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Residual Lie nilpotence of the augmentation ideal

BERTALAN KIRÁLY⋆

Abstract. In this paper we give necessary and sufficient conditions for the residual

Lie nilpotence of the augmentation ideal for an arbitrary group ring RG except for the

case when the derived group of G is with no generalized torsion elements with respect

to the lower central series of G and the torsion subgroup of the additive group of R

contains a non-trivial element of infinite height. From this results we get the residual Lie

nilpotence of the augmentation ideal of the p-adic integer group rings.

1. Introduction

Let R be a commutative ring with identity, G a group and RG its group
ring. The group ring RG may be considered as a Lie algebra, with the usual
bracket operation. The study of this Lie algebra was initiated by I. B. S.
Passi, D. S. Passman and S. K. Sehgal [5]. Additional results on the Lie
structure of RG may be found in [4] and [6].

Let A(RG) denote the augmentation ideal of RG, that is the kernel
of the homomorphism RG onto R which sends each group element to 1.
It is easy to see that as R-module A(RG) is a free module with elements
g − 1 (g ∈ G) as a basis.

There are many problems and results relating to A(RG) ([4], [6]). In
particular, it is an interesting problem to characterize the group rings whose
augmentation ideal satisfy some conditions. In this paper, we treat the Lie
property.

The Lie powers A[λ](RG) of A(RG) are defined inductively: A[1](RG) =
A(RG), A[λ+1](RG) = [A[λ](RG), A(RG)]·RG, if λ is not a limit ordinal, and
for the limit ordinal λ, A[λ](RG) = ∩ν<λA

[ν](RG), where [K,M ] denotes
the R-submodule of RG generated by [k,m] = km − mk (k ∈ K ⊆ RG,
m ∈ M ⊆ RG), and for K · RG denotes the right ideal generated by K in
RG.

⋆
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For the first limit ordinal ω we adopt the notation:

A[ω](RG) =
∞⋂

i=1

A[i](RG).

The ideal A(RG) of the group ring RG is said to be residually Lie

nilpotent if A[ω](RG) = 0.
In this paper we give necessary and sufficient conditions for the residual

Lie nilpotence of the augmentation ideal for an arbitrary group ring RG
except for the case when the derived group of G is with no generalized
torsion elements with respect to the lower central series of G and the torsion
subgroup of the additive group of R contains a non-trivial element of infinite
height.

Our main results are given in section 3. These results (Theorem A, B
and C) are rather technical so they are not stated in the introduction.

2. Notations and some known facts

If H is a normal subgroup of G, then I(RH) (or I(H) for short) denotes
the ideal of RG generated by elements of the form h− 1, (h ∈ H). It is well
known that I(RH) is the kernel of the natural epimorphism φ:RG→ RG/H
induced by the group homomorphism φ of G onto G/H. It is clear that
I(RG) = A(RG).

Let F be a free group on the free generators xi (i ∈ I) and ZF be its
integral group ring (Z denotes the ring of rational integers). Then every
homomorphism φ:F → G induces a ring homomorphism φ:ZF → RG by
letting φ(

∑
nyy) =

∑
nyφ(y). If f ∈ ZF , we denote by Af (RG) the two-

sided ideal of RG generated by the elements φ(f), φ ∈ Hom(F,G), the set of
homomorphism from F to G. In other words Af (RG) is the ideal generated
by the values of f in RG as the elements of G are substituted for the free
generators xi-s.

An ideal J of RG is called a polynomial ideal if J = Af (RG) for some
f ∈ ZF . It is easy to see that the augmentation ideal A(RG) is a polynomial
ideal. Really, A(RG) is generated as an R-module by elements g−1 (g ∈ G),
i.e. by the values of the polynomial x− 1.

We also use the following

Lemma 2.1. ([4], Proposition 1.4., page 2.) Let f ∈ZF . Then f defines

a polynomial ideal Af (RG) in every group ringRG. Further, if θ:RG→ KH
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is a ring homomorphism induced by a group homomorphism φ:G→ H and

a ring homomorphism ψ:R → K, then

θ(Af (RG)) ⊆ Af (KH).

