On the Fejér kernel functions with respect to the Walsh–Paley system

GYÖRGY GÁT*

Abstract. In this paper we prove some lemmas with respect to the Fejér kernels of the Walsh–Paley system. This lemmas give a new proof for the known a.e. convergence $\sigma_n f \rightarrow f \ (n \rightarrow \infty, f \in L^1)$.

Let **P** denote the set of positive integers, $\mathbf{N} := \mathbf{P} \cup \{0\}$ and I := [0, 1) the unit interval. Denote the Lebesgue measure of any set $E \subset I$ by |E|. Denote the $L^p(I)$ norm of any function f by $||f||_p$ $(1 \le p \le \infty)$.

Denote the dyadic expansion of $n \in \mathbf{N}$ and $x \in I$ by $n = \sum_{j=0}^{\infty} n_j 2^j$ and $x = \sum_{j=0}^{\infty} x_j 2^{-j-1}$ (in the case of $x = \frac{k}{2^m} k, m \in \mathbf{N}$ choose the expansion which terminates in zeros (these numbers are the dyadic rationals)). n_i, x_i are the *i*-th coordinates of n, x, respectively. Define the dyadic addition + as

$$x + y = \sum_{j=0}^{\infty} (x_j + y_j \mod 2) 2^{-j-1}.$$

The sets

$$I_n(x) := \{ y \in I : y_0 = x_0, \dots, y_{n-1} = x_{n-1} \}$$

for $x \in I$, $I_n := I_n(0)$ for $n \in \mathbf{P}$ and $I_0(x) := I$ are the dyadic intervalls of I. Set $e_n := (0, \ldots, 0, 1, 0, \ldots)$ where the *n*-th coordinate of e_n is 1 the rest are zeros for all $n \in \mathbf{N}$. The dyadic rationals are the finite 0, 1 combinations of the elements of the set $\{e_n : n \in \mathbf{N}\}$ (which dense in I).

Let $(\omega_n, n \in \mathbf{N})$ represent the Walsh–Paley system ([2], [8]) that is,

$$\omega_n(x) = \prod_{k=0}^{\infty} (-1)^{n_k x_k}, \quad n \in \mathbf{N}, \ x \in I.$$

Denote by $D_n := \sum_{k=0}^{n-1} \omega_k$, the Walsh–Dirichlet kernels.

 $^{^{\}star}$ Research supported by the Hungarian National Research Science Foundation, Operating Grant Number OTKA T 020334.

György Gát

It is well-known that ([2], [8])

$$S_n f(y) = \int_I f(x) D_n(y+x) dx = f * D_n(y)$$

 $(y\in I,\ n\in {\bf P})$ the n-th partial sum of the Walsh–Fourier series. Moreover, ([8], p. 28.)

(1)
$$D_{2^n}(x) := \begin{cases} 2^n, & \text{if } x \in I_n, \\ 0, & \text{otherwise,} \end{cases}$$

(2)
$$D_n(x) = \omega_n(x) \sum_{k=0}^{\infty} n_k (D_{2^{k+1}}(x) - D_{2^k}(x)) = \omega_n(x) \sum_{k=0}^{\infty} n_k (-1)^{x_k} D_{2^k}(x),$$

 $n \in \mathbf{N}, x \in I.$

Define the *n*-th Fejér means [8] of function $f \in L^1(I)$ as

$$\sigma_n f(y) := \frac{1}{n} \sum_{k=0}^{n-1} S_k f(y)$$

for $y \in I$ and $n \in \mathbf{P}$ and define *n*-th Fejér kernel [8]

$$K_n(x) := \frac{1}{n} \sum_{k=0}^{n-1} D_k(x)$$

for $x \in I$ and $n \in \mathbf{P}$. This gives

$$\sigma_n f(y) = \int_I f(x) K_n(x+y) dx = f * K_n(y) \quad (y \in I, \ n \in \mathbf{P}).$$

Set

$$K_{a,b} := \sum_{j=a}^{b-1} D_j \quad a, b \in \mathbf{N} \text{ and } n^{(s)} := \sum_{i=s}^{\infty} n_i 2^i \quad (n, s \in \mathbf{N}).$$

Also set for $n \in \mathbf{N}$ $|n| := \max\{j \in \mathbf{N} : n_j \neq 0\}$. That is, $2^{|n|} \le n < 2^{|n|+1}$. In this paper c denotes an absolute constant which may not be the same at different occurences. Then we have by an easy calculation that

Lemma 1. $nK_n = \sum_{s=0}^{|n|} n_s K_{n^{(s+1)},2^s}$ for all $n \in \mathbf{P}$.

