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Unitary subgroup of the Sylow 2-subgroup
of the group of normalized units
in an infinite commutatuve group ring

ATTILA SZAKACS*

Abstract. Let G be an abelian group, K a commutative ring with unity of prime
characteristic p and let V(KG) denote the group of normalized units of the group ring
KG. An element u:deG ayg€V (KQG) is called unitary if ™' coincides with the element
u*:EQEG ayg” . The set of all unitary elements of the group V(KG) forms a subgroup
Vi (KG).

S. P. Novikov had raised the problem of determining the invariants of the group
V. (KG) when G has a p-power order and K is a finite field of characteristic p. This
problem was solved by A. Bovdi and the author. We gave the Ulm—Kaplansky invariants
of the unitary subgroup of the Sylow p-subgroup of V(KG) whenever G is an arbitrary
abelian group and K is a commutative ring with unity of odd prime characteristic p
without nilpotent elements. Here we continue this works describing the unitary subgroup
of the Sylow 2-subgroup of the group V(K G) in case when G is an arbitrary abelian group

and K is a commutative ring with unity of characteristic 2 without zero divisors.

Let G be an abelian group and K a commutative ring with unity of
prime characteristic p. Let, further on, V(K G) denote the group of normal-
ized units (i.e. of augmentation 1) of the group ring K'G and V,,(KG) the Sy-
low p-subgroup of the group V(K G). We say that for x = deg ag9 € KG
the element z* = dec agg~! is conjugate to z. Clearly, the map z — z* is
an anti-isomorphism (involution) of the ring KG. An element u € V(KG)
is called unitary if v=! = u*. The set of all unitary elements of the group
V(KG) obviously forms a subgroup, which we therefore call the unitary
subgroup of V(KG), and we denote it by V,(KG).

Let GP denote the subgroup {¢”: g € G} and A an arbitrary ordinal.
The subgroup GP" of the group G is defined by transfinite induction in

1 p
following way: G’ = G, for a non-limited ordinals G = (ka) , and if

A is a limited ordinal, then art = Ny GP”.
The subring K P* of the ring K is defined similarly. The ring K is called
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p-divisible if KP = K.

Let G[p] denote the subgroup {g € G: g =1} of G. Then the factor-
group G*[p]/G**1[p] can be considered as a vector space over GF(p) the
field of p elements and the cardinality of a basis of this vector space is called
the A-th Ulm-Kaplansky invariant f(G) of the group G concerning to p.

S. P. Novikov had raised the problem of determining the invariants of
the group V,(KG) when G has a p-power order and K is a finite field of
characteristic p. This was solved by A. Bovdi and the author in [1]. In [2]
we gave the Ulm-Kaplansky invariants of the unitary subgroup W,(KG)
of the group V,,(K'G) whenever G is an arbitrary abelian group and K is a
commutative ring of odd prime characteristic p without nilpotent elements.
Here we continue this works describing the unitary subgroup Wy(KG) of
the Sylow 2-subgroup Vo(KG) of the group V(KG) in case when G is an
arbitrary abelian group and K is a commutative ring with unity of charac-
teristic 2 without zero divisors.

Note that for the odd primes p the problem of determining the Ulm—
Kaplansky invariants of the group W,(KG) is based, in fact, in the following
statement

Wo(KG) = {27 '2*: 2 € V,(KG)}

(see |2]). But in case p = 2 this statement is not true and in the character-
ization of the group W5 (K G) we must keep in mind the following lemma.

Lemma 1. Let G be an abelian group of exponent 2" (n > 0) and
K a commutative ring with unity of characteristic 2 without zero divisors.
Then (V,(KG))*" = G*".

Proof. At first we shall prove the lemma for a finite group G. We shall
use induction on the exponent of G.

