On the certain subsets of the space of metrics

S. ČERETKOVÁ, J. FULIER and J. T. TÓTH

Abstract

In this note we look at certain subsets of the metric space of metrics for an arbitrary given set X and show that in terms of cardinility these can be very large while being extremely small in the topological point of view.

Introduction

Let X be a given non-void set. Denote by \mathcal{M} the set of all metrics on X endowed with the metric:

$$
d^{\star}\left(d_{1}, d_{2}\right)=\min \left\{1, \sup _{x, y \in X}\left\{\left|d_{1}(x, y)-d_{2}(x, y)\right|\right\} \text { for } d_{1}, d_{2} \in \mathcal{M}\right\} .
$$

First of all recall some basic definitions and notations.
Suppose $\alpha>0$ and put

$$
\mathcal{H}_{\alpha}=\{d \in \mathcal{M}: \underset{\substack{x \neq y \\ x, y \in X}}{\forall} d(x, y) \geq \alpha\} \text { and } \mathcal{H}=\bigcup_{\alpha>0} \mathcal{H}_{\alpha}
$$

Results shown in [2] include \mathcal{M} is a non-complete Baire space and \mathcal{H} is an open and dense subset of \mathcal{M}, thus $\mathcal{M} \mid \mathcal{H}$ is nowhere dense in \mathcal{M}. Other results on the metric space of metrics may be found in [2], [3] and [4].

Let \mathcal{A} and \mathcal{B} denote the set of all metrics on X that are unbounded and bounded, respectively. It is proved in [2] (Theorem 5) that \mathcal{A}, \mathcal{B} are non-empty, open subsets of the Baire space (\mathcal{M}, d^{\star}) (of [2], Theorem 3) provided X is infinite. Thereby \mathcal{A}, \mathcal{B} are sets of the 2 -nd cathegory in \mathcal{M}, if is infinite. If X is finite, then $\mathcal{B}=\mathcal{M}$ and $\mathcal{A}=\emptyset$.

Now define the mapping

$$
f: \mathcal{M} \rightarrow(0,1], g: \mathcal{M} \rightarrow[0, \infty) \text { and } h: \mathcal{B} \rightarrow(0,+\infty)
$$

as follows:

$$
\begin{aligned}
& f(d)=\sup _{x, y \in X} \frac{d(x, y)}{1+d(x, y)} \text { where } d \in \mathcal{M}, \\
& g(d)=\inf _{\substack{x \neq y \\
x, y \in X}} d(x, y) \text { where } d \in \mathcal{M}, \text { and } \\
& h(d)=\sup _{x, y \in X} d(x, y) \text { where } d \in \mathcal{B} .
\end{aligned}
$$

Obviously $f^{-1}(\{1\})=\mathcal{A}$ and $g^{-1}(\{0\})=\mathcal{M} \backslash \mathcal{H}$.
It is purpose of this paper to establish how large sets $f^{-1}(\{t\}), g^{-1}(\{t\})$, are given.

In what follows if $\mathcal{U} \subset \mathcal{M}$, then \mathcal{U} is considered as a metrics space with the metric $\left.d^{\star}\right|_{\mathcal{U} \times \mathcal{U}}($ a metric subspace of $\mathcal{M})$.

Main results

Let $\varphi(t)=\frac{t}{1+t}$ for $t \in[0,+\infty)$. Then φ is increasing and continuous function on $[0,+\infty)$. Therefore $f(d)=\sup _{x, y \in X} \varphi(d(x, y))$ for $d \in \mathcal{M}$. The natural question arises wether f is continuous on \mathcal{M}, too. The answer of this question is positive. We have

Lemma. The function f, g are uniformly continuous on \mathcal{M} and the function h is uniformly continuous on \mathcal{B}.

