q +
1

c4
log w

)

< c8 log w log q

with some c8 > 0. Applying (14) again, we conclude that 1
c5

q log w < x and
so by (19)

(20) c9q < log q

follows. But (20) implies that q < q0, which proves the theorem.
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