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A note on the products of the terms
of linear recurrences

LASZLO SZALAY

Abstract. For an integer v>1 let G*) (i=1,...,v) be linear recurrences defined by
GO=ADGY 4t AV G, (k).
In the paper we show that the equation
ngcll)...ch'/v):swq7
where d,s,w,q,z; are positive integers satisfying some conditions, implies the inequality

q<qo with some effectively computable constant qo. This result generalizes some earlier
results of Kiss, Pethd, Shorey and Stewart.

1. Introduction

Let G = {GS)};';;O (1 =1,2,...,v) be linear recurrences of order k;
(k; > 2) defined by

(1) G =APG) 4+ AVGY (0> k),

where the initial values ng) (j =0,1,...,k; — 1) and the coefficients Al(l)
(I =1,2,...,k;) of the sequences are rational integers. We suppose, that
A,(;i) # 0 and there is at least one non-zero initial value for any recurrences.

By agi) = ’yi,aéi), ... ,agf) we denote the distinct roots of the charac-
teristic polynomial

pi(x) = ki — Agi):nki_l E AZ)

of the sequence G, and we assume that t; > 1 and |y;| > |oz§i)| for j > 1.
Consequently |y;| > 1. Suppose that the multiplicity of the roots v; are 1.
Then the terms of the sequences G (i =1,2,...,v) can be written in the
form

@ 6P =ant +p8' ) (o) +- ) (af)) (n20),
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where a; # 0 are fixed numbers and pgi) (j =1,2...,t;) are polynomials of

Q(yi, .. al)a]

(see e.g. [8]).

A. Pethd [4,5,6], T. N. Shorey and C. L. Stewart [7] showed that a
sequence G(= G (i)) does not contain ¢-th powers if ¢ is large enough. Similar
result was obtained by P. Kiss in [2]. In [3] we investigated the equation

(3) G, Hy = w!

where G and H are linear recurrences satisfying some condititons, and
showed that if 2 and y are not too far from each other then ¢ is (effec-
tively computable) upper bounded: ¢ < qo.

2. Theorem

Now we shall investigate the generalization of equation (3). Let d € Z

be a fixed non-zero rational integer, and let pq,...,p; be given rational
primes. Denote by S the set of all rational integers composed of p1, ..., p;:
(4) S={s€Z:s==xpi* - -pi, e; € N}.

In particular 1 € S (ey =--- =¢; = 0). Let

(5) G(z1,...,2,) =GP .. .GV

be a function defined on the set N¥. By the definitions of the sequences
G@)’s G takes integer values. With a given d let us consider the equation

dG(zy1,...,x,) = sw?

in positive integers w > 1, ¢, z; (i = 1,2,...,v) and s € S. We will
show under some conditions for G that ¢ < ¢g is also fulfilled if ¢ satisfies
the equation above. Exactly, using the Baker-method, we will prove the
following

Theorem. Let G(x1,...,x,) be the function defined in (5). Futher let

0 # d € Z be a fixed integer, and let § be a real number with 0 < § < 1.

Assume that G(z1,...,x,) # [[ @iy ifx; >ng (i =1,2,...,v). Then the
i=1

equation

(6) dg(zq,...,z,) = sw?
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in positive integers w > 1, q, x1,...,x, and s € S for which z; >
omax{z;} (j = 1,2,...,v), implies that q < qo, where qq is an effectively
computable number depending on ng, 8, GV, ... G®).

3. Lemmas

In the proof of our Theorem we need a result due to A. Baker [1].

Lemma 1. Let w1, 7o, ..., 7, be non-zero algebraic numbers of heights
not exceeding My, Mo, ..., M, respectively (M, > 4). Further let by, bs, ...,
b._1 be rational integers with absolute values at most B and let b, be a
non-zero rational integer with absolute value at most B’ (B’ > 3). Suppose,
that Y _:_ b;logm; # 0. Then there exists an effectively computable constant
C=0C(r,My,...,M,_q,m1,...,m) such that

zr: bi log v
i=1

where logarithms have their principal values.

’ B
> e—C(log M, log B +F)’

(7)

We need the following auxiliary result.

Lemma 2. Let c¢1,...,c; be positive real numbers and 0 < § < 1
be an arbitrary real number. Further let x1,...,x; be natural numbers
with maximum value x,, = max;{x;} (m € {1,...,k}). Ifx; > dx,,, (j =
1,...,k) and z,, > xo then there exists a real number ¢ > 0, which depends
on k, 0, max;{c;} and xg, for which

k
(8) Ze—cimi < e—c(ml—i----—i-mk) _ e—cm’
i=1

where x = x1 + - + 2.