Proof. Let $0<\varepsilon<1$ and $d_{1}, d_{2} \in \mathcal{M}$ such that $d^{\star}\left(d_{1}, d_{2}\right)<\varepsilon$. We show

$$
\left|f\left(d_{1}\right)-f\left(d_{2}\right)\right| \leq d^{\star}\left(d_{1}, d_{2}\right), \quad\left|g\left(d_{1}\right)-g\left(d_{2}\right)\right| \leq d^{\star}\left(d_{1}, d_{2}\right)
$$

We can simply count

$$
\begin{aligned}
\varphi\left(d_{1}(x, y)\right) & \leq \varphi\left(d_{2}(x, y)\right)+\left|\varphi\left(d_{1}(x, y)\right)-\varphi\left(d_{2}(x, y)\right)\right| \\
& \leq \varphi\left(d_{2}(x, y)\right)+d^{\star}\left(d_{1}, d_{2}\right)
\end{aligned}
$$

because

$$
\frac{\left|d_{1}(x, y)-d_{2}(x, y)\right|}{\left(1+d_{1}(x, y)\right)\left(1+d_{2}(x, y)\right)} \leq d^{\star}\left(d_{1}, d_{2}\right) .
$$

Taking supremum in the previous inequality we obtain $f\left(d_{1}\right) \leq f\left(d_{2}\right)+$ $d^{\star}\left(d_{1}, d_{2}\right)$, therefore $f\left(d_{1}\right)-f\left(d_{2}\right) \leq d^{\star}\left(d_{1}, d_{2}\right)$. From symetrics we have $f\left(d_{2}\right)-f\left(d_{1}\right) \leq d^{\star}\left(d_{1}, d_{2}\right)$ and $\left|f\left(d_{1}\right)-f\left(d_{2}\right)\right| \leq d^{\star}\left(d_{1}, d_{2}\right)$. From this we see that the function f is uniformly continuous on \mathcal{M}. Obviously for $x, y \in X$

$$
\left|d_{1}(x, y)-d_{2}(x, y)\right| \geq d_{1}(x, y)-d_{2}(x, y) \geq g\left(d_{1}\right)-d_{2}(x, y) .
$$

Then

$$
\begin{equation*}
g\left(d_{1}\right)-g\left(d_{2}\right) \leq \inf _{\substack{x, y \in X \\ x \neq y}}\left|d_{1}(x, y)-d_{2}(x, y)\right| \leq d^{\star}\left(d_{1}, d_{2}\right) . \tag{1}
\end{equation*}
$$

According the inequality $\left|d_{1}(x, y)-d_{2}(x, y)\right| \geq d_{2}(x, y)-d_{1}(x, y)$, similarly to the previous we get

$$
\begin{equation*}
g\left(d_{2}\right)-g\left(d_{1}\right) \leq d^{\star}\left(d_{1}, d_{2}\right) \tag{2}
\end{equation*}
$$

Then we required inequality follows from (1) and (2).
Analogously $\left|h\left(d_{1}\right)-h\left(d_{2}\right)\right| \leq d^{\star}\left(d_{1}, d_{2}\right)$.
Remark 1. The function h can be continuosly continued on \mathcal{M}. Because the set \mathcal{B} is closed in \mathcal{M}, the Hausdorff's function (see [1], p. 382) is continuous continuation of the function h on \mathcal{M}.

Remark 2. Because $\mathcal{A} \cup \mathcal{B}=\mathcal{M}, \mathcal{A} \cap \mathcal{B}=\emptyset$ and the set \mathcal{B} is closed in \mathcal{M}, according the lemma of Uryshon there exists a function $G: \mathcal{M} \rightarrow[0,1]$ such that G is continuous on \mathcal{M} and $G(\mathcal{A})=\{0\}, G(\mathcal{B})=\{1\}$. For this reason $G(\mathcal{M})=\{0,1\}$.

Space $\left(\mathcal{M}, d^{\star}\right)$ is Bair's space, e.g. every non-empty open subset of the set \mathcal{M} is of the 2 -nd cathegory in \mathcal{M}. The set \mathcal{A} is non-void and open subset in \mathcal{M}, then the set $f^{-1}(\{1\})=\mathcal{A}$ is of the 2 -nd cathegory in \mathcal{M}. One may ask: Is there any $t \in(0,1)$ such that the set $f^{-1}(\{t\})$ is of the 2-nd cathegory in \mathcal{M} ? Similarly for $g^{-1}(\{t\})$ and $h^{-1}(\{t\})$. This question is answered in the next theorem.

Theorem 1. We have
(i) For arbitratry $t \in(0,1)$ the set $f^{-1}(\{t\})$ is nowhere dense in \mathcal{M}.
(ii) For arbitrary $t \in[0,+\infty)$ the set $g^{-1}(\{t\})$ is nowhere dense in \mathcal{M}.
(iii) For arbitrary $t \in[0,+\infty)$ the set $h^{-1}(\{t\})$ is nowhere dense in \mathcal{M}.