Let n =1, i.e. G is a group of exponent 4. We shall prove by induction
on the order of G that (V4 (KG))? = G2

Let G = (a: a* = 1). Then the element

T = ag + aja + azd® + azd® € V(KG)
is unitary if and only if
zx* =1+ (g + az)(a1 + as)(a +a®) = 1.
Hence ag = as or a; = a3. If a; = a3 then, according to the condition

ap+ai+as+asz = 1, the unitary element x has the form z = 1+a2(1+a2)+
ai(a+a®) and 22 = 1. If ap = ap then x = ag(1 +a?) + aja + (1 + ay)a®.
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2 = @2 and the statement is proved for the cyclic group G of

Therefore z
order 4.

Let G be a non-cyclic group of exponent 4 and order greater than 4.
Then G can be presented as a direct product of a suitable group H and the
cyclic group (b) which order divides 4.

Suppose that b is an element of second order. Then every z € V(KQG)
can be written in the form x = x¢ + x1b, where zg,x1 € KH. If x is a

unitary element then
xx* = xoxo” + 121" + (o™ 21 + 20217 )b =1

and the equations xgzo* + z1x1* = 1, o*z1 + zox1* = 0 hold. Hence
(xo +z1)(xo* + 21*) =1 and y = z9 + 1 € Vi(KH). By the induction
hypothesis, 4?2 = h? for some h € H. Obviously z? = h2.

Let b be an element of order 4. The element

T =1x0 + 22b® + (1 + 23620 (2; € KH,i=0,1,2,3)
of the group V(K G) is unitary if and only if

(1) { El‘o + I‘szgglﬂo* + ;UQ*bz% + (ZL’l + $3b2)(1‘1* + 1‘3*b2) =1,
To + IL’Qb .Tl* + .Tg*b =0.

Let x(zo + w2b?) = v denote the sum of coefficients of the element
7o + 22b®>. Then x(x; + 23b?) = 1 + v and from the second equation of
(1) we have that y(1 4+ ) = 0. Since K without zero divisors, it follows
that ¥ = 0 or v = 1 i.e. one of the elements g + x2b® or 1 + x3b? is
invertible. Hence for the unitary element z either xg = x4b? or x; = x3b>.
If 2o = x2b? then, by (1), the element y = z; + x3b? is unitary in the group
ring of the group H = H x (b?). Then, by the induction hypothesis, % = h?
for some h € H and obviously 22 = 2% = h?b? € G?. If x; = z3b? then
y = xg + 12b*> € V,(KH) and 22 = y? € G%. So (V,(KG))? = G? for a
finite group G of exponent 4.

Suppose that G is a group of exponent 2"*! (n > 1) and the state-
ment is proved for the groups of exponent less than 2"+1. It is easy to see
that (V,(KG))? C V,(KG?). From this, useing the induction hypothesis
(V.(KG2)2"" = (G2)2"", we have that V,(KG)2" C G2". The reverse
inclusion is obvious and the lemma is proved for a finite group G.

Let G be an infinite abelian group of exponent 2"*! (n > 0) and z €
V(K G). Then the subgroup H = (supp z) of the support of z is finite and,
by the statement proved in above, z2" € H?". This completes the proof of
the lemma.
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Theorem. Let A be an arbitrary ordinal, K a commutative ring with
unity of characteristic 2 without zero divisors, P the maximal divisible
subgroup of the Sylow 2-subgroup S of an abelian group G, G, = GQX,
Sy = S2A, Ky = K2, Let, further on, Vo = V5(KG) denote the Sylow
2-subgroup of the group V- = V(K G) of normalized units in the group ring
KG and W = W(KG) the unitary subgroup of Vo(KG). In case P # 1 we
assume that the ring K is 2-divisible.

If Gy # Gxy1, Sx # 1 and at least one of the ordinals |K,| and |G|
is infinite, then the A\-th Ulm-Kaplansky invariant f\(W) of the group W
concerning to 2 is characterized in the following way:

max{|G|, | K|}, ifA=0,
HV) =< fin(Ve) = max{ |G|, |[Kx|}, if A >0 and Gyy1 # 1,
IG), if A >0 and Gyyq = 1.

Proof. It is easy to prove the following statements (see [3]):

1) |K?| = |K]; .

