
Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae, 24. (1997) pp. 105–110

On the Fejér kernel functions with respect to
the Walsh–Paley system

GYÖRGY GÁT⋆

Abstract. In this paper we prove some lemmas with respect to the Fejér kernels of

the Walsh–Paley system. This lemmas give a new proof for the known a.e. convergence

σnf→f (n→∞, f∈L1).

Let P denote the set of positive integers, N :=P ∪ {0} and I := [0, 1)
the unit interval. Denote the Lebesgue measure of any set E ⊂ I by |E|.
Denote the Lp(I) norm of any function f by ‖f‖p (1 ≤ p ≤ ∞).

Denote the dyadic expansion of n ∈ N and x ∈ I by n =
∑∞

j=0 nj2
j and

x =
∑∞

j=0 xj2
−j−1 (in the case of x = k

2m k,m ∈ N choose the expansion
which terminates in zeros (these numbers are the dyadic rationals)). ni, xi

are the i-th coordinates of n, x, respectively. Define the dyadic addition +
as

x + y =

∞
∑

j=0

(xj + yj mod2)2−j−1.

The sets

In(x) := {y ∈ I : y0 = x0, . . . , yn−1 = xn−1}

for x ∈ I, In := In(0) for n ∈ P and I0(x) := I are the dyadic intervalls of I.
Set en := (0, . . . , 0, 1, 0, . . .) where the n-th coordinate of en is 1 the rest are
zeros for all n ∈ N. The dyadic rationals are the finite 0, 1 combinations of
the elements of the set {en : n ∈ N} (which dense in I).

Let (ωn, n ∈ N) represent the Walsh–Paley system ([2], [8]) that is,

ωn(x) =
∞
∏

k=0

(−1)nkxk , n ∈ N, x ∈ I.

Denote by Dn :=
∑n−1

k=0 ωk, the Walsh–Dirichlet kernels.
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It is well-known that ([2], [8])

Snf(y) =

∫

I

f(x)Dn(y + x)dx = f ∗ Dn(y)

(y ∈ I, n ∈ P) the n-th partial sum of the Walsh–Fourier series. Moreover,
([8], p. 28.)

(1) D2n(x) :=

{

2n, if x ∈ In,
0, otherwise,

(2) Dn(x) = ωn(x)
∞
∑

k=0

nk(D2k+1(x)−D2k(x)) = ωn(x)
∞
∑

k=0

nk(−1)xk D2k(x),

n ∈ N, x ∈ I.
Define the n-th Fejér means [8] of function f ∈ L1(I) as

σnf(y) :=
1

n

n−1
∑

k=0

Skf(y)

for y ∈ I and n ∈ P and define n-th Fejér kernel [8]

Kn(x) :=
1

n

n−1
∑

k=0

Dk(x)

for x ∈ I and n ∈ P. This gives

σnf(y) =

∫

I

f(x)Kn(x + y)dx = f ∗ Kn(y) (y ∈ I, n ∈ P).

Set

Ka,b :=
b−1
∑

j=a

Dj a, b ∈ N and n(s) :=
∞
∑

i=s

ni2
i (n, s ∈ N).

Also set for n ∈ N |n| := max{j ∈ N : nj 6= 0}. That is, 2|n| ≤ n < 2|n|+1.
In this paper c denotes an absolute constant which may not be the same at
different occurences. Then we have by an easy calculation that

Lemma 1. nKn =
∑|n|

s=0 nsKn(s+1),2s for all n ∈ P.
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Lemma 2. Suppose that s, t, n ∈ N, x ∈ It \ It+1. If s ≤ t ≤ |n|, then
∣

∣Kn(s+1),2s(x)
∣

∣ ≤ c2s+t. On the other hand, if t < s ≤ |n|, we have

Kn(s+1),2s(x) =

{

0 if x − xtet /∈ Is,

ωn(s+1)(x)2s+t−1 if x − xtet ∈ Is.

Proof. If s ≤ t, then for all k ∈ N by (1) and (2) we have |Dk(x)| ≤
c
∑t

j=0 2j ≤ c2t, thus in this case
∣

∣Kn(s+1),2s(x)
∣

∣ ≤ c2s+t. On the other
hand, let |n| ≥ s > t. Then

Dn(s+1)+j(x) = ωn(s+1)+j(x)

t
∑

k=0

(n(s+1) + j)krk(x)

= ωn(s+1)+j(x)

(

t−1
∑

k=0

jk2k − jt2
t

)

.

This implies that

Kn(s+1),2s(x) =

2s−1
∑

j=0

Dn(s+1)+j(x)

= ωn(s+1)(x)

2s−1
∑

j=0

ωj(x)

(

t−1
∑

k=0

jk2k − jt2
t

)

=:
∑

1
−
∑

2
.