Proof. (i) Let $0<t<1$. According to lemma the set $f^{-1}(\{t\})$ is closed in \mathcal{M}. Therefore it is sufficient to prove that the set $\mathcal{M} \backslash f^{-1}(\{t\})$ is dense in \mathcal{M}. We will use inequality

$$
\begin{equation*}
\frac{t_{2}}{1+t_{2}} \geq \frac{t_{1}}{1+t_{1}}+\frac{t_{2}-t_{1}}{\left(1+t_{2}\right)^{2}} \quad \text { for } \quad 0 \leq t_{1} \leq t_{2} \tag{3}
\end{equation*}
$$

(it is equivalent to $\left(t_{2}-t_{1}\right)^{2} \geq 0$).
Let $d \in f^{-1}(\{t\})$ and $0<\varepsilon<1$. Clearly $d \in \mathcal{B}$ and there exists a $K \in R^{+}$such that

$$
\begin{equation*}
d(x, y) \leq K \text { for every } x, y \in X \tag{4}
\end{equation*}
$$

Choose $d^{\prime} \in \mathcal{M}$ as follows

$$
d^{\prime}(x, y)= \begin{cases}d(x, y)+\frac{\varepsilon}{2}, & \text { if } x, y \in x, x \neq y \\ 0, & \text { if } x=y\end{cases}
$$

Then $d^{\star}\left(d, d^{\prime}\right)<\varepsilon$. We show that $d^{\prime} \in \mathcal{M} \backslash f^{-1}(\{t\})$. From (3) and (4) for $x, y \in X(x \neq y)$ and $t_{1}=d(x, y), t_{2}=d^{\prime}(x, y)$ we have

$$
\varphi\left(d^{\prime}(x, y)\right) \geq \varphi(d(x, y))+\frac{\frac{\varepsilon}{2}}{\left(1+d^{\prime}(x, y)\right)^{2}} \geq \varphi(d(x, y))+\frac{\frac{\varepsilon}{2}}{(1+K)^{2}}
$$

Then $f\left(d^{\prime}\right)>f(d)$, so $d^{\prime} \notin f^{-1}(\{t\})$.
(ii) According to lemma the set $g^{-1}(\{t\})$ is closed in \mathcal{B}. It is enough to show that the set $\mathcal{B} \backslash g^{-1}(\{t\})$ is dense in \mathcal{B}. Let $d \in g^{-1}(\{t\})$ and $0<\varepsilon<1$. Define d^{\prime} on X as follows:

$$
d^{\prime}(x, y)= \begin{cases}d(x, y)+\frac{\varepsilon}{2}, & \text { if } x \neq y \\ 0, & \text { if } x=y\end{cases}
$$

Evidently $g\left(d^{\prime}\right)=t+\frac{\varepsilon}{2}$, therefore $g^{\prime} \in \mathcal{B} \backslash g^{-1}(\{t\})$ and $d^{\star}\left(d, d^{\prime}\right)<\varepsilon$.
(iii) We can prove similarly like (ii).

From the above Theorem 1 we can see that the sets $f^{-1}(\{t\}), g^{-1}(\{t\})$, $h^{-1}(\{t\})$ are small from the topological point of view but on the other hand we show, that the cardinality of them is equal to the cardinality of the set \mathcal{M}.

In [2] is proved: $\operatorname{card}(\mathcal{M})=c$ if X is a finite set having at least two elements and $\operatorname{card}(\mathcal{M})=2^{\operatorname{card}(X)}$ if X is infinite set $(c$ denotes the cardinality of the set of all real numbers).

Theorem 2. Let X be an infinite set. Then we have:

1. $\operatorname{card}\left(f^{-1}(\{t\})\right)=2^{\operatorname{card}(X)}$ for $t \in(0,1]$
2. $\operatorname{card}\left(g^{-1}(\{t\})\right)=2^{\operatorname{card}(X)}$ for $t \in[0,+\infty)$
3. $\operatorname{card}\left(h^{-1}(\{t\})\right)=2^{\operatorname{card}(X)}$ for $t \in(0,+\infty)$.