2) if n a nonnegative integer and J(GP" [p]) the ideal of the ring (K G)?
generated by the elements of the form g—1 (g € G*"[2]), then V2" (KG)[2] =
V(K,Gn)[2] =14 J(G*"[2]).

Note if Gy = G411 or Sy = 1 then, according to [3], fA(V2) = 0 and
hence f\(W) = 0.

At first we shall prove the theorem for a finite ordinal A = n. Suppose
that n is a nonnegative integer, the Sylow 2-subgroup .5,, of the group G,
is not singular, G,, # G,11 and at least one of the ordinals |K,, | and |G|
is infinite. Since

W22 Cc VvV = V(K,G,),
it follows that

Fa(W) < V] < max{| K|, |Gal} = 6.

In the proof of the equation f,(W) = 3 we shall consider the following
cases:

A) |Ko| > |G,

B) |G| > |K,| and S, # Spi1,

C) |Gn| > |Ky| and S, = Sp41,
and in each of this cases we shall construct a set M C W?2" (KG)[2] of car-
dinality # = max{|K,|, |G|} (if, keeping in mind Lemma 1, it is possible)
which elements belong to the different cosets of the group V2" (KG)[2] by
the subgroup V2" (KG)[2]. This will be sufficient for the proof of the
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lemma, because the elements of the such constructed set M can be con-
sidered as the representatives of the cosets of the group W?2"(KG)[2] by
the subgroup W2""' (KG)[2]. Note that the elements of the set M we shall
choose in the form yy* (y eV (KG))

Let A) holds, i.e. |K,| > |G,]|.

It is easy to prove that in this case the Sylow 2-subgroup S,, of the
group G, has such element g of order 2 and there exists an a € G,, that one
of the following conditions holds:

A1) Gn # (9),a € (g) and a® ¢ (g),

As) G # (g9),a ¢ (9) and @” € (g),

As) G = {g)
and in cases A1) and As) at least one of the elements a or g do not belong
to the subgroup G, 1. Indeed, if g € G,,+1 then, by condition G,, # G411,
the set G,, \ Gp,+1 has a proper element a.

Let Aj) holds. Let a be a nonzero element of the ring K,, and y, =
1+ aa(l + g). We shall prove that the set

M={zq=yoya" =l+ala+a " )(1+9): 0£a € K,}

has the above declared property. Really, since a? ¢ (g), it follows that the
elements a and a~! belong to the different cosets of the group G, by the
subgroup (g). Hence z, # 1. It is easy to see that 1,* = 2, = 74" 1.
Therefore x,, is a unitary element of second order of the group V (K, G,,).
If 2, € V2" then, from the condition a2 ¢ (g), it follows that the elements
a and ag belong to the group G,11, but this contradicts to the choice of
clements a and g. Therefore z, € W2'[2] \ W2 [2).

Suppose that the coset 2,V2"" [2] coincides with 2, V2" [2] for a dif-
ferent o and v from K,,. Then x, = x,z for a suitable z € V2" Since
x,* =z, 1, it follows that

z2=x,2, =14 (a+v)(a+a DA+ g) = Tays

and x4, belongs to the subgroup V2" what contradicts it which was
proved in above. Obviously |M| = |K,|. Therefore the constructed set M
has the above declared property.

Let Aj) holds.
It is easy to see that the elements of the set

M={zo=14aa(l+g):0#ac K}

belong to the different cosets of the group V(KG)[2] by the subgroup
V2(KQG)[2). Indeed, if z, € V? then a € G; and ag € G;. But this contra-
dicts to the choice of the elements a and g and hence z, € W[2] \ W?[2].
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The equation x, = x,2 (z ceV?a# V) is impossible since from it follows
that 2 = 242, = 1 + (a + v)a(l + g) = Zay., and, by proved in above,
Totr & V2. Obviously |M| = |K| and therefore fo(W) = |K].

Let us contruct the set M in case n > 0.