106

Lemma 2. Suppose that $s, t, n \in \mathbb{N}$, $x \in I_t \setminus I_{t+1}$. If $s \leq t \leq |n|$, then $|K_{n^{(s+1)},2^s}(x)| \leq c2^{s+t}$. On the other hand, if $t < s \leq |n|$, we have

$$K_{n^{(s+1)},2^s}(x) = \begin{cases} 0 & \text{if } x - x_t e_t \notin I_s, \\ \omega_{n^{(s+1)}}(x) 2^{s+t-1} & \text{if } x - x_t e_t \in I_s. \end{cases}$$

Proof. If $s \leq t$, then for all $k \in \mathbf{N}$ by (1) and (2) we have $|D_k(x)| \leq c \sum_{j=0}^t 2^j \leq c 2^t$, thus in this case $|K_{n^{(s+1)},2^s}(x)| \leq c 2^{s+t}$. On the other hand, let $|n| \geq s > t$. Then

$$D_{n^{(s+1)}+j}(x) = \omega_{n^{(s+1)}+j}(x) \sum_{k=0}^{t} (n^{(s+1)}+j)_k r_k(x)$$
$$= \omega_{n^{(s+1)}+j}(x) \left(\sum_{k=0}^{t-1} j_k 2^k - j_t 2^t\right).$$

This implies that

$$\begin{split} K_{n^{(s+1)},2^{s}}(x) &= \sum_{j=0}^{2^{s}-1} D_{n^{(s+1)}+j}(x) \\ &= \omega_{n^{(s+1)}}(x) \sum_{j=0}^{2^{s}-1} \omega_{j}(x) \left(\sum_{k=0}^{t-1} j_{k} 2^{k} - j_{t} 2^{t}\right) =: \sum_{1} - \sum_{2^{s}} \sum_{j=0}^{1} \sum_{1} \sum_{j=0, i \neq t, i=0, \dots, s-1}^{1} \omega_{j}(x) \sum_{k=0}^{t-1} j_{k} 2^{k} \\ &= \sum_{j_{i}=0, i \neq t, i=0, \dots, s-1}^{1} \sum_{k=0}^{t-1} j_{k} 2^{k} \sum_{j_{t}=0}^{1} \omega_{j}(x) = 0, \end{split}$$

since

$$\sum_{j_t=0}^{1} \omega_j(x) = \sum_{j_t=0}^{1} (-1)^{j_0 x_0 + \dots + j_{t-1} x_{t-1} + j_{t+1} x_{t+1} + \dots + j_{s-1} x_{s-1}} = 0.$$

That is,

$$\begin{split} K_{n^{(s+1)},2^{s}}(x) &= -\omega_{n^{(s+1)}}(x) \sum_{j=0}^{2^{s}-1} \omega_{j}(x) j_{t} 2^{t} \\ &= \begin{cases} 0 & \text{if } x - x_{t} e_{t} \notin I_{s}, \\ \omega_{n^{(s+1)}}(x) 2^{s+t-1} & \text{if } x - x_{t} e_{t} \in I_{s}. \end{cases} \blacksquare$$

As a straightforward consequence of Lemma 2 we get

Lemma 3. $\int_{I_t \setminus I_{t+1}} \sup_{|n|=m} |K_{n^{(s+1)},2^s}(x)| dx \le c\sqrt{2^{s+t}}$, where $m \ge s, t \in \mathbb{N}$ are fixed.

Proof. If s > t, then by Lemma 2 it follows that

$$\int_{I_t \setminus I_{t+1}} \sup_{|n|=m} \left| K_{n^{(s+1)}, 2^s}(x) \right| dx = \int_{I_s(e_t)} 2^{s+t-1} dx = 2^{t-1}.$$

On the other hand, if $s \leq t$, then also by Lemma 2 we have

$$\int_{I_t \setminus I_{t+1}} \sup_{|n|=m} \left| K_{n^{(s+1)}, 2^s}(x) \right| dx \le c \int_{I_t \setminus I_{t+1}} c 2^{s+t} \le c 2^s. \blacksquare$$

Lemma 4. $\int_{I \setminus I_k} \sup_{|n| \ge A} |K_n(x)| dx \le c\sqrt{2^{k-A}}$, for all $A \ge k \in \mathbb{N}$. **Proof.** By Lemma 1 we have

$$n |K_n| \le \sum_{s=0}^{|n|} |K_{n^{(s+1)}, 2^s}|,$$

consequently,

$$\begin{split} \int_{I \setminus I_k} \sup_{|n| \ge A} |K_n(x)| \, dx &\leq \sum_{t=0}^{k-1} \int_{I_t \setminus I_{t+1}} \sum_{m=A}^{\infty} \sup_{|n|=m} |K_n(x)| \, dx \\ &\leq \sum_{t=0}^{k-1} \sum_{m=A}^{\infty} \frac{1}{2^m} \int_{I_t \setminus I_{t+1}} \sup_{|n|=m} n \, |K_n(x)| \, dx \\ &\leq \sum_{t=0}^{k-1} \sum_{m=A}^{\infty} \frac{1}{2^m} \left(\sum_{s=0}^t \int_{I_t \setminus I_{t+1}} \sup_{|n|=m} |K_{n^{(s+1)},2^s}(x)| \, dx \right) \\ &+ \sum_{s=t+1}^m \int_{I_t \setminus I_{t+1}} \sup_{|n|=m} |K_{n^{(s+1)},2^s}(x)| \, dx \\ &\leq c \sum_{t=0}^{k-1} \sum_{m=A}^{\infty} \frac{1}{2^m} \sum_{s=0}^m 2^{\frac{s+t}{2}} \leq c \sum_{t=0}^{k-1} \sum_{m=A}^{\infty} 2^{\frac{t-m}{2}} \leq c 2^{\frac{k-A}{2}}. \end{split}$$