Proof. 1. Let $0<t<1$ and $0<\varepsilon<\frac{1}{2} \cdot \frac{t}{1-t}$. Let $B \subseteq X$ for which $\operatorname{card}(B) \geq 2$. We define the metric on X as follows:

$$
\sigma_{B}(x, y)= \begin{cases}0, & \text { if } x=y \\ \frac{t}{1-t}, & \text { if } x, y \in B ; x \neq y \\ \frac{t}{1-t}-\varepsilon, & \text { if } x \notin B \text { or } y \notin B, x \neq y\end{cases}
$$

It is to easy to verify that σ_{B} is a metric and that $\sigma_{B} \neq \sigma_{B}^{\prime}$, if $B \neq B^{\prime}$. Evidently $f\left(\sigma_{B}\right)=t$. There are $2^{\text {card (X) }}$ many choices for B so we can see

$$
2^{\operatorname{card}(X)} \leq \operatorname{card}\left(f^{-1}(\{t\})\right) \leq \operatorname{card}(\mathcal{M}) \leq 2^{\operatorname{card}(X)}
$$

We get by the Cantor-Bernstein theorem that $\operatorname{card}\left(f^{-1}(\{t\})\right)=2^{\operatorname{card}(X)}$.
Let now $t=1$ and $X_{0}=\left\{x_{1}<x_{2}<\cdots<x_{n}<\cdots\right\} \subset X$. Define the function $d_{B}: X \times X \rightarrow R$:

$$
\begin{aligned}
d_{B}\left(x_{n}, x_{m}\right) & =|n-m| \quad \text { for } \quad n, m=1,2, \ldots \\
d_{B}\left(x, x_{n}\right) & =d_{B}\left(x_{n}, x\right)=n \quad \text { for } \quad x \notin X_{0} \\
d_{B}(x, y) & =d_{B}(y, x)=1 \quad \text { for } \quad x, y \notin X_{0}, x \neq y \\
d_{B}(x, x) & =0 \quad \text { for } \quad x \in X .
\end{aligned}
$$

(The same function was used in [2], Theorem 5.) It can be easily verified that $d_{B}\left(x_{n}, x_{1}\right) \rightarrow \infty(n \rightarrow \infty)$, hence $f\left(d_{B}\right)=1$. Thereby we have $2^{\operatorname{card}(X)}$ possibilities for choosing of B, we get that $\operatorname{card}\left(f^{-1}(\{t\})\right)=2^{\operatorname{card}(X)}$.
2. For $t=0$ it has been proved in [4] (Theorem 1), that $\operatorname{card}\left(g^{-1}(\{t\})\right)=$ $2^{\operatorname{card}(X)}$. Let $t>0$. Let $B \subset X$ is so, that $\operatorname{card}(B) \geq 2$. Define ρ_{B} on X as follows:

$$
\rho_{B}(x, y)= \begin{cases}0, & \text { for } x=y \\ t & \text { for } x, y \in B, x \neq y \\ t+1 & \text { otherwise }\end{cases}
$$

Then $\rho_{B} \in \mathcal{M}$ and $g\left(\rho_{B}\right)=t$.
3. Let $t>0$ and $0<\zeta<\frac{t}{2}$. Then the function τ_{B} defined on X by this way

$$
\tau_{B}(x, y)= \begin{cases}0, & \text { for } x=y \\ t, & \text { for } x, y \in B, x \neq y \\ t-\zeta & \text { otherwise }\end{cases}
$$

is a metric on X and $h\left(\tau_{B}\right)=t$.

References

[1] R. Engelking, General Topology, PWN, Warszawa, 1977 (in russian).
[2] T. Šalat, J. Тоth, L. Zsilinszky, Metric space of metrics defined on a given set, Real Anal. Exch., 18 No. 1 (1992/93), 225-231.
[3] T. Šalat, J. Тоth, L. Zsilinszky, On structure of the space of metrics defined on a given set, Real Anal. Exch., 19 No. 1 (1993/94), 321-327.
[4] R. W. Vallin, More on the metric space of metrics, Real. Anal. Exch., 21 No. 2. (1995/96), 739-742.

University of Education,
Department of Mathematics,
Farská 19, 94974 Nitra, Slovakia
E-mail: toth@unitra.sk