(It is assumed here that ψ(1R) = 1K , where 1R and 1K are identities of
rings R and K respectively.)

For every natural number n A[n](RG) is a polynomial ideal (see in
particular [4], Corollary 1.9., page 6.) and by Lemma 2.1.

φ(A[n](RG)) ⊆ A[n](RG/L)

for every n. From this inclusion it can be obtained easily that

(1) φ(A[ω](RG)) ⊆ A[ω](RG/L).

If K denotes a class of groups we define the class RK of residually-K groups
by letting G ∈ RK if and only if: whenever 1 6= g ∈ G, there exists a normal
subgroup Hg of the group G such that G/Hg ∈ K and g /∈ Hg. It is easy
to see that G ∈ RK if and only if there exists a family {Hi}i∈I of normal
subgroups G such that G/Hi ∈ K for every i ∈ I and ∩i∈IHi = 〈1〉.

A group G is said to be discriminated by K if for every finite set
g1, g2, . . . , gn of distinct elements of G, there exists a group H ∈ K and
a homomorphism φ:G→ H such that φ(gi) 6= φ(gj) if i 6= j, (1 ≤ i, j ≤ n).

Lemma 2.2. Let a class of groups K be closed with respect to forming

subgroups and finite direct products and let G be a residually-K group.

Then G is discriminated by K.

The proof can be obtained easily.

It is easy to show that if G is discriminated by a class of groups K and
if x is a non-zero element of RG, then there exists a group H ∈ K and a
homomorphism φ of RG to RH such that φ(x) 6= 0.

From this fact and from inclusion (1) we have

Lemma 2.3. If G is discriminated by a class of groups K and for each

H ∈ K the equation A[ω](RH) = 0 holds, then A[ω](RG) = 0.

We use the following notations for standard group classes:
D0 — the class of those nilpotent groups whose derived groups are torsion-
free.
Dp — the class of nilpotent groups whose derived groups are p-groups of
bounded exponent.
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N0 — the class of torsion-free nilpotent groups.
Np — the class of nilpotent p-groups of bounded exponent.
NΩ = ∪p∈ΩNp and
DΩ = ∪p∈ΩDp, where Ω is a subset of the set of primes.

The ideal Jp(R) of a ring R is defined by Jp(R) = ∩∞
n=1p

nR.

Theorem 2.4. ([4], Theorem 2.13., page 85.) Let G be a residually

Dp-group and Jp(R) = 0. Then A[ω](RG) = 0.

We shall use the following lemma, which gives some elementary prop-
erties of the Lie powers of A(RG).

Lemma 2.5. ([4], Proposition 1.7., page 4.) For arbitrary natural

numbers n and m are true:

(1) I(γn(G)) ⊆ A[n](RG),

(2) [A[n](RG), A[m](RG)] ⊆ A[n+m](RG),

(3) A[n](RG)·A[m](RG) ⊆ A[n+m−1](RG),
where γn(G) is the nth term of the lower central series of G.

We write D[n](RG) for the nth Lie dimension subgroup D[n](RG) of G
over R. That is

D[n](RG) = {g ∈ G|g − 1 ∈ A[n](RG)}.

By Lemma 2.5. it follows that for every natural number n the inclusion

γn(G) ⊆ D[n](RG)

holds.

We also use the following theorems

Theorem 2.6. ([1], Theorem 3.2.) Let a group G contain a non-

trivial generalized torsion element. Then A(RG) is residually nilpotent if

and only if there exists a non-empty subset Ω of the set of primes such that

∩p∈ΩJp(R) = 0, G is discriminated by the class NΩ and for every proper

subset Λ of the set Ω at least one of the conditions

(1) ∩p∈ΛJp(R) = 0
(2) G is discriminated by the class of groups NΩ\Λ

holds.

Let T (R+) denote the torsion subgroup of the additive group R+ of a
ring R and let Aω(RG) = ∩∞

i=1A
n(RG), where An(RG) is the nth associa-

tive power of A(RG).
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Theorem 2.7. ([4], Theorem 2.7., page 87.) If G ∈ RN0 and R is

a ring with identity such that its additive group R+ is torsion-free, then

Aω(RG) = 0.