Since, by Lemma 1, f,(W2) = f,(G) when G, 11 = 1, it follows that
we can assume that G,41 # 1. Let |G,| # 4. Then the set G, \ Gp11
has neither element a, which order is not divisible by 2, or element b of
order 2" > 4, or has a subgroup (c: ¢* = 1) x (d: d*> = 1). Obviously in
the first case a®> ¢ (g). If in the other cases we put a = b,g = b2 or
a = c,g = d respectively then the condition a® ¢ (g) holds and we have the
above considered case Aj).

Let G, = (a: a* = 1) and y, = 1 + a(a + 1). Obviously the element

To = yaya* =1+ (a + a2)(a + GB)

is unitary. Let L denote a subset of K, that has a unique representative in
every subset of the form {a,1+ a} C K,,. Then the elements of the set

M={2qa=yoya* =1+ (a+a?)(a+a’): 0£a€c L}

belong to the different cosets of the group W?2" (KG)[2] by the subgroup
W2 (KG)[2]. Really, if 2, coincides with 2, (o, v € L), then a + a? =
v+ 1v? . Hence the equation (o + v)(1 + a + v) = 0 holds, but in the
ring without zero divisors this is possible for the different o and v only
in the case v = 1 + «, what contradicts to the choice of the elements of
the set L. Obviously |M| = |L| = |K,|. By Lemma 1, W2 = (a2). If
anQHH = a:l,VVTL+1 (o # x,) we get the contradictinally equation

1+ (a+a®)(a+a®) =a® + (v+vH)(a +dd).

Therefore anQTLH =+ a:l,VVQTL+1 for z, # x, the case Ay) is considered.

Let As) holds, i.e. G, = (g). Then G,,41 = 1. If n = 0 then W(KG) =
Vo(KG) and fo(W) = fo(Va) = |K|. If n > 0 then, according to Lemma 1,
(W) = fa(G):

Therefore the case A) is fully considered.

Suppose now that B) holds, i.e. |G, | > |K,| and the Sylow 2-subgroup
Sy, of the group G, does not coincide with the Sylow 2-subgroup S,11 of
the group G,,+1. Then the set S, \ S,,+1 has an element g of order ¢ = 2".
Let, further on, IT = II(G,,/(g)) denote the full set of representatives of the
cosets of the group G,, by the subgroup (g). Let us consider two disjunct
subsets

le{aEH:a2¢<g>} and ng{aEH:a2€<g>}
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of the set II. Since G, is infinite, it is easy to see that |G,| = || =
max { [II; [, [Tz}

Let us suppose at first that |G,,| = |II;|. Without loss of generality we
can assume that the representative of the coset a=!(g) is the element a~*.
Let E denote the set which has a unique representative in every subset of
the form {a,a™'} CII; and yo = 1+a(l+g+---+g79"'). Then |G,| = |E]|
and the elements of the set

M:{xa:yaya*z1+(a+a*1)(1+g+...+gq71):aeE}

belong to the different cosets of the group V2" [2] by the subgroup v [2].
Indeed, from the supposition z, € V2n+1[2] it follows that ag® € G,,,1 for
every ¢ = 0,1,...,¢ — 1, but this contradicts to the choice of the element
g € Gy \ Gpy1. It is easy to see that z, is a unitary element and so
2o € W22\ W2""'[2]. Suppose that a and ¢ are the distinct clements of
the set E. If x, = z.z for some z € V2" then

z:xaxc*:1+(CL+G71+C+Cil)(l—|—g+...+g¢J*1).

According to the choice of the elements of the set E we have that the
elements a,a™ ', c,c”! belong to the distinct cosets of the group G, by the
subgroup (g). Hence from the condition z € V2" it follows that a € Gn+1,
ag € G411, which contradicts to the choice of the element g € S, \ Sy41.