The following Theorem shows that the maximal operator

$$Tf := \sup_{n \in \mathbf{P}} |\sigma_n f|$$

is quasi-local. The conception of quasi-locality is introduced by F. Schipp [8]. Let $f \in L^1(I)$, supp $f \subset I_k(x^0)$ for some $k \in \mathbf{N}, x^0 \in I$ and suppose that the integral of Tf on the set $I \setminus I_k(x^0)$ is bounded by $c|f|_1$. Then we call T quasi-local. That is, we prove

Theorem 5. $\int_{I \setminus I_k(x^0)} Tf \leq c |f|_1$.

Proof. If $n < 2^k$, then $\hat{f}(n) = \int_I f \omega_n = \int_{I_k(x^0)} f \omega_n = \omega_n(x^0) \int_{I_k(x^0)} f = 0$, thus $S_n f = 0, \sigma_n f = 0$. That is, we have $Tf = \sup_{n \ge 2^k} |\sigma_n f|$. By Lemma 4 it follows

$$\begin{split} \int_{I \setminus I_k(x^0)} \sup_{n \ge 2^k} \left| \int_{I_k(x^0)} f(x) K_n(x+y) dx \right| dy \\ & \le \int_{I_k(x^0)} |f(x)| \int_{I \setminus I_k(x^0)} \sup_{n \ge 2^k} |K_n(x+y) dy| dx \\ & = \int_{I_k(x^0)} |f(x)| \int_{I \setminus I_k} \sup_{n \ge 2^k} |K_n(y) dy| dx \le c \|f\|_1. \end{split}$$

Define the Hardy space H as follows. Let $f^* := \sup_{n \in \mathbf{N}} |S_{2^n} f|$ be the maximal function of the integrable function $f \in L^1(I)$. Then,

$$H(I) := \{ f \in L^1(I) : f^* \in L^1(I) \},\$$

moreover H is a Banach space endowed with the norm $|f|_H := |f^*|_1$. By standard argument (see e.g. [8]) and by the help of Theorem 5 one can prove that the operator T is of type (H, L^1) which means that $|Tf|_1 \le c |f|_H$ for all $f \in H$. This result with respect to the Walsh system is due to Schipp [7] and Fujii [2]. With respect to bounded Vilenkin system it is proved by Simon [6]. The noncommutative case is discussed by the author ([4]).

Also by standard argument (see e.g. [8]) and by the help of Theorem 5 we have that for all $f \in L^1(I)$ the almost everywhere convergence $\sigma_n f \to f$ $(n \to \infty, f \in L^1(I))$ holds. This result with respect to the Walsh system is due to Fine [1]. With respect to bounded Vilenkin systems it is proved by Pál and Simon [5]. The so-called 2-adic integers and the noncommutative case are discussed by the author ([3], [4]).

References

 FINE, N. J., Cesàro summability of Walsh–Fourier series, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 558–591.

- [2] FUJH, N., A maximal inequality for H¹ functions on the generalized Walsh–Paley group, Proc. Amer. Math. Soc. 77 (1979), 111–116.
- [3] GAT, G., On the almost everywhere convergence of Fejér means of functions on the group of 2-adic integers, *Journal of Approx. Theory*, (1995) (to appear).
- [4] GAT, G., Pointwise convergence of Fejér means on compact totally disconnected groups, Acta Sci. Math. (Szeged) 60 (1995), 311–319.
- [5] PÁL, J., SIMON, P., On a generalization of the concept of derivative, Acta Math. Acad. Sci. Hungar. 29 (1977), 155–164.
- [6] SIMON, P., Investigations with respect to the Vilenkin system, Annales Univ. Sci. Budapestiensis, Sectio Math. 27 (1985), 87–101.
- [7] SCHIPP, F., Über gewiessen Maximaloperatoren Annales Univ. Sci. Budapestiensis, Sectio Math. 18 (1975), 189–195.
- [8] SCHIPP, F., WADE, W. R., SIMON, P., PÁL, J., Walsh series: an introduction to dyadic harmonic analysis, Adam Hilger, Bristol and New York, 1990.
- [9] TAIBLESON, M. H., Fourier Series on the Ring of Integers in a p-series Field, B.A.M.S 73 (1967), 623–629.

Bessenyei College, Dept. of Math., Nyíregyháza, P.O.Box 166., H–4400, Hungary E-mail: gatgy@ny2.bgytf.hu