3. Residual Lie nilpotence

It is clear, that A[2](RG) = 0 if and only if G is an Abelian group.
Therefore we may assume that the derived group G′ = γ2(G) of G is non-
trivial.

For a nilpotent group G the following inclusion is true

(2) A[ω](RG) ⊆ Aω(RG′)RG

(see in particular [4]). For every natural number i > 1 we define the normal
subgroup

Li = {g ∈ G′|gk ∈ γi(G) for a suitable k ≥ 1}

of G. It is easy to see that γi(G) ⊆ Li and also that G/Li ∈ D0 for every
i > 1.

An element g of a group G is called a generalized torsion element with
respect to the lower central series of G if for every n the order of the elements
gγn(G) of the factor group G/γn(G) is finite.

We recall that if the derived group G′ of G contains no generalized
torsion elements with respect to the lower central series of G, then G′ has
no generalized torsion elements with respect to the lower central series of
G′.

Theorem A. Let R be a commutative ring with identity, T (R+) = 0
and let G′ be with no generalized torsion elements with respect to the lower

central series of G. Then A[ω](RG) = 0 if and only if G is a residually-D0

group.

Proof. Since G′ is with no generalized torsion elements with respect
to the lower central series of G, then ∩∞

i=2Li = 〈1〉 and so, G ∈ RD0.
Conversely. Let G ∈ RD0 and T (R+) = 0. Since class D0 is closed

with respect to forming subgroups and finite direct products, by Lemmas
2.2. and 2.3. it is enough to show that A[ω](RG) = 0 for all G ∈ D0. So let
G ∈ D0. Then by (2)

A[ω](RG) ⊆ Aω(RG′)RG.

Because G′ is a torsion-free nilpotent group, by Theorem 2.7. Aω(RG′) = 0,
and so, A[ω](RG) = 0. The proof is completed.
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Let p be a prime and n a natural number. Then Gpn

is the subgroup
of G generated by all elements of the form gpn

, g ∈ G.
For a prime p and a natural number k the normal subgroup G[p,k] of G

is defined by

G[p,k] =

∞⋂

n=1

(G′)pn

γk(G).

We have the following sequence

G = G[p,1] ⊇ G[p,2] ⊇ . . . ⊇ G[p]

of normal subgroups G[p,k] of G, where

G[p] =
∞⋂

k=1

G[p,k].

It is clear, that G/(G′)pn

γk(G) are in Dp, and G/G[p,k] and G/G[p] are
residually-Dp groups for every k and n.

Lemma 3.1. If n ≥ ks and h ∈ (G′)pn

γk(G), then

h− 1 ≡ psX(k, h) (mod A[k](RG))

for a suitable X(k, h) ∈ A[2](RG).

Proof. Let h ∈ (G′)pn

γk(G). We can write element h as

h = hpn

1 hpn

2 · · ·hpn

m yk

where hi ∈ G′, yk ∈ γk(G). Using the identity

(3) ab− 1 = (a− 1)(b − 1) + (a− 1) + (b− 1)

to h− 1 we have that

h− 1 = (hpn

1 hpn

2 · · ·hpn

m − 1)(yk − 1) + (hpn

1 hpn

2 · · ·hpn

m − 1) + (yk − 1).

By Lemma 2.5. I(γk(G)) ⊆ A[k](RG) and hence yk − 1 ∈ A[k](RG). There-
fore

h− 1 ≡ (hpn

1 hpn

2 · · ·hpn

m − 1) (mod A[k](RG)).
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Applying identity (3) repeatedly to (hpn

1 hpn

2 · · ·hpn

m − 1) from the previous
congruence it follows that

h− 1 ≡
m∑

i=1

(hpn

i − 1)bi ≡
m∑

i=1

pn∑

j=1

(
pn

j

)
(hi − 1)jbi (mod A[k](RG)),

where bi ∈ RG. Because hi ∈ G′ = γ2(G), from Lemma 2.5. (cases 1 and
3) we obtain that (hi − 1)j ∈ A[j+1](RG) for every i and j. If n ≥ sk, then
ps divides