Proof of Lemma 2. Using the conditions of the lemma we have

k

k k
§ e Ci%i E e*Czﬂmm — E e*dimm’
i=1 =1

i=1
where d; = d¢;. If d,;, = min;{d;} then

k
§ :efdixm S kefdmxm — elogkfdmxm.

i=1
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Since x,, > o, it follows that

elog k—dmTm S e_d:nm"L = e_CkI"n S e_cr

with a suitable constant d}, and ¢ = %.

4. Proof of the Theorem

By ¢, ¢a, ... we denote positive real numbers which are effectively com-
putable. We may assert, without loss of generality, that the terms of the
recurrences G(¥) are positive, d > 0, s > 0 and the inequality

(9) vl = el = = |l

also holds.

Let us observe that it is sufficient to consider the case x; > ng (i =
1,2,...,v). Otherwise, if we suppose that some z; <ny (j € {1,2,...,v})
then x,, = max;{z;} cannot be arbitrary large because of the assertion
x; > 0xp,. It means that we have finitely many possibilities to choose the

v-tuples (z1,...,x,), and the range of G(xy,...,x,) is finite. So with a
fixed d, if inequality (6) is satisfied then ¢ must be bounded.
In the sequel we suppose that z; > ng (i =1,2,...,v). Let 21,..., z,,

w, g and s € S be integers satisfying (6). We may assume that if
(10) s=pi'pp

then e; < g, else a part of s can be joined to w?. Using (2), from (6) we
have

v (1) @)\ ¥
x; p (:El) Qg
11 q _ ()L 2 o
(11) sWw dilzlla (7:) < + a ( ) + >

Vi

A consequence of the assumptions |v;| > |a§i)| (1 <j<t,)is that

Qs @)\ ™
(12) <1 + pTW (O;L) +-- ) — 1 whenever z; — oo.

Hence there exist real constants 0 < €1,...,¢, < 1 such that

v v
dH lai||vi]* (1 — &;) < sw? < dH\aiH’yi

i=1 i=1

xi(l—i—Ei),
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and

Xq

14
1 H yi
i=1

As before, let * = 2y 4+ -+ - + x,, and applying (9) we may write

14
Ti < sw? < cg H i
i=1

logcy + zlog |y, | < log s+ qlogw < logco + 2 log |1 ].
Since log s > 0, we have
(13) log ¢z + xlog |v,| < qlogw < log o + xlog |1 ]|

with c3 = <. From (13) it follows that
(14) 04E <logw < 05E
q q

with some positive constants ¢y, ¢5. Ordering the equality (11) and taking
logarithms, by the definition of ¢; we obtain

Q= sw 1 ﬁ 1+ o5 (@) (a§\" + <
= [log ——= | = |log = =
d [Ty lail|vil® Pl a; Yi
< Zlog|1 + ] < Ze‘czmi,

i=1 i=1
where ) # 0 if we assume, that z; > ng for every i = 1,2,... v, and ¢ is
a suitable positive constant (i = 1,2,...,r). Applying Lemma 2 and using
the notation x = x1 + - -+ + x,,, it yields that
(15) Q < e-calertta) — o=co
On the other hand
(16) Q= logs+qlogw—logd—logH |a;| —z1log |y1|— - —x, log |7,

i=1

where log s = ey logp; + -+ + e; logpy (see (10)). Now we may use Lemma
1 with m, = w = M, since the ordinary heights of p; (j = 1,2,...,t), d,
[T;—, la;] and |y;| (i =1,2,...,v) are constants. So B’ = ¢. In comparison
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the absolute values of the integer coefficients of the logarithms in (16), we
can choose B as B = x. So by (16) and Lemma 1 it follows that

(17) Q > 6—07(10gw10gq+%).

Combining (15) and (17) it yields the following inequality:

(18) ceT < C7 (logwlogq + E) ,
q

and by (14) it follows that
1

(19) cex < ¢y <logwlogq + —log w) < cglogwlogq
Cq

with some ¢g > 0. Applying (14) again, we conclude that C%qlogw < x and
so by (19)

(20) coq < logg

follows. But (20) implies that ¢ < qo, which proves the theorem.
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