Let be now |G| = |IIo]. If G> = 1 then W(KG) = V(KG) and
foW) = fo(Va) = |G|. If n > 0 and G,,41 = 1 then, by Lemma 1, f,(W) =
fn(G). Suppose that G,,+1 # 1. Then the group G,, has such element
v of order not equals to 2 that (g) N (v) = 1. If a such representative
of the coset a{g) that a®> € (g) and a® # 1, then a®> = ¢* € G, 41 and,
according to the choice of the element g, the integer ¢ is divisible by 2. In
this case in role of the representative of the coset a(g) in the set Il we
can choose the element a; = ag_%. Therefore, we can assume that the set
II; consists of the elements of second order. Since (g) N (v) = 1, it follows
that from the II; we can choose a subset ﬁz which elements belong to the
distinct cosets of the group G,, by the subgroup (g,v) and |G,,| = |II2|. Let
Yo =1+ av(l+g+---+ g9 1). Then the set

M:{xa:yaya*:1+a(v+v’1)(1+g+~'+gq’1):aeﬁg}

has the need property. Indeed, the cosets xaVQHH and xCVQ"H coincide if
and only if

TaTe =1+ (G+C)(U —l—'l)il)(l +g+--- _i_QQ*l) c V2"+1'
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Since the elements a and ¢ belong to the distinct cosets of the group G,, by
the subgroup (g,v), it follows that av € G,4; and avg € G411, but this
contradicts to the choice of the element g € G,, \ Gy, +1. So the case B) is
fully considered.

Let C) holds, that is |G, | > |K,| and the Sylow 2-subgroup S,, of the
group G, is 2-divisible.

Let us fix an element g € S,[2] and choose such v € G,, \ G,,4+1 that 2
does not divide the order of element v. Since |S,| =[S, : (g)] > |{(v)] and
v ¢ Sy, it follows that the cardinality of the full set of representatives of the
cosets IT = II(G,, /(g,v)) of the group G,, by the subgroup (g,v) coincides
with |G,|. Obviously the set II decomposes to the two disjunct subsets
I ={acll:a®> ¢ (v,9)} and Il = {a € [I: a® € (v,g)}.

Let | G, |=| II; |, E be the set which has a unique representative in
every subset of the form {a,a™'} CII; and y, =1+ a(l+v+v (1 +g).
Then the set M can be choosen in the following way:

M={z=yya" =1+ (a+a )(1+v+v ) (1+g):a€E}.

Indeed, from the equation z, = x.2 (z € V2n+1, a # c) follows that

z=14(a+a +eteHA+v+v )1 +g) € v

Hence, according to the construction of the set F, the elements a and av
belong to the subgroup G, 11, but this contradicts to the condition v ¢
Gn+1.

Suppose now that |G| = |llz|. Then v? # 1. If a® = v? for some
a € Iy, then from the condition v ¢ G,,11 it follows that 7 is an even number.
Let us choose in the role of the representative of the coset a(g, v) the element
a; = av~ 2. Hence we can assume that the set IT, of the representatives of
the group G,, by the subgroup (g, v) consists of the elements of the group
Sn = Spt1- The set

M={z,=14alv+v )(1+g): acll}

has the need property. Indeed, if x, = z.z for the distinct a, ¢ € Il and for
some z € VP then z = 2,2, = 1+ (a+c)(v+0v1)(1+g) and av € Gp 1.
Hence v € G, 41 because — by the choice — I C S, 41, and so we get the
contradiction.

Therefore the case C) is fully considered and the statement is proved
for a finite ordinal A = n.
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Let us consider the case of infinite ordinal .
Let A be an arbitrary infinite ordinal R = K, H = G # Gx4+1 and
the Sylow 2-subgroup Sy of the group G is not singular. Then

W(KG)? C W(RH) C Va(RH)
and by transfinite induction it is easy to prove the equation
2) Va(KG)? = Va(RH).

As compared to the group Vo(RH) we can construct the set M as in the
above shown cases A), B) and C'). Since in every of this cases the set M
consist of the elements of the form x = y~'y* and, by (2), y belongs to the
group Vo(RH) = V(K G)?, it follows that the elements x are the represen-

tatives of the cosets of group W2 (KG)[2] by the subgroup w2 (KG)[2)].

Therefore for an arbitrary infinite ordinal A the Ulm—Kaplansky invari-
ants of the group W(KG) can be calculated in the above shown way for the
case A = n.
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