(
pn

j

)
for every j = 1, 2, . . . , k − 1. Therefore

h− 1 ≡
m∑

i=1

(hpn

i − 1)bi ≡ ps

m∑

i=1

k−1∑

j=1

dj(hi − 1)
j
bi

≡ psX(k, h) (mod A[k](RG)),

where X(k, h) =
∑m

i=1

∑pn

j=k dj(hi − 1)jbi, bi ∈ RG, psdj =
(
pn

j

)
. The

Lemma is proved.

It is easy to show that if g ∈ G′ and gpn

∈ D[k](RG) then

(4) pm(g − 1) ∈ A[k](RG)

for a large enough m.

Lemma 3.2. ([1], Lemma 3.6.) Let K be a class of groups and {Gα}α∈I

a family of normal subgroups of G such that for all α (α ∈ I) the conditions

(1) G/Gα ∈ K
(2) Gα is torsion-free

hold. If G is not discriminated by K then there exists a finite set of distinct

elements g1, g2, . . . , gs from G such that the non-zero element y = (g1 −
1)(g2 − 1) · · · (gs − 1) lies in the ideal ∩α∈II(Gα).

The torsion subgroup T (R+) of the additive group R+ of a ring R is the
direct sum of its p-primary components Sp(R

+). Let Π be the set of those
primes for which the p-primary components Sp(R

+) of T (R+) are non-zero.
An element a of an additive Abelian group A is called an element of

infinite p-height for a prime p, if the equation pnx = a has a solution in A
for every natural number n.

Proposition 3.3. ([1], Theorem 3.3.) Let T (R+) 6= 0, and suppose

that for some p ∈ Π group T (R+) has no element of infinite p-height.
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Further let G be a group with no generalized torsion elements. Then

Aω(RG) = 0 if and only if G is a residually-Np group for all p ∈ Π.

Theorem B. Let T (R+) 6= 0. If G′ is with no generalized torsion

elements with respect to the lower central series of G and T (R+) is with no

non-trivial elements of infinite p-height then A[ω](RG) = 0 if and only if G
is a residually-Dp group for all p ∈ Π.

Proof. Let p an arbitrary prime of Π, A[ω](RG) = 0, and let ps (s ≥ 1)
be the order of element a ∈ T (R+). Since the equation

G[p] =
∞⋂

k=1

G[p, k] =
∞⋂

n=1

∞⋂

k=1

(G′)pn

γk(G)) = 〈1〉

implies that G ∈ RDp, it is enough to show, that G[p] = 〈1〉.
Suppose that g ∈ G[p]. Then g ∈ (G′)pn

γk(G) for every n and k and
by Lemma 3.1. we have that

g − 1 ≡ psX(k, g) (mod A[k](RG))

for every k. From psa = 0 it follows that a(g − 1) ∈ A[k](RG) for every
k. Hence a(g − 1) ∈ A[ω](RG) and a(g − 1) = 0. This implies that g = 1.
Consequently G[p] = 〈1〉. This means that G is a residually-Dp group for
all p ∈ Π.

Conversely. Let G ∈ RDp for p ∈ Π and let 1 6= g be an arbitrary
element of G′. Then there exists a normal subgroup H of G such that
G/H ∈ Dp and g /∈ H. Since G/H ∈ Dp then (G/H)′ ∈ Np. By the
isomorphism G′H/H ∼= G′/H ∩G′ we have that g = g(H ∩G′) 6= 1. This
means that if G ∈ RDp then G′ ∈ RNp. Using Proposition 3.3. we have
that Aω(RG′) = 0 and from (2) it follows that A[ω](RG) = 0.

Lemma 3.4. Let

y ∈
⋂

p∈Γ

∞⋂

j=1

∞⋂

n=1

I((G′)pn

γj(G)).

Then for a prime p ∈ Γ and arbitrary natural numbers k and s

y ≡ psY (p, k, s, y) (mod A[k](RG)),

where Y (p, k, s, y) ∈ RG and Γ is a subset of the set of prime numbers.

Proof. Let p ∈ Γ . For every natural n we can express y as

y =

l∑

i=1

αizi(hi − 1),
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where hi ∈ (G′)pn

γk(G), αi ∈ R and every zi is from a set of coset repre-
sentatives of (G′)pn

γk(G) in G. For a large enough n by Lemma 3.1.

hi − 1 ≡ psX(k, hi) (mod A[k](RG))

for every i (i = 1, 2, . . . , l) and the proof follow.

If g ∈ G′ is a generalized torsion element of a group G then Ωg denotes
the set of the prime divisors of the order of the elements gγk(G) ∈ G/γk(G)
for every k = 2, 3, . . ..

Lemma 3.5. Let g ∈ G′ be a generalized torsion element of a group

G, Λ an arbitrary subset of Ωg, a ∈ ∩p∈ΛJp(R) and let

x ∈
⋂

p∈Ωg\Λ

∞⋂

k=1

∞⋂

i=1

I((G′)pi

γk(G)).

Then one of the following statements

(1) if Λ is a proper subset of Ωg, then a(g − 1)x ∈ A[ω](RG)
(2) if Λ = Ωg, then a(g − 1) ∈ A[ω](RG)
(3) if Λ = ∅, then (g − 1)x ∈ A[ω](RG)

holds.

Proof. It is enough to show that for an arbitrary natural number k
the elements a(g − 1), (g − 1)x, a(g − 1)x are in the ideal A[k](RG).

If g ∈ γk(G) then by Lemma 2.5. (g − 1) ∈ A[k](RG), and the state-
ments follow. Now let g /∈ γk(G) and let

nk = pm1

1 pm2

2 · · · pms

s

be the prime factorization of the order of the elements gγk(G) of the nilpo-
tent group G/γk(G). It is clear that pi ∈ Ωg for every i = 1, 2, . . . , s. Let Λ a
subset of Ωg. With loss of generality we may assume that p1, p2, . . . , pl ∈ Λ
and pi /∈ Λ for i > l.

Let g = g1g2 · · · gsγk(G) be the decomposition of the element gγk(G)
of the nilpotent group G/γk(G) in the product of pi-elements giγk(G) (i =
1, 2, . . . , s). Then

g = g1g2 · · · gsyk, gi ∈ G′, i = 1, 2, . . . , s

for a suitable yk ∈ γk(G). Then there exists mi (i = 1, 2, . . . , s) such that

gpi
mi

i ∈ γk(G).
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Using identity (3) repeatedly to (g − 1) we conclude that

g − 1 ≡ v + w + (yk − 1) ≡ v + w (mod A[k](RG)),

where v =
l∑

i=1

(gi −1)xi, w =
s∑

i=l+1

(gi −1)xi and xi ∈ RG. In the case when

Λ∩{p1, p2, . . . , ps} = ∅ we assume that v = 0, and if Λ∩{p1, p2, . . . , ps} =
{p1, p2, . . . , ps} we put w = 0. Because

gpi
mi

i ∈ γk(G) ⊆ D[k](G)

and gi ∈ G′ for every i = 1, 2, . . . , s, we conclude from (4) that there exists
a natural number ri (i = 1, 2, . . . , s) such that

(5) pi
ri(gi − 1) ∈ A[k](RG).

Also, since

a ∈
⋂

p∈Λ

Jp(R) ⊆
l⋂

i=1

Jp(R)

we can express a as a = pri

i ai (ai ∈ R) for each i ≤ l. Then by (5)

av ≡
l∑

i=1

aip
ri

i (gi − 1)xi ≡ 0 (mod A[k](RG)).

Therefore

(6) a(g − 1) ≡ av + aw ≡ aw (mod A[k](RG)).