∑

1
= ωn(s+1)(x)

∑

j0,...,js−1

ωj(x)

t−1
∑

k=0

jk2k

=
1
∑

ji=0,i 6=t,i=0,...,s−1

t−1
∑

k=0

jk2k

1
∑

jt=0

ωj(x) = 0,

since
1
∑

jt=0

ωj(x) =

1
∑

jt=0

(−1)j0x0+···+jt−1xt−1+jt+1xt+1+···+js−1xs−1 = 0.

That is,

Kn(s+1),2s(x) = −ωn(s+1)(x)

2s−1
∑

j=0

ωj(x)jt2
t

=

{

0 if x − xtet /∈ Is,
ωn(s+1)(x)2s+t−1 if x − xtet ∈ Is.
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As a straightforward consequence of Lemma 2 we get

Lemma 3.
∫

It\It+1
sup|n|=m

∣

∣Kn(s+1),2s(x)
∣

∣ dx ≤ c
√

2s+t, where m ≥
s, t ∈ N are fixed.

Proof. If s > t, then by Lemma 2 it follows that
∫

It\It+1

sup
|n|=m

∣

∣Kn(s+1),2s(x)
∣

∣ dx =

∫

Is(et)

2s+t−1dx = 2t−1.

On the other hand, if s ≤ t, then also by Lemma 2 we have
∫

It\It+1

sup
|n|=m

∣

∣Kn(s+1),2s(x)
∣

∣ dx ≤ c

∫

It\It+1

c2s+t ≤ c2s.

Lemma 4.
∫

I\Ik

sup|n|≥A |Kn(x)| dx ≤ c
√

2k−A, for all A ≥ k ∈ N.

Proof. By Lemma 1 we have

n |Kn| ≤
|n|
∑

s=0

∣

∣Kn(s+1),2s

∣

∣ ,

consequently,

∫

I\Ik

sup
|n|≥A

|Kn(x)| dx ≤
k−1
∑

t=0

∫

It\It+1

∞
∑

m=A

sup
|n|=m

|Kn(x)| dx

≤
k−1
∑

t=0

∞
∑

m=A

1

2m

∫

It\It+1

sup
|n|=m

n |Kn(x)| dx

≤
k−1
∑

t=0

∞
∑

m=A

1

2m

(

t
∑

s=0

∫

It\It+1

sup
|n|=m

∣

∣Kn(s+1),2s(x)
∣

∣ dx

+

m
∑

s=t+1

∫

It\It+1

sup
|n|=m

∣

∣Kn(s+1),2s(x)
∣

∣ dx

)

≤ c

k−1
∑

t=0

∞
∑

m=A

1

2m

m
∑

s=0

2
s+t

2 ≤ c

k−1
∑

t=0

∞
∑

m=A

2
t−m

2 ≤ c2
k−A

2 .

The following Theorem shows that the maximal operator

Tf := sup
n∈P

|σnf |
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is quasi-local. The conception of quasi-locality is introduced by F. Schipp
[8]. Let f ∈ L1(I), supp f ⊂ Ik(x0) for some k ∈ N, x0 ∈ I and suppose
that the integral of Tf on the set I \ Ik(x0) is bounded by c |f |1. Then we
call T quasi-local. That is, we prove

Theorem 5.
∫

I\Ik(x0)
Tf ≤ c |f |1.

Proof. If n < 2k, then f̂(n) =
∫

I
fωn =

∫

Ik(x0)
fωn = ωn(x0)

∫

Ik(x0)
f =

0, thus Snf = 0, σnf = 0. That is, we have Tf = supn≥2k |σnf |. By Lemma
4 it follows

∫

I\Ik(x0)

sup
n≥2k

∣

∣

∣

∣

∣

∫

Ik(x0)

f(x)Kn(x + y)dx

∣

∣

∣

∣

∣

dy

≤
∫

Ik(x0)

|f(x)|
∫

I\Ik(x0)

sup
n≥2k

|Kn(x + y)dy| dx

=

∫

Ik(x0)

|f(x)|
∫

I\Ik

sup
n≥2k

|Kn(y)dy| dx ≤ c |f |1 .

Define the Hardy space H as follows. Let f∗ := supn∈N
|S2nf | be the

maximal function of the integrable function f ∈ L1(I). Then,

H(I) := {f ∈ L1(I) : f∗ ∈ L1(I)},

moreover H is a Banach space endowed with the norm |f |H := |f∗|1. By
standard argument (see e.g. [8]) and by the help of Theorem 5 one can prove
that the operator T is of type (H,L1) which means that |Tf |1 ≤ c |f |H for
all f ∈ H. This result with respect to the Walsh system is due to Schipp
[7] and Fujii [2]. With respect to bounded Vilenkin system it is proved by
Simon [6]. The noncommutative case is discussed by the author ([4]).

Also by standard argument (see e.g. [8]) and by the help of Theorem 5
we have that for all f ∈ L1(I) the almost everywhere convergence σnf → f
(n → ∞, f ∈ L1(I)) holds. This result with respect to the Walsh system is
due to Fine [1]. With respect to bounded Vilenkin systems it is proved by
Pál and Simon [5]. The so-called 2-adic integers and the noncommutative
case are discussed by the author ([3], [4]).
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