If Λ = Ωg then w = 0 and case 2) is proved.
By Lemma 3.4.

x ≡ pri

i Y (pi, k, ri, x) (mod A[k](RG)),

and so,

wx ≡
s∑

i=l+1

pri

i (gi − 1)xiY (pi, k, ri, x) (mod A[k](RG)).

Hence by (5)

(7) wx ≡ 0 (mod A[k](RG)).
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If Λ = ∅, then v = 0, and so,

(g − 1)x ≡ vx+wx ≡ wx ≡ 0 (mod A[k](RG))

and case 3) is proved.
Also, since

a(g − 1)x ≡ avx+ awx (mod A[k](RG))

from congruences (6) and (7) the proof (of case 1)) follows.

We recall that for a prime p Np denotes the class of nilpotent groups
whose derived groups are p-groups of bounded exponent, and if Ω a subset
of the set of primes, then NΩ = ∪p∈ΩNp and DΩ = ∪p∈ΩDp.

Let a group G be discriminated by the class of groups DΓ (Γ 6= ∅) and
let g1, g2, . . . , gn be a finite set of distinct elements of G′. Then there exists
a normal subgroup H of G such that giH 6= gjH if i 6= j and G/H ∈ DΓ .
Therefore (G/H)′ ∈ Np for any prime p ∈ Γ . By the isomorphism G′H/H ∼=
G′/H ∩G′ we have giH(∩G′) 6= gj(H ∩G′) if i 6= j (i, j = 1, 2, . . . , n). This
means, that if G is discriminated by the class DΓ , then G′ is discriminated
by the class of groups NΓ .

Lemma 3.6. Let Ω be a non-empty subset of the set of primes such

that

∩p∈ΩJp(R) = 0 and a group G is discriminated by the class of groups DΩ.

If for every proper subset Λ of the set Ω at least one of the conditions

(1) ∩p∈ΛJp(R) = 0
(2) G is discriminated by the class of groups DΩ\Λ

holds, then A[ω](RG) = 0.

Proof. Let

x =

n∑

i=1

αigi ∈ A[ω](RG).

By Lemma 2.3. it is enough to show that A[ω](RG) = 0 for all groups
G ∈ DΩ. So let G ∈ DΩ. Then G is a nilpotent group and by (2)

A[ω](RG) ⊆ Aω(RG′)RG.

Clearly, G′ ∈ NΩ. If G is discriminated by the class of groups DΓ , where
Γ is an arbitrary non-empty subset of Ω, then G′ is discriminated by the
clas NΓ , which was showed above. Then G′ satisfies Theorem 2.6. and so,
Aω(RG′) = 0. Consequently A[ω](RG) = 0.



86 Bertalan Király

Theorem C. Let the derived group G′ contain a generalized torsion

element of G with respect to the lower central series of G. Then A(RG) is

residually Lie nilpotent if and only if there exists a non-empty subset Ω of

the set of primes such that ∩p∈ΩJp(R) = 0, G is discriminated by the class

of groups DΩ and every proper subset Λ of the set Ω at least one of the

conditions

(1) ∩p∈ΛJp(R) = 0
(2) G is discriminated by the class of groups DΩ\Λ

holds.

Proof. Let A[ω](RG) = 0. Let us first consider the case when G′

contains a non-trival torsion element. Then there exists a p-element g in G′

with p ∈ Ω. Then by (4) for every k there exists a natural number m such
that

(8) pm(g − 1) ∈ A[k](RG).

If a ∈ Jp(R), then for each m we can write element a as a = pmam (am ∈ R).
Therefore a(g − 1) ∈ A[k](RG) for every k, that is a(g − 1) ∈ A[ω](RG).
Hence a(g − 1) = 0 and so, a = 0. Consequently Jp(R) = 0.

Now we show, that G is discriminated by D{p}. Let

h ∈
∞⋂

k=1

∞⋂

i=1

(G′)pi

γk(G).

Then

h− 1 ∈
∞⋂

k=1

∞⋂

i=1

I((G′)pi

γk(G))

and by Lemma 3.4. for every k and m

(9) h− 1 ≡ pmY (p, k,m, h − 1) (mod A[k](RG)).

By (8) and (9) we have that

(g − 1)(h − 1) ≡ pm(g − 1)(h − 1)Y (p,m, k, h − 1) (mod A[k](RG))

for every k. This implies that

(g − 1)(h − 1) ∈ A[ω](RG) and so, (g − 1)(h − 1) = 0.

From this equation we have that the characteristic of R is p (= 2) and from
(9) it follows that h− 1 ∈ A[ω](RG). Therefore h = 1 and so

∞⋂

k=1

∞⋂

i=1

(G′)pi

γk(G) = 〈1〉.
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For every k and i G/(G′)pi

γk(G) ∈ D{p}. The class D{p} is closed with
respect to forming subgroups and finite direct products, and by Lemma 2.2.
G is discriminated by D{p}. Consequently we can choose the set Ω = {p}.

Let us consider the case when G′ is a torsion-free group and 1 6= g ∈ G′

is a generalized torsion element of G. We put Ω = Ωg. From Lemma 3.5.
(case 2) it follows that ⋂

p∈Ω

Jp(R) = 0.

From Lemma 3.2. (here we put {Gα}α∈I ={(G′)pn

γk(G), k, n=1, 2, . . .}p∈Ω)
and Lemma 3.5. (case 3) we have that G is discriminated by the class DΩ.

Let Λ be an arbitrary subset of Ω and let ∩p∈ΛJp(R) 6= 0. If G is not
discriminated by the class of groups DΩ\Λ, then by Lemma 3.2. there exists
a set of elements g1, g2, . . . , gn (gi ∈ G) of infinite orders such that

0 6= (g1 − 1)(g2 − 1) · · · (gn − 1) ∈
⋂

p∈Ω\Λ

∞⋂

k=1

∞⋂

i=1

I((G′)pi

γk(G)).

By Lemma 3.5. (case 1) for every element a ∈ ∩p∈ΛJp(R)

a(g − 1)(g1 − 1)(g2 − 1) · · · (gn − 1) ∈ A[ω](RG).

Because A[ω](RG) = 0 we have that

a(g − 1)(g1 − 1)(g2 − 1) · · · (gn − 1) = 0.

Since element gi (i = 1, 2, . . . , n) has infinite order and so has zero left (and
right) annihilator in RG, then for gn we have

a(g − 1)(g1 − 1)(g2 − 1) · · · (gn−1 − 1) = 0.

Continuing this procedure for i = n− 1, n− 2, . . . , 1 on the last step we get
that

a(g − 1) = 0.

Since the element g has infinite order, its left annihilator is zero in RG,
which implies a = 0. Consequently, if G is not discriminated by the class of
groups DΩ\Λ, then ∩p∈ΛJp(R) = 0.

The sufficiency part is proved in Lemma 3.6.

Corollary. Let R = Ẑp, the ring of p-adic integers. Then A[ω](ẐpG) =
0 if and only if either
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(1) G is discriminated by the class D0 or

(2) G is discriminated by the class Dp.

Proof. If G′ is with no generalized torsion elements (with respect to
the lower central series of G), then by Theorem A A[ω](ẐpG) = 0 if and
only if G is discriminated by the class D0.

Let us consider the case when G′ contains a generalized torsion element.
Let A[ω](ẐpG) = 0. By Theorem C there exists a non-empty subset Ω

of the set of primes, such that ∩q∈ΩJq(Ẑp) = 0. It is known that Jp(Ẑp) = 0

and for a prime q 6= p, Jq(Ẑp) = Ẑp. Therefore p ∈ Ω. If Ω = {p}, then
by the last theorem G is discriminated by Dp. If Ω contains a prime q 6= p,
then we choose Λ ⊆ Ω such that Ω \ Λ = {p}. Then ∩q∈ΛJq(Ẑp) 6= 0 and
by Theorem C G is discriminated by the class Dp.

Conversely. If G is discriminated by the class Dp, we put Ω = {p}, and
the proof follows from Theorem C.

From Theorem A and C we also get the results of I. Musson and A.
Weiss ([2], Theorem